1
|
Kadivar E, Barman D, Kumar P, El Moctar O. Laser-Induced Single Cavitation Bubble Dynamics in the Presence of Microscale Roughness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40310276 DOI: 10.1021/acs.langmuir.5c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Cavitation-induced erosion presents major problems for hydraulic and marine systems due to the collapse of bubbles near solid boundaries. This work investigates a passive control technique employing a microstructured rough surface to reduce erosion. High-speed imaging studies were performed to analyze the collapse dynamics of a single bubble induced by laser-generated plasma near a microscale rough surface and a smooth surface. The bubble's equivalent radius was investigated over time for three varying relative wall distances, and its behavior was assessed over three specific phases: growth, collapse, and rebound. The bubble adjacent to the smooth surface demonstrated a symmetrical collapse and formed toroidal structures affixed to the wall, in accordance with established bubble-wall interaction phenomena documented in prior research. The rough surface, on the other hand, caused an asymmetric collapse and rebound, causing a counter-jet to form that moved away from the surface. This divergence from the anticipated symmetric collapse indicated that microscale roughness substantially influences bubble dynamics, diminishing microjet momentum and the associated toroidal cavity size, thus alleviating erosion. These results provided innovative perspectives on cavitation control strategies through surface modification.
Collapse
Affiliation(s)
- Ebrahim Kadivar
- Institute of Ship Technology, Ocean Engineering and Transport Systems, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Dipanjan Barman
- Institute of Ship Technology, Ocean Engineering and Transport Systems, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Pankaj Kumar
- Institute of Ship Technology, Ocean Engineering and Transport Systems, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Ould El Moctar
- Institute of Ship Technology, Ocean Engineering and Transport Systems, University of Duisburg-Essen, 47057 Duisburg, Germany
| |
Collapse
|
2
|
Fleite S, Cassanello M, Buera MDP. Modifications of biological membranes, fat globules and liposomes promoted by cavitation processes. Consequences and applications. Chem Phys Lipids 2025; 267:105462. [PMID: 39622431 DOI: 10.1016/j.chemphyslip.2024.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Cavitation-based technologies, such as ultrasound (or acoustic cavitation, AC) and hydrodynamic cavitation (HC), are gaining interest among green processing technologies due to their cost effectiveness in operation, toxic solvent use reduction, and ability to obtain superior processed products, compared to conventional methods. Both AC and HC generate bubbles, but their effects may differ and it is difficult to make comparisons as both are based on different phenomena and are subject to different operational variables. AC is one of the most used techniques in extraction and homogenization processes at the laboratory level. However, upscaling to an industrial level is hard. On the other hand, HC is based on the passage of the liquid through a constriction (orifice plate, Venturi, throttling valve), which causes an increase in liquid velocity at the expense of local pressure, forcing the pressure around the contraction below the threshold pressure that induces the formation of cavities. Some applications of cavitation technologies, such as the production of liposomes or lipid nanoparticles (LNPs) allow the generation of delivery systems for biomedical applications.Many others (inactivation of pathogenic viruses, bacteria and algae for water purification, extraction procedures, third generation of biofuel production, green extractions) are based on the disruption of lipid membranes. There are also applications aimed at the modification of membranes (like the milk fat globule) for the development of innovative products. Process parameters, such as cavitation intensity, duration and temperature define the impact of the process on the physical, chemical, and biological characteristics of the membranes. Thus, the adequate implementation of cavitation processes requires understanding of interactions and synergistic mechanisms in complex systems and of their effects on membranes at the microscopic or molecular level. In the present work, the use of cavitation technologies for the generation of LNPs or nanostructured lipid carriers, and the effects of AC and HC treatments on several types of membrane systems (liposomes, solid lipid nanoparticles, milk fat globules, algae and bacterial membranes) are discussed, focusing on the structural and chemical modifications of lipidic structures under cavitation.
Collapse
Affiliation(s)
- Santiago Fleite
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Química Inorgánica y Analítica, Argentina
| | - Miryan Cassanello
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina
| | - María Del Pilar Buera
- CONICET - Universidad de Buenos Aires, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ), Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Industrias, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Ciudad Universitaria, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
3
|
Li HM, Feng LL, Jiang Q, Yang Y, Zhang JY, Luo X, Yang X, Ren B, Ye LT, Hou ZJ, Li Y, Yu JH. A Novel Nanoscale Phase-Change Contrast Agent Evaluates the Hepatic Fibrosis Through Targeting Hepatic Stellate Cell Platelet-Derived Factor Beta Receptor by Ultrasound in Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:508-518. [PMID: 39690041 DOI: 10.1016/j.ultrasmedbio.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE As a reversible condition at its early stages, liver fibrosis can progress to cirrhosis and hepatocellular carcinoma, underscoring the importance of early detection for preventing severe outcomes and improving prognosis. To address this issue, we developed a platelet-derived growth factor receptor β (PDGFRβ)-targeted nanoscale phase-change contrast agent to target activated hepatic stellate cells (aHSC) and enable ultrasound imaging as a foundation for the early evaluation of liver fibrosis. METHODS PDGFR-β antibody-modified phase-change contrast agents (PPCAs) were synthesized utilizing film hydration and ultrasonic emulsification with perfluoropentane (PFP) encapsulated. PPCAs were specifically conjugated to aHSC with high PDGFR-β expression, whose targeting ability was evaluated using fluorescence confocal microscopy and flow cytometry. Phase transition at different temperatures and mechanical indices (MIs), as well as contrast-enhanced ultrasound imaging were analyzed. RESULTS PPCAs had an average diameter of 283.6 ± 11.3 nm with good dispersibility and relative stability, and the echo intensity increased correspondingly with increasing MIs. PPCAs exhibited both excellent biocompatibility and imaging ability when excited by high-frequency ultrasound set to an MI of 1.0 at 37°C, and simultaneously showed strong specific targeting ability to aHSC, with cellular uptake reaching 56.67 ± 5.96%. CONCLUSION As a new imaging avenue, PPCAs have the potential to enhance ultrasound imaging and establish the basis for diagnosis by targeting aHSC specifically with good biocompatibility and stability.
Collapse
Affiliation(s)
- Han-Mei Li
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lin-Li Feng
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiong Jiang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - You Yang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ju-Ying Zhang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xia Luo
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xing Yang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bo Ren
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Li-Tao Ye
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zheng-Ju Hou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yang Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jin-Hong Yu
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
4
|
Tiong TJ, Chu JK, Tan KW. Advancements in Acoustic Cavitation Modelling: Progress, Challenges, and Future Directions in Sonochemical Reactor Design. ULTRASONICS SONOCHEMISTRY 2025; 112:107163. [PMID: 39616722 PMCID: PMC11650317 DOI: 10.1016/j.ultsonch.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 01/13/2025]
Abstract
This review provides a comprehensive overview of ultrasonic wave propagation, with a primary focus on high-power ultrasound systems where cavitation bubbles are likely to occur. The review is structured to guide readers through the historical development of cavitation models, from early works such as the Rayleigh-Plesset equation to more advanced numerical approaches. It explores the dynamics of cavitation bubbles, their physical effects, and the key factors influencing bubble formation, growth, and collapse. In addition to bubble-induced cavitation, the review addresses nonlinear wave propagation in the absence of bubbles, highlighting phenomena such as harmonic generation and shock wave formation. A detailed discussion on the numerical modelling of ultrasonic systems follows, covering linear and nonlinear approaches, boundary conditions, and the challenges of accurately simulating cavitating systems. The review concludes with an analysis of recent developments, emerging trends, and future directions in computational modelling for ultrasonic applications. By presenting a structured overview of both the theoretical and practical aspects of ultrasonic wave propagation, this work aims to provide a foundation for future research and design improvements in sonochemical and acoustic systems.
Collapse
Affiliation(s)
- T Joyce Tiong
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Jin Kiat Chu
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia.
| |
Collapse
|
5
|
Mur J, Reuter F, Agrež V, Petkovšek R, Ohl CD. Optic generation and perpetuation of acoustic bubble clusters. ULTRASONICS SONOCHEMISTRY 2024; 110:107023. [PMID: 39153420 PMCID: PMC11378257 DOI: 10.1016/j.ultsonch.2024.107023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Laser-induced cavitation bubbles offer precise control of the flow in space and time, but they are rarely used for the mechanical and chemical processing of liquids. Instead, strong acoustic fields are commonly used to nucleate and drive cavitation bubbles for liquid process applications. While acoustic field creates many more cavitation events, the resulting chaotic dynamics offers little control on the fluid mechanics, i.e., where and how bubbles deliver their energy. Here we present a method that utilizes a laser to nucleate a single cavitation bubble, which is then driven into violent oscillations by the ultrasound field, resulting in splitting of the bubble followed by formation of a cluster of cavitation bubbles. This combination offers means for cavitation control not available in conventional acoustic cavitation. Here, the cavitation bubble is generated with a custom build pulsed laser that is focused below a sonotrode driven at 20 kHz. In absence of the acoustic driving the bubble reaches a maximum diameter of 130 µm with a lifetime of approximately 10 µs. In the presence of the acoustic field the first few expansions and bubble collapses are strongly affected by the phase of nucleation. Over successive acoustic cycles a small bubble cluster develops that loses its connection with the phase of generation. We study the dynamics in the free field and constrained by a rigid boundary. For both geometries the cluster over many acoustic cycles dies off, yet through repetitive optical bubble seeding the cluster lifetime and its location can be controlled.
Collapse
Affiliation(s)
- Jaka Mur
- Faculty of Natural Sciences, Institute for Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany; Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
| | - Fabian Reuter
- Faculty of Natural Sciences, Institute for Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Vid Agrež
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia
| | - Rok Petkovšek
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, SI-1000 Ljubljana, Slovenia.
| | - Claus-Dieter Ohl
- Faculty of Natural Sciences, Institute for Physics, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
| |
Collapse
|
6
|
Wang M, Zhang W, Chen Z, Paulus YM, Wang X, Yang X. Real-Time Cavitation Monitoring During Optical Coherence Tomography Guided Photo-Mediated Ultrasound Therapy of the Retina. IEEE Trans Biomed Eng 2024; 71:2473-2482. [PMID: 38478443 PMCID: PMC11257808 DOI: 10.1109/tbme.2024.3377115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
OBJECTIVE Photo-mediated ultrasound therapy (PUT) is a novel antivascular therapeutic modality based on cavitation-induced bioeffects. During PUT, synergistic combinations of laser pulses and ultrasound bursts are used to remove the targeted microvessels selectively and precisely without harming nearby tissue. In the current study, an integrated system combining PUT and spectral domain optical coherence tomography (SD-OCT) was developed, where the SD-OCT system was used to guide PUT by detecting cavitation in real time in the retina of the eye. METHOD We first examined the capability of SD-OCT in detecting cavitation on a vascular-mimicking phantom and compared the results with those from a passive cavitation detector. The performance of the integrated system in treatment of choroidal microvessels was then evaluated in rabbit eyes in vivo. RESULTS During the in vivo PUT experiments, several biomarkers at the subretinal layer in the rabbit eye were identified on OCT images. The findings indicate that, by evaluating biomarkers of treatment effect, real-time SD-OCT monitoring could help to avoid micro-hemorrhage, which is a potential major side effect. CONCLUSION Real-time OCT monitoring can thus improve the safety and efficiency of PUT in removing the retinal and choroidal microvasculature.
Collapse
|
7
|
Ueno Y, Kariya S, Ono Y, Maruyama T, Nakatani M, Komemushi A, Tanigawa N. In Vivo Sonoporation Effect Under the Presence of a Large Amount of Micro-Nano Bubbles in Swine Liver. Ultrasound Q 2024; 40:144-148. [PMID: 37918108 DOI: 10.1097/ruq.0000000000000659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVES Sonoporation as a method of intracellular drug and gene delivery has not yet progressed to being used in vivo. The aim of this study was to prove the feasibility of sonoporation at a level practical for use in vivo by using a large amount of carbon dioxide micro-nano bubbles. METHODS The carbon dioxide micro-nano bubbles and 100 mg of cisplatin were intra-arterially injected to the swine livers, and ultrasound irradiation was performed from the surface of the liver under laparotomy during the intra-arterial injection. After the intra-arterial injection, ultrasound-irradiated and nonirradiated liver tissues were immediately excised. Tissue platinum concentration was measured using inductively coupled plasma mass spectrometry. Liver tissue platinum concentrations were compared between the irradiated tissue and nonirradiated tissue using the Wilcoxon signed rank test. RESULTS The mean (SD) liver tissue platinum concentration was 6.260*103 (2.070) ng/g in the irradiated liver tissue and 3.280*103 (0.430) ng/g in the nonirradiated liver tissue, showing significantly higher concentrations in the irradiated tissue ( P = 0.004). CONCLUSIONS In conclusion, increasing the tissue concentration of administered cisplatin in the livers of living swine through the effect of sonoporation was possible in the presence of a large amount of micro-nano bubbles.
Collapse
Affiliation(s)
- Yutaka Ueno
- Department of Radiology, Kansai Medical University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Ozan SC, Muller PJ, Cloete JH. On efficient modelling of radical production in cavitation assisted reactors. ULTRASONICS SONOCHEMISTRY 2024; 104:106833. [PMID: 38452712 PMCID: PMC11636817 DOI: 10.1016/j.ultsonch.2024.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Process intensification by cavitation is gaining widespread attention due to the benefits that the intense bubble collapse conditions can provide, yet, several knowledge gaps exist in the modelling of such systems. This work studies the numerical prediction of single bubble dynamics and the various approaches that can be employed to estimate the changes in the chemical composition of cavitating bubbles. Specific emphasis is placed on the prediction of the radical production rates during bubble collapse and the computational performance, with the aim of coupling the single bubble dynamics to flow models for reactor hydrodynamics. The results reveal that the choice of chemical reaction approach has virtually no effect on the bubble dynamics, whereas the predicted radical production rates can differ substantially. It is found that evaluating the radical production only on temperature peaks, an approach commonly followed in literature, may result in the most erroneous estimations (on average 12.8 times larger than those of the full kinetic model), while a simplified kinetic model yields more accurate predictions (2.3 times larger) at the expense of increased computational times. Continuous evaluation of the bubble content by assuming equilibrium when the bubble temperature is above a certain threshold (≈1500K) is shown to be capable of predicting total radical production values close to those estimated by solving the kinetics of a detailed reaction model (19.8% difference), as well as requiring only 22.2% more computational costs compared to simulations without chemical reaction modelling. Such an equilibrium approach is therefore recommended for future studies aiming to couple flow simulations with single bubble dynamics to accurately predict radical production rates in cavitation devices, involving numerous bubbles following different flow trajectories. Furthermore, an algebraic expression that successfully approximates the full kinetic simulation results is proposed as a function of the initial nucleus size and the time integral of the liquid pressure when it is under vapor pressure. Such a model can be applied in modelling efforts that do not require local instantaneous radical concentrations, and paves the way for efficient closure modelling of radical production in CFD simulations of hydrodynamic reactors.
Collapse
Affiliation(s)
- Suat Canberk Ozan
- Process Technology Department, SINTEF Industry, S.P. Andersens veg 15B, NO-7031 Trondheim, Norway; Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway.
| | - Pascal Jan Muller
- Department of Mechanical Engineering, ETH Zurich, D-MAVT Leonhardstrasse 21, 8092 Zurich, Switzerland
| | - Jan Hendrik Cloete
- Process Technology Department, SINTEF Industry, S.P. Andersens veg 15B, NO-7031 Trondheim, Norway
| |
Collapse
|
9
|
Allison C, Jiménez A, Ramajayam K, Haemmerich D, Zderic V. Therapeutic Ultrasound for Enhanced Corneal Permeability to Macromolecules. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:127-136. [PMID: 37842972 DOI: 10.1002/jum.16346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES Topically applied macromolecules have the potential to provide vision-saving treatments for many of the leading causes of blindness in the United States. The aim of this study was to determine if ultrasound can be applied to increase transcorneal drug delivery of macromolecules without dangerously overheating surrounding ocular tissues. METHODS Dissected corneas of adult rabbits were placed in a diffusion cell between a donor compartment filled with a solution of macromolecules (40, 70 kDa, or 150 kDa) and a receiver compartment. Each cornea was exposed to the drug solution for 60 minutes, with the experimental group receiving 5 minutes of continuous ultrasound or 10 minutes of pulsed ultrasound at a 50% duty cycle (pulse repetition frequency of 500 ms on, 500 ms off) at the beginning of treatment. Unfocused circular ultrasound transducers were operated at 0.5 to 1 W/cm2 intensity and at 600 kHz frequency. RESULTS The greatest increase in transcorneal drug delivery seen was 1.2 times (P < .05) with the application of pulsed ultrasound at 0.5 W/cm2 and 600 kHz for 10 minutes with 40 kDa macromolecules. Histological analysis revealed structural damage mostly in the corneal epithelium, with most damage occurring at the epithelial surface. CONCLUSIONS This study suggests that ultrasound may be used for enhancing transcorneal delivery of macromolecules of lower molecular weights. Further research is needed on the long-term effects of ultrasound parameters used in this study on human ocular tissues.
Collapse
Affiliation(s)
- Claire Allison
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Annette Jiménez
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Krishna Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Vesna Zderic
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
10
|
Shams A, Bidi S, Gavaises M. Investigation of the ultrasound-induced collapse of air bubbles near soft materials. ULTRASONICS SONOCHEMISTRY 2024; 102:106723. [PMID: 38101107 PMCID: PMC10764290 DOI: 10.1016/j.ultsonch.2023.106723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
A numerical investigation into the ultrasound-induced collapse of air bubbles near soft materials, utilizing a novel multi-material diffuse interface method (DIM) model with block-structured adaptive mesh refinement is presented. The present work expands from a previous five-equation DIM by incorporating Eulerian hyperelasticity. The model is applicable to any arbitrary number of interacting fluid and solid material. A single conservation law for the elastic stretch tensor enables tracking the deformations for all the solid materials. A series of benchmark cases are conducted, and the solution is found to be in excellent agreement against theoretical data. Subsequently, the ultrasound-induced bubble-tissue flow interactions are examined. The bubble radius was found to play a crucial role in dictating the stresses experienced by the tissue, underscoring its significance in medical applications. The results reveal that soft tissues primarily experience tensile forces during these interactions, suggesting potential tensile-driven injuries that may occur in relevant treatments. Moreover, regions of maximal tensile forces align with tissue elongation areas. It is documented that while early bubble dynamics remain relatively unaffected by changes in shear modulus, at later stages of the penetration processes and the deformation shapes, exhibit notable variations. Lastly, it is demonstrated that decreasing standoff distances enhances the interaction between bubbles and tissue, thereby increasing the stress levels in the tissue, although the behavior of the bubble dynamics remains largely unchanged.
Collapse
Affiliation(s)
- Armand Shams
- School of Science and Technology, City, University of London, UK.
| | - Saeed Bidi
- School of Science and Technology, City, University of London, UK; Institut Jean le Rond d'Alembert, Sorbonne Université and CNRS UMR 7190, F-75005 Paris, France
| | - Manolis Gavaises
- School of Science and Technology, City, University of London, UK
| |
Collapse
|
11
|
Biasiori-Poulanges L, Lukić B, Supponen O. Cavitation cloud formation and surface damage of a model stone in a high-intensity focused ultrasound field. ULTRASONICS SONOCHEMISTRY 2024; 102:106738. [PMID: 38150955 PMCID: PMC10765487 DOI: 10.1016/j.ultsonch.2023.106738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
This work investigates the fundamental role of cavitation bubble clouds in stone comminution by focused ultrasound. The fragmentation of stones by ultrasound has applications in medical lithotripsy for the comminution of kidney stones or gall stones, where their fragmentation is believed to result from the high acoustic wave energy as well as the formation of cavitation. Cavitation is known to contribute to erosion and to cause damage away from the target, yet the exact contribution and mechanisms of cavitation remain currently unclear. Based on in situ experimental observations, post-exposure microtomography and acoustic simulations, the present work sheds light on the fundamental role of cavitation bubbles in the stone surface fragmentation by correlating the detected damage to the observed bubble activity. Our results show that not all clouds erode the stone, but only those located in preferential nucleation sites whose locations are herein examined. Furthermore, quantitative characterizations of the bubble clouds and their trajectories within the ultrasonic field are discussed. These include experiments with and without the presence of a model stone in the acoustic path length. Finally, the optimal stone-to-source distance maximizing the cavitation-induced surface damage area has been determined. Assuming the pressure magnitude within the focal region to exceed the cavitation pressure threshold, this location does not correspond to the acoustic focus, where the pressure is maximal, but rather to the region where the acoustic beam and thereby the acoustic cavitation activity near the stone surface is the widest.
Collapse
Affiliation(s)
- Luc Biasiori-Poulanges
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
| | - Bratislav Lukić
- European Synchrotron Radiation Facility, CS 40220, Grenoble F-38043, France
| | - Outi Supponen
- Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland.
| |
Collapse
|
12
|
Izak Ghasemian S, Reuter F, Fan Y, Rose G, Ohl CD. Shear wave generation from non-spherical bubble collapse in a tissue phantom. SOFT MATTER 2023. [PMID: 37990644 DOI: 10.1039/d3sm01077e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Elastography is a non-invasive technique to detect tissue anomalies via the local elastic modulus using shear waves. Commonly shear waves are produced via acoustic focusing or the use of mechanical external sources, shear waves may result also naturally from cavitation bubbles during medical intervention, for example from thermal ablation. Here, we measure the shear wave emitted from a well-controlled single laser-induced cavitation bubble oscillating near a rigid boundary. The bubbles are generated in a transparent tissue-mimicking hydrogel embedded with tracer particles. High-speed imaging of the tracer particles and the bubble shape allow quantifying the shear wave and relate it to the bubble dynamics. It is found that different stages of the bubble dynamics contribute to the shear wave generation and the mechanism of shear wave emission, its direction and the efficiency of energy converted into the shear wave depend crucially on the bubble to wall stand-off distance.
Collapse
Affiliation(s)
- Saber Izak Ghasemian
- Institute of Physics, Otto-von-Guericke Universität, Magdeburg, Germany.
- Research Campus STIMULATE, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Fabian Reuter
- Institute of Physics, Otto-von-Guericke Universität, Magdeburg, Germany.
| | - Yuzhe Fan
- Research Campus STIMULATE, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Georg Rose
- Research Campus STIMULATE, Otto-von-Guericke Universität, Magdeburg, Germany
- Institute of Medical Engineering, Otto-von-Guericke Universität, Magdeburg, Germany
| | - Claus-Dieter Ohl
- Institute of Physics, Otto-von-Guericke Universität, Magdeburg, Germany.
- Research Campus STIMULATE, Otto-von-Guericke Universität, Magdeburg, Germany
| |
Collapse
|
13
|
Lu H, Cui H, Lu G, Jiang L, Hensleigh R, Zeng Y, Rayes A, Panduranga MK, Acharya M, Wang Z, Irimia A, Wu F, Carman GP, Morales JM, Putterman S, Martin LW, Zhou Q, Zheng XR. 3D Printing and processing of miniaturized transducers with near-pristine piezoelectric ceramics for localized cavitation. Nat Commun 2023; 14:2418. [PMID: 37105973 PMCID: PMC10140030 DOI: 10.1038/s41467-023-37335-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 03/14/2023] [Indexed: 04/29/2023] Open
Abstract
The performance of ultrasonic transducers is largely determined by the piezoelectric properties and geometries of their active elements. Due to the brittle nature of piezoceramics, existing processing tools for piezoelectric elements only achieve simple geometries, including flat disks, cylinders, cubes and rings. While advances in additive manufacturing give rise to free-form fabrication of piezoceramics, the resultant transducers suffer from high porosity, weak piezoelectric responses, and limited geometrical flexibility. We introduce optimized piezoceramic printing and processing strategies to produce highly responsive piezoelectric microtransducers that operate at ultrasonic frequencies. The 3D printed dense piezoelectric elements achieve high piezoelectric coefficients and complex architectures. The resulting piezoelectric charge constant, d33, and coupling factor, kt, of the 3D printed piezoceramic reach 583 pC/N and 0.57, approaching the properties of pristine ceramics. The integrated printing of transducer packaging materials and 3D printed piezoceramics with microarchitectures create opportunities for miniaturized piezoelectric ultrasound transducers capable of acoustic focusing and localized cavitation within millimeter-sized channels, leading to miniaturized ultrasonic devices that enable a wide range of biomedical applications.
Collapse
Affiliation(s)
- Haotian Lu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Huachen Cui
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
- Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, 511453, China
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laiming Jiang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Ryan Hensleigh
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Adnan Rayes
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mohanchandra K Panduranga
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Megha Acharya
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Zhen Wang
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Andrei Irimia
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Felix Wu
- Materials Technology R&D, Vehicle Technologies Office, Energy Efficiency and Renewable Energy, U.S. Department of Energy, Washington, DC, 20585, USA
| | - Gregory P Carman
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - José M Morales
- Ronald Reagan UCLA Medical Center, University of California, Los Angeles, CA, 90095, USA
| | - Seth Putterman
- Department of Physics and Astronomy, University of California, Los Angeles, CA, 90095, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
- Department of Ophthalmology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xiaoyu Rayne Zheng
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
14
|
Xu H, Li S, Cao L, Zhu X, Xue Y, Huang Y, Hua Y. The application of a novel hydrodynamic cavitation device to debride intra-articular monosodium urate crystals. BMC Surg 2023; 23:35. [PMID: 36765342 PMCID: PMC9912527 DOI: 10.1186/s12893-023-01929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Efficient and complete debridement of intra-articular deposits of monosodium urate crystals is rarely achieved by existing arthroscopic tools such as shavers or radiofrequency ablation, while cavitation technology represents a prospective solution for the non-invasive clearance of adhesions at intra-articular interfaces. METHODS Simulation modeling was conducted to identify the optimal parameters for the device, including nozzle diameters and jet pressures. Gouty arthritis model was established in twelve rats that were equally and randomly allocated into a cavitation debridement group or a curette debridement group. A direct injection nozzle was designed and then applied on animal model to verify the effect of the cavitation jet device on the removal of crystal deposits. Image analysis was performed to evaluate the clearance efficiency of the cavitation device and the pathological features of surrounding tissue were collected in all groups. RESULTS To maximize cavitation with the practical requirements of the operation, an experimental rig was applied, including a 1 mm direct injection nozzle with a jet pressure of 2.0 MPa at a distance of 20 mm and a nitrogen bottle as high-pressure gas source. With regards to feasibility of the device, the clearance rates in the cavitation group were over 97% and were significantly different from the control group. Pathological examination showed that the deposition of monosodium urate crystals was removed completely while preserving the normal structure of the collagen fibers. CONCLUSIONS We developed a promising surgical device to efficiently remove intra-articular deposits of monosodium urate crystals. The feasibility and safety profile of the device were also verified in a rat model. Our findings provide a non-invasive method for the intraoperative treatment of refractory gouty arthritis.
Collapse
Affiliation(s)
- Hanlin Xu
- grid.411405.50000 0004 1757 8861Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Shengkun Li
- grid.411405.50000 0004 1757 8861Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Ling Cao
- grid.411405.50000 0004 1757 8861Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Xiaoxia Zhu
- grid.411405.50000 0004 1757 8861Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yu Xue
- grid.411405.50000 0004 1757 8861Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Yu Huang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Institute of Vibration Shock and Noise, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, China.
| | - Yinghui Hua
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
15
|
Zubalic E, Vella D, Babnik A, Jezeršek M. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time. SENSORS (BASEL, SWITZERLAND) 2023; 23:771. [PMID: 36679570 PMCID: PMC9866294 DOI: 10.3390/s23020771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Cavitation bubbles are used in medicine as a mechanism to generate shock waves. The study of cavitation bubble dynamics plays a crucial role in understanding and utilizing such phenomena for practical applications and purposes. Since the lifetime of cavitation bubbles is in the range of hundreds of microseconds and the radii are in the millimeter range, the observation of bubble dynamics requires complicated and expensive equipment. High-speed cameras or other optical techniques require transparent containers or at least a transparent optical window to access the region. Fiber optic probe tips are commonly used to monitor water pressure, density, and temperature, but no study has used a fiber tip sensor in an interferometric setup to measure cavitation bubble dynamics. We present how a fiber tip sensor system, originally intended as a hydrophone, can be used to track the expansion and contraction of cavitation bubbles. The measurement is based on interference between light reflected from the fiber tip surface and light reflected from the cavitation bubble itself. We used a continuous-wave laser to generate cavitation bubbles and a high-speed camera to validate our measurements. The shock wave resulting from the collapse of a bubble can also be measured with a delay in the order of 1 µs since the probe tip can be placed less than 1 mm away from the origin of the cavitation bubble. By combining the information on the bubble expansion velocity and the time of bubble collapse, the lifetime of a bubble can be estimated. The bubble expansion velocity is measured with a spatial resolution of 488 nm, half the wavelength of the measuring laser. Our results demonstrate an alternative method for monitoring bubble dynamics without the need for expensive equipment. The method is flexible and can be adapted to different environmental conditions, opening up new perspectives in many application areas.
Collapse
|
16
|
Schlotterose L, Beldjilali-Labro M, Schneider G, Vardi O, Hattermann K, Even U, Shohami E, Haustein HD, Leichtmann-Bardoogo Y, Maoz BM. Traumatic Brain Injury in a Well: A Modular Three-Dimensional Printed Tool for Inducing Traumatic Brain Injury In vitro. Neurotrauma Rep 2023; 4:255-266. [PMID: 37095852 PMCID: PMC10122253 DOI: 10.1089/neur.2022.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health problem that affects millions of persons worldwide every year among all age groups, mainly young children, and elderly persons. It is the leading cause of death for children under the age of 16 and is highly correlated with a variety of neuronal disorders, such as epilepsy, and neurodegenerative disease, such as Alzheimer's disease or amyotrophic lateral sclerosis. Over the past few decades, our comprehension of the molecular pathway of TBI has improved, yet despite being a major public health issue, there is currently no U.S. Food and Drug Administration-approved treatment for TBI, and a gap remains between these advances and their application to the clinical treatment of TBI. One of the major hurdles for pushing TBI research forward is the accessibility of TBI models and tools. Most of the TBI models require costume-made, complex, and expensive equipment, which often requires special knowledge to operate. In this study, we present a modular, three-dimensional printed TBI induction device, which induces, by the pulse of a pressure shock, a TBI-like injury on any standard cell-culture tool. Moreover, we demonstrate that our device can be used on multiple systems and cell types and can induce repetitive TBIs, which is very common in clinical TBI. Further, we demonstrate that our platform can recapitulate the hallmarks of TBI, which include cell death, decrease in neuronal functionality, axonal swelling (for neurons), and increase permeability (for endothelium). In addition, in view of the continued discussion on the need, benefits, and ethics of the use of animals in scientific research, this in vitro, high-throughput platform will make TBI research more accessible to other labs that prefer to avoid the use of animals yet are interested in this field. We believe that this will enable us to push the field forward and facilitate/accelerate the availability of novel treatments.
Collapse
Affiliation(s)
- Luise Schlotterose
- Institute of Anatomy, Kiel University, Kiel, Germany
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Gaya Schneider
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ofir Vardi
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Uzi Even
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Esther Shohami
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Herman D. Haustein
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | | | - Ben M. Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Address correspondence to: Ben M. Maoz, PhD, Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
17
|
Yang Q, He X, Peng H, Zhang J. Wall wettability effect on process of collapse of single cavitation bubbles in near-wall region using pseudo-potential lattice Boltzmann method. Heliyon 2022; 8:e12636. [PMID: 36619430 PMCID: PMC9816788 DOI: 10.1016/j.heliyon.2022.e12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/28/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022] Open
Abstract
This study investigates the effect of wall wettability on cavitation collapse based on a large-density-ratio lattice Boltzmann method (LBM) pseudo-potential model. The validity and superiority of the proposed model in simulation of cavitation under complex conditions are confirmed by comparing with theories, experiments, and numerical results by other models. Our simulations indicate that wall wettability has a significant influence on near-wall cavitation of an order no less than the effect of the initial bubble distance. A criterial initial distance exists in near-wall cavitation within which the micro-jet will direct toward the wall. This criterial distance is shown to be positively correlated with the contact angle by a cosine function. Within this distance, the lifetime of the bubble decreases by up to 50%, and the increase of the maximum micro-jet velocity and collapse pressure are up to 131% and 65%, respectively, when the contact angle increases from the hydrophilic 53° to the hydrophobic 113°. Without considering the shock-wave mechanism, the impact pressure transmitted to the hydrophilic wall is of the same order as the maximum collapse pressure while the impact velocity is an order smaller than the maximum micro-jet velocity. Wall wettability affects collapse through the Bjerknes force and the pressure around the bubble. Preliminary analysis also suggests that the relation between the pressure difference and the intensity of collapse exhibits more patterns than we have assumed, which fits a logistic curve well, and appears not changing with the contact angle or the initial bubble distance.
Collapse
Affiliation(s)
- Qian Yang
- Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaolong He
- Chongqing Southwest Research Institute for Water Transport Engineering, Chongqing Jiaotong University, Chongqing 400074, China,State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China,Corresponding author.
| | - Haonan Peng
- Laboratory for Waste Management, Paul Scherrer Institute, CH, 5232, Villigen PSI, Switzerland
| | - Jianmin Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China,Corresponding author.
| |
Collapse
|
18
|
Pan M, Hu D, Yuan L, Yu Y, Li Y, Qian Z. Newly developed gas-assisted sonodynamic therapy in cancer treatment. Acta Pharm Sin B 2022. [PMID: 37521874 PMCID: PMC10372842 DOI: 10.1016/j.apsb.2022.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Sonodynamic therapy (SDT) is an emerging noninvasive treatment modality that utilizes low-frequency and low-intensity ultrasound (US) to trigger sensitizers to kill tumor cells with reactive oxygen species (ROS). Although SDT has attracted much attention for its properties including high tumor specificity and deep tissue penetration, its anticancer efficacy is still far from satisfactory. As a result, new strategies such as gas-assisted therapy have been proposed to further promote the effectiveness of SDT. In this review, the mechanisms of SDT and gas-assisted SDT are first summarized. Then, the applications of gas-assisted SDT for cancer therapy are introduced and categorized by gas types. Next, therapeutic systems for SDT that can realize real-time imaging are further presented. Finally, the challenges and perspectives of gas-assisted SDT for future clinical applications are discussed.
Collapse
|
19
|
Brini F, Seccia L. Acceleration waves and oscillating gas bubbles modelled by rational extended thermodynamics. Proc Math Phys Eng Sci 2022. [DOI: 10.1098/rspa.2022.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The study of acceleration waves for a rarefied polyatomic gas is carried out in planar, cylindrical and spherical geometry referring to the rational extended thermodynamics theory with 14 moments. The case of a rarefied monatomic gas is determined as a limit case, and the role of geometry and molecular degrees of freedom is investigated. In addition, the behaviour of an acceleration wave travelling inside an oscillating gas bubble is modelled by the 14-moment PDE system under adiabatic condition. We show that dissipation combined with hyperbolicity tends to inhibit shock formation, and that the dynamic pressure cannot be zero inside the oscillating bubble. This fact can produce observable effects even in the Navier–Stokes approximation, if the gas exhibits high bulk viscosity.
Collapse
Affiliation(s)
- F. Brini
- University of Bologna, Department of Mathematics and AM, via Saragozza, 8, Bologna, Italy
| | - L. Seccia
- University of Bologna, Department of Mathematics and AM, via Fontanelle, 40, Forlì, Italy
| |
Collapse
|
20
|
Mur J, Reuter F, Kočica JJ, Lokar Ž, Petelin J, Agrež V, Ohl CD, Petkovšek R. Multi-frame multi-exposure shock wave imaging and pressure measurements. OPTICS EXPRESS 2022; 30:37664-37674. [PMID: 36258350 DOI: 10.1364/oe.470695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Shock wave visual detection was traditionally performed using streak cameras, limited to homogeneous shock wave emission, with the corresponding shock wave pressure measurements available at rather large distances or numerically estimated through equation of state for water. We demonstrate a multi-frame multi-exposure shock wave velocity measurement technique for all in-plane directions of propagation, based on custom-built illumination system allowing multiple illumination pulses within each frame at multi-MHz frame rates and at up to 200 MHz illumination pulse repetition frequency at sub-nanosecond pulse durations. The measurements are combined and verified using a fiber-optic probe hydrophone, providing independent shock wave pressure and time-of-flight measurements, creating a novel all-optical measurement setup. The measured pressures at distances around 100 µm from the plasma center exceed 500 MPa, while camera-based measurements at even shorter distances indicate pressures above 1 GPa.
Collapse
|
21
|
Charalampopoulos A, Bryngelson SH, Colonius T, Sapsis TP. Hybrid quadrature moment method for accurate and stable representation of non-Gaussian processes applied to bubble dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210209. [PMID: 35719067 DOI: 10.1098/rsta.2021.0209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/07/2022] [Indexed: 06/15/2023]
Abstract
Solving the population balance equation (PBE) for the dynamics of a dispersed phase coupled to a continuous fluid is expensive. Still, one can reduce the cost by representing the evolving particle density function in terms of its moments. In particular, quadrature-based moment methods (QBMMs) invert these moments with a quadrature rule, approximating the required statistics. QBMMs have been shown to accurately model sprays and soot with a relatively compact set of moments. However, significantly non-Gaussian processes such as bubble dynamics lead to numerical instabilities when extending their moment sets accordingly. We solve this problem by training a recurrent neural network (RNN) that adjusts the QBMM quadrature to evaluate unclosed moments with higher accuracy. The proposed method is tested on a simple model of bubbles oscillating in response to a temporally fluctuating pressure field. The approach decreases model-form error by a factor of 10 when compared with traditional QBMMs. It is both numerically stable and computationally efficient since it does not expand the baseline moment set. Additional quadrature points are also assessed, optimally placed and weighted according to an additional RNN. These points further decrease the error at low cost since the moment set is again unchanged. This article is part of the theme issue 'Data-driven prediction in dynamical systems'.
Collapse
Affiliation(s)
- A Charalampopoulos
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - S H Bryngelson
- School of Computational Science and Engineering, Georgia Institute of Technology, GA 30313, USA
| | - T Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - T P Sapsis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Seyedmirzaei Sarraf S, Rokhsar Talabazar F, Namli I, Maleki M, Sheibani Aghdam A, Gharib G, Grishenkov D, Ghorbani M, Koşar A. Fundamentals, biomedical applications and future potential of micro-scale cavitation-a review. LAB ON A CHIP 2022; 22:2237-2258. [PMID: 35531747 DOI: 10.1039/d2lc00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Thanks to the developments in the area of microfluidics, the cavitation-on-a-chip concept enabled researchers to control and closely monitor the cavitation phenomenon in micro-scale. In contrast to conventional scale, where cavitation bubbles are hard to be steered and manipulated, lab-on-a-chip devices provide suitable platforms to conduct smart experiments and design reliable devices to carefully harness the collapse energy of cavitation bubbles in different bio-related and industrial applications. However, bubble behavior deviates to some extent when confined to micro-scale geometries in comparison to macro-scale. Therefore, fundamentals of micro-scale cavitation deserve in-depth investigations. In this review, first we discussed the physics and fundamentals of cavitation induced by tension-based as well as energy deposition-based methods within microfluidic devices and discussed the similarities and differences in micro and macro-scale cavitation. We then covered and discussed recent developments in bio-related applications of micro-scale cavitation chips. Lastly, current challenges and future research directions towards the implementation of micro-scale cavitation phenomenon to emerging applications are presented.
Collapse
Affiliation(s)
- Seyedali Seyedmirzaei Sarraf
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Farzad Rokhsar Talabazar
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Ilayda Namli
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Mohammadamin Maleki
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Araz Sheibani Aghdam
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
| | - Ghazaleh Gharib
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - Dmitry Grishenkov
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, SE-141 57 Stockholm, Sweden
| | - Morteza Ghorbani
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, 34956 Tuzla, Istanbul, Turkey.
- Sabanci University Nanotechnology Research and Application Center, 34956 Tuzla, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Orhanli, 34956, Tuzla, Istanbul, Turkey
| |
Collapse
|
23
|
Zevnik J, Dular M. Cavitation bubble interaction with compliant structures on a microscale: A contribution to the understanding of bacterial cell lysis by cavitation treatment. ULTRASONICS SONOCHEMISTRY 2022; 87:106053. [PMID: 35690044 PMCID: PMC9190065 DOI: 10.1016/j.ultsonch.2022.106053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 05/09/2023]
Abstract
Numerous studies have already shown that the process of cavitation can be successfully used for water treatment and eradication of bacteria. However, most of the relevant studies are being conducted on a macro scale, so the understanding of the processes at a fundamental level remains poor. In attempt to further elucidate the process of cavitation-assisted water treatment on a scale of a single bubble, the present paper numerically addresses interaction between a collapsing microbubble and a nearby compliant structure, that mechanically and structurally resembles a bacterial cell. A fluid-structure interaction methodology is employed, where compressible multiphase flow is considered and the bacterial cell wall is modeled as a multi-layered shell structure. Simulations are performed for two selected model structures, each resembling the main structural features of Gram-negative and Gram-positive bacterial cell envelopes. The contribution of two independent dimensionless geometric parameters is investigated, namely the bubble-cell distance δ and their size ratio ς. Three characteristic modes of bubble collapse dynamics and four modes of spatiotemporal occurrence of peak local stresses in the bacterial cell membrane are identified throughout the parameter space considered. The former range from the development of a weak and thin jet away from the cell to spherical bubble collapses. The results show that local stresses arising from bubble-induced loads can exceed poration thresholds of cell membranes and that bacterial cell damage could be explained solely by mechanical effects in absence of thermal and chemical ones. Based on this, the damage potential of a single microbubble for bacteria eradication is estimated, showing a higher resistance of the Gram-positive model organism to the nearby bubble collapse. Microstreaming is identified as the primary mechanical mechanism of bacterial cell damage, which in certain cases may be enhanced by the occurrence of shock waves during bubble collapse. The results are also discussed in the scope of bacteria eradication by cavitation treatment on a macro scale, where processes of hydrodynamic and ultrasonic cavitation are being employed.
Collapse
Affiliation(s)
- Jure Zevnik
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, Slovenia.
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, Slovenia
| |
Collapse
|
24
|
Cho SY, Kwon O, Kim SC, Song H, Kim K, Choi MJ. Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology. Investig Clin Urol 2022; 63:385-393. [PMID: 35670003 PMCID: PMC9262490 DOI: 10.4111/icu.20220059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
Shock waves are commonly used in the field of urology. They have two phases, positive and negative, and the bubble generation is roughly classified into acoustic cavitation (AC) and laser-induced cavitation (LIC). We evaluated the occurrence of cavitation, its duration, the area of interest, and the maximal diameter of the cavitation bubbles. Changes in AC occurred at 0.2 ms with the highest number of bubbles and disappeared at 0.6 ms. The bubble size was 2 mm in diameter. Changes in LIC bubbles were observed in three pulse modes. The short pulse showed an initial bubble starting at 0.005 ms, which reached its largest size at 0.4 to 0.6 ms. The long pulse showed an initial bubble starting at 0.005 ms, which reached its largest size at 0.4 ms with the formation of an additional lagena-shaped bubble at 0.6 ms. The distance mode of MOSES showed two signal peaks with the formation of two consecutive bubbles at 0.2 and 0.6 ms. The main difference in the laser beams between the long-pulse and the MOSES modes was the continuity and the peak power of the laser beam. The diameters parallel to the laser direction were 6.8, 8.6, and 9.7 mm at 1, 2, and 3 J, respectively, in the short pulse. While the cavitation bubbles rupture, ejectile force occurs in numerous directions, transmitting high enough energy to break the targets. Cavitation bubbles should be regarded as energy and the mediators of energy for stone fragmentation and tissue destruction.
Collapse
Affiliation(s)
- Sung Yong Cho
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ohbin Kwon
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, Korea
| | - Seong-Chan Kim
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, Korea
| | - Hyunjae Song
- Department of Electronic Engineering, Sogang University, Seoul, Korea
| | - Kanghae Kim
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, Korea
| | - Min Joo Choi
- Interdisciplinary Postgraduate Program in Biomedical Engineering, Jeju National University, Jeju, Korea.,Department of Medicine, Jeju National University College of Medicine, Jeju, Korea.
| |
Collapse
|
25
|
Jung RT, Naing NMT. Impulsive forces of two spark-generated cavity bubbles with phase differences. ULTRASONICS SONOCHEMISTRY 2022; 86:106042. [PMID: 35598516 PMCID: PMC9127223 DOI: 10.1016/j.ultsonch.2022.106042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/03/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The characteristics of synchronous and phase difference bubble pairs in axisymmetric configuration near a boundary are investigated experimentally by the spark discharge method. Their destructive forces on nearby boundaries are measured using a polyvinylidene fluoride sensor. The bubble pair interactions and deformed features in the boundary vicinity are dissimilar to those in bulk water. Moreover, significant discrepancies between in-phase and out-of-phase pair interactions and their intensities of impulses are also witnessed. The interbubble distance (η), stand-off distance from the boundary (γ), and phase offset (τ) are crucial parameters affecting the shape evolutions and impulsive forces. From the qualitative analysis of sensor acquisition and high-speed imaging, it is observed that bubble periods are either prolonged or shorter than their corresponding isolated single cavity according to different parameters and arrangements. Additionally, the strongest impingements are produced by in-phase pairs. The impulses of phase difference bubble pairs are remarkably lower than in-phase pairs and even lower than a single bubble in some arrangements.
Collapse
Affiliation(s)
- Rho-Taek Jung
- Foundation for Industry Cooperation, Univ. of Ulsan, 93 Daehakro, Nam-gu, Ulsan 44610, Republic of Korea
| | - Nyo Me Thet Naing
- School of Naval Architecture and Ocean Engineering, Univ. of Ulsan, 93 Daehakro, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
26
|
Zhang X, Li F, Wang C, Guo J, Mo R, Hu J, Chen S, He J, Liu H. Radial oscillation and translational motion of a gas bubble in a micro-cavity. ULTRASONICS SONOCHEMISTRY 2022; 84:105957. [PMID: 35203000 PMCID: PMC8866885 DOI: 10.1016/j.ultsonch.2022.105957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
According to classical nucleation theory, a gas nucleus can grow into a cavitation bubble when the ambient pressure is negative. Here, the growth process of a gas nucleus in a micro-cavity was simplified to two "events", and the full confinement effect of the surrounding medium of the cavity was considered by including the bulk modulus in the equation of state. The Rayleigh-Plesset-like equation of the cavitation bubble in the cavity was derived to model the radial oscillation and translational motion of the cavitation bubble in the local acoustic field. The numerical results show that the nucleation time of the cavitation bubble is sensitive to the initial position of the gas nucleus. The cavity size affects the duration of the radial oscillation of the cavitation bubble, where the duration is shorter for smaller cavities. The equilibrium radius of a cavitation bubble grown from a gas nucleus increases with increasing size of the cavity. There are two possible types of translational motion: reciprocal motion around the center of the cavity and motion toward the cavity wall. The growth process of gas nuclei into cavitation bubbles is also dependent on the compressibility of the surrounding medium and the magnitude of the negative pressure. Therefore, gas nuclei in a liquid cavity can be excited by acoustic waves to form cavitation bubbles, and the translational motion of the cavitation bubbles can be easily observed owing to the confining influence of the medium outside the cavity.
Collapse
Affiliation(s)
- Xianmei Zhang
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Fan Li
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Chenghui Wang
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China.
| | - Jianzhong Guo
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China.
| | - Runyang Mo
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Hu
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Shi Chen
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Jiaxin He
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| | - Honghan Liu
- Institute of Shaanxi Key Laboratory of Ultrasonics, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
27
|
Sahoo BN, Han SY, Kim HT, Ando K, Kim TG, Kang BK, Klipp A, Yerriboina NP, Park JG. Chemically controlled megasonic cleaning of patterned structures using solutions with dissolved gas and surfactant. ULTRASONICS SONOCHEMISTRY 2022; 82:105859. [PMID: 34969001 PMCID: PMC8799594 DOI: 10.1016/j.ultsonch.2021.105859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 05/13/2023]
Abstract
Acoustic cavitation is used for megasonic cleaning in the semiconductor industry, especially of wafers with fragile pattern structures. Control of transient cavitation is necessary to achieve high particle removal efficiency (PRE) and low pattern damage (PD). In this study, the cleaning performance of solutions with different concentrations of dissolved gas (H2) and anionic surfactant (sodium dodecyl sulfate, SDS) in DIW (DI water) on silicon (Si) wafers was evaluated in terms of PRE and PD. When only DIW was used, PRE was low and PD was high. An increase in dissolved H2 gas concentration in DIW increased PRE; however, PD also increased accordingly. Thus, we investigated the megasonic cleaning performance of DIW and H2-DIW solutions with various concentrations of the anionic surfactant, SDS. At 20 ppm SDS in DIW, PRE reached a maximum value and then decreased with increasing concentration of SDS. PRE decreased slightly with increasing concentrations of SDS surfactant when dissolved in H2-DIW. Furthermore, PD decreased significantly with increasing concentrations of SDS surfactant in both DIW and H2-DIW cases. A high-speed camera setup was introduced to analyze bubble dynamics under a 0.96 MHz ultrasonic field. Coalescence, agglomeration, and the population of multi-bubbles affected the PRE and PD of silicon wafers differently in the presence of SDS surfactant. We developed a hypothesis to explain the change in bubble characteristics under different chemical environmental conditions.
Collapse
Affiliation(s)
- Bichitra Nanda Sahoo
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - So Young Han
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyun-Tae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Keita Ando
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Tae-Gon Kim
- Department of Smart Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Bong-Kyun Kang
- Electronic Material R&D Center Asia, BASF, Suwon 16419, Republic of Korea
| | | | - Nagendra Prasad Yerriboina
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Jin-Goo Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
28
|
Ye Y, Liang Y, Dong C, Bu Z, Li G, Zheng Y. Numerical modeling of ultrasonic cavitation by dividing coated microbubbles into groups. ULTRASONICS SONOCHEMISTRY 2021; 78:105736. [PMID: 34500314 PMCID: PMC8430393 DOI: 10.1016/j.ultsonch.2021.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Homogeneous cavitation models usually use an average radius to predict the dynamics of all bubbles. However, bubbles with different sizes may have quite different dynamic characteristics. In this study, the bubbles are divided into several groups by size, and the volume-weighted average radius is used to separately calculate the dynamics of each group using a modified bubble dynamics equation. In the validation part, the oscillations of bubbles with two sizes are simulated by dividing them into 2 groups. Comparing with the predictions by the Volume of Fluid (VOF) method, the bubble dynamics of each size are precisely predicted by the proposed model. Then coated microbubbles with numerous sizes are divided into several groups in equal quantity, and the influence of the group number is analyzed. For bubble oscillations at f = 0.1 MHz and 1 MHz without ruptures, the oscillation amplitude is obviously under-estimated by the 1-group model, while they are close to each other after the group number increases to 9. For bubble ruptures triggered by Gaussian pulses, the predictions are close to each other when more than 5 groups are used.
Collapse
Affiliation(s)
- Yanghui Ye
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yangyang Liang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China.
| | - Cong Dong
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Zhongming Bu
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Guoneng Li
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Youqu Zheng
- Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
29
|
Zevnik J, Dular M. Liposome destruction by a collapsing cavitation microbubble: A numerical study. ULTRASONICS SONOCHEMISTRY 2021; 78:105706. [PMID: 34411844 PMCID: PMC8379499 DOI: 10.1016/j.ultsonch.2021.105706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 05/07/2023]
Abstract
Hydrodynamic cavitation poses as a promising new method for wastewater treatment as it has been shown to be able to eradicate bacteria, inactivate viruses, and destroy other biological structures, such as liposomes. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What exactly are the damaging mechanisms of hydrodynamic cavitation in various applications? In this light, the present paper numerically addresses the interaction between a single cavitation microbubble and a nearby lipid vesicle of a similar size. A coupled fluid-structure interaction model is employed, from which three critical modes of vesicle deformation are identified and temporally placed in relation to their corresponding driving mechanisms: (a) unilateral stretching at the waist of the liposome during the first bubble collapse and subsequent shock wave propagation, (b) local wrinkling at the tip until the bubble rebounds, and (c) bilateral stretching at the tip of the liposome during the phase of a second bubble contraction. Here, unilateral and bilateral stretching refer to the local in-plane extension of the bilayer in one and both principal directions, respectively. Results are discussed with respect to critical dimensionless distance for vesicle poration and rupture. Liposomes with initially equilibrated envelopes are not expected to be structurally compromised in cases with δ>1.0, when a nearby collapsing bubble is not in their direct contact. However, the critical dimensionless distance for the case of an envelope with pre-existing pores is identified at δ=1.9. Additionally, the influence of liposome-bubble size ratio is addressed, from which a higher potential of larger bubbles for causing stretching-induced liposome destruction can be identified.
Collapse
Affiliation(s)
- Jure Zevnik
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, Slovenia.
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva cesta 6, Ljubljana, Slovenia
| |
Collapse
|
30
|
Bryngelson SH, Schmidmayer K, Coralic V, Meng JC, Maeda K, Colonius T. MFC: An open-source high-order multi-component, multi-phase, and multi-scale compressible flow solver. COMPUTER PHYSICS COMMUNICATIONS 2021; 266:107396. [PMID: 34168375 PMCID: PMC8218895 DOI: 10.1016/j.cpc.2020.107396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MFC is an open-source tool for solving multi-component, multi-phase, and bubbly compressible flows. It is capable of efficiently solving a wide range of flows, including droplet atomization, shock-bubble interaction, and bubble dynamics. We present the 5- and 6-equation thermodynamically-consistent diffuse-interface models we use to handle such flows, which are coupled to high-order interface-capturing methods, HLL-type Riemann solvers, and TVD time-integration schemes that are capable of simulating unsteady flows with strong shocks. The numerical methods are implemented in a flexible, modular framework that is amenable to future development. The methods we employ are validated via comparisons to experimental results for shock-bubble, shock-droplet, and shock-water-cylinder interaction problems and verified to be free of spurious oscillations for material-interface advection and gas-liquid Riemann problems. For smooth solutions, such as the advection of an isentropic vortex, the methods are verified to be high-order accurate. Illustrative examples involving shock-bubble-vessel-wall and acoustic-bubble-net interactions are used to demonstrate the full capabilities of MFC.
Collapse
Affiliation(s)
- Spencer H. Bryngelson
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kevin Schmidmayer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Vedran Coralic
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jomela C. Meng
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kazuki Maeda
- Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
| | - Tim Colonius
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
31
|
Xiong R, Xu RX, Huang C, De Smedt S, Braeckmans K. Stimuli-responsive nanobubbles for biomedical applications. Chem Soc Rev 2021; 50:5746-5776. [PMID: 33972972 DOI: 10.1039/c9cs00839j] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive nanobubbles have received increased attention for their application in spatial and temporal resolution of diagnostic techniques and therapies, particularly in multiple imaging methods, and they thus have significant potential for applications in the field of biomedicine. This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel applications. Properties of both internal- and external-stimuli responsive nanobubbles are highlighted and discussed considering the potential features required for biomedical applications. Furthermore, the methods used for synthesis and characterization of nanobubbles are outlined. Finally, novel biomedical applications are proposed alongside the advantages and shortcomings inherent to stimuli-responsive nanobubbles.
Collapse
Affiliation(s)
- Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230022, P. R. China and Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China.
| | - Stefaan De Smedt
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China. and Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium. and Centre for Advanced Light Microscopy, Ghent University, 9000, Ghent, Belgium.
| |
Collapse
|
32
|
Vassholz M, Hoeppe HP, Hagemann J, Rosselló JM, Osterhoff M, Mettin R, Kurz T, Schropp A, Seiboth F, Schroer CG, Scholz M, Möller J, Hallmann J, Boesenberg U, Kim C, Zozulya A, Lu W, Shayduk R, Schaffer R, Madsen A, Salditt T. Pump-probe X-ray holographic imaging of laser-induced cavitation bubbles with femtosecond FEL pulses. Nat Commun 2021; 12:3468. [PMID: 34103498 PMCID: PMC8187368 DOI: 10.1038/s41467-021-23664-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Cavitation bubbles can be seeded from a plasma following optical breakdown, by focusing an intense laser in water. The fast dynamics are associated with extreme states of gas and liquid, especially in the nascent state. This offers a unique setting to probe water and water vapor far-from equilibrium. However, current optical techniques cannot quantify these early states due to contrast and resolution limitations. X-ray holography with single X-ray free-electron laser pulses has now enabled a quasi-instantaneous high resolution structural probe with contrast proportional to the electron density of the object. In this work, we demonstrate cone-beam holographic flash imaging of laser-induced cavitation bubbles in water with nanofocused X-ray free-electron laser pulses. We quantify the spatial and temporal pressure distribution of the shockwave surrounding the expanding cavitation bubble at time delays shortly after seeding and compare the results to numerical simulations.
Collapse
Affiliation(s)
- M Vassholz
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - H P Hoeppe
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - J Hagemann
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J M Rosselló
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - M Osterhoff
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - R Mettin
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - T Kurz
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - A Schropp
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - F Seiboth
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - C G Schroer
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department Physik, Universität Hamburg, Hamburg, Germany
| | - M Scholz
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - J Möller
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - J Hallmann
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - U Boesenberg
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - C Kim
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - A Zozulya
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - W Lu
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - R Shayduk
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - R Schaffer
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - A Madsen
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - T Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
33
|
Rohilla P, Khusnatdinov E, Marston J. Effect of air pockets in drug delivery via jet injections. Int J Pharm 2021; 602:120547. [PMID: 33831488 DOI: 10.1016/j.ijpharm.2021.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
Needle-free jet injections are actuated by a pressure impulse that can be delivered by different mechanisms to generate high-speed jets (Vj~O102 m/s). During filling and transportation of disposable cartridges and ampoules, bubbles can form, which can be problematic especially for viscous fluids. Here, we report on the effect of location and size of entrapped air pockets in cartridges used in spring-powered jet injections. As air bubbles pass through the orifice, they undergo depressurization, which results in intermittent atomization and spray formation, temporarily increasing the jet dispersion. Atomization and dispersion of the jet can lead to product loss during an injection. We find that the effect of bubble location on the jet exit speed, delivery efficiency, and the projected area of the blebs formed after the injection was statistically significant (p<0.05). The findings of this study have implications for the development of pre-filled cartridges for jet injection applications.
Collapse
Affiliation(s)
- Pankaj Rohilla
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Emil Khusnatdinov
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Jeremy Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
34
|
Perra E, Lampsijärvi E, Barreto G, Arif M, Puranen T, Hæggström E, Pritzker KPH, Nieminen HJ. Ultrasonic actuation of a fine-needle improves biopsy yield. Sci Rep 2021; 11:8234. [PMID: 33859220 PMCID: PMC8050323 DOI: 10.1038/s41598-021-87303-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Despite the ubiquitous use over the past 150 years, the functions of the current medical needle are facilitated only by mechanical shear and cutting by the needle tip, i.e. the lancet. In this study, we demonstrate how nonlinear ultrasonics (NLU) extends the functionality of the medical needle far beyond its present capability. The NLU actions were found to be localized to the proximity of the needle tip, the SonoLancet, but the effects extend to several millimeters from the physical needle boundary. The observed nonlinear phenomena, transient cavitation, fluid streams, translation of micro- and nanoparticles and atomization, were quantitatively characterized. In the fine-needle biopsy application, the SonoLancet contributed to obtaining tissue cores with an increase in tissue yield by 3-6× in different tissue types compared to conventional needle biopsy technique using the same 21G needle. In conclusion, the SonoLancet could be of interest to several other medical applications, including drug or gene delivery, cell modulation, and minimally invasive surgical procedures.
Collapse
Affiliation(s)
- Emanuele Perra
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland
| | - Eetu Lampsijärvi
- Electronics Research Laboratory, Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Gonçalo Barreto
- Translational Immunology Research Program, University of Helsinki, 00100, Helsinki, Finland
- Orton, 00280, Helsinki, Finland
| | - Muhammad Arif
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland
| | - Tuomas Puranen
- Electronics Research Laboratory, Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Edward Hæggström
- Electronics Research Laboratory, Department of Physics, University of Helsinki, 00560, Helsinki, Finland
| | - Kenneth P H Pritzker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A8, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, M5G 1X5, Canada
| | - Heikki J Nieminen
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland.
| |
Collapse
|
35
|
An Analysis of Acoustic Cavitation Thresholds of Water Based on the Incubation Time Criterion Approach. FLUIDS 2021. [DOI: 10.3390/fluids6040134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Researchers are still working on the development of models that facilitate the accurate estimation of acoustic cavitation threshold. In this paper, we have analyzed the possibility of using the incubation time criterion to calculate the threshold of the onset of acoustic cavitation depending on the ultrasound frequency, hydrostatic pressure, and temperature of a liquid. This criterion has been successfully used by earlier studies to calculate the dynamic strength of solids and has recently been proposed in an adapted version for calculating the cavitation threshold. The analysis is carried out for various experimental data for water presented in the literature. Although the criterion assumes the use of macroparameters of a liquid, we also considered the possibility of taking into account the size of cavitation nuclei and its influence on the calculation result. We compared the results of cavitation threshold calculations done using the incubation time criterion of cavitation and the classical nucleation theory. Our results showed that the incubation time criterion more qualitatively models the results of experiments using only three parameters of the liquid. We then discussed a possible relationship between the parameters of the two approaches. The results of our study showed that the criterion under consideration has a good potential and can be conveniently used for applications where there are special requirements for ultrasound parameters, maximum negative pressure, and liquid temperature.
Collapse
|
36
|
Estrada JB, Cramer HC, Scimone MT, Buyukozturk S, Franck C. Neural cell injury pathology due to high-rate mechanical loading. BRAIN MULTIPHYSICS 2021. [DOI: 10.1016/j.brain.2021.100034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
37
|
Murakami K, Gaudron R, Johnsen E. Shape stability of a gas bubble in a soft solid. ULTRASONICS SONOCHEMISTRY 2020; 67:105170. [PMID: 32442928 DOI: 10.1016/j.ultsonch.2020.105170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Predicting the onset of non-spherical oscillations of bubbles in soft matter is a fundamental cavitation problem with implications to sonoprocessing, polymeric materials synthesis, and biomedical ultrasound applications. The shape stability of a bubble in a Kelvin-Voigt viscoelastic medium with nonlinear elasticity, the simplest constitutive model for soft solids, is analytically investigated and compared to experiments. Using perturbation methods, we develop a model reducing the equations of motion to two sets of evolution equations: a Rayleigh-Plesset-type equation for the mean (volume-equivalent) bubble radius and an equation for the non-spherical mode amplitudes. Parametric instability is predicted by examining the natural frequency and the Mathieu equation for the non-spherical modes, which are obtained from our model. Our theoretical results show good agreement with published experiments of the shape oscillations of a bubble in a gelatin gel. We further examine the impact of viscoelasticity on the time evolution of non-spherical mode amplitudes. In particular, we find that viscosity increases the damping rate, thus suppressing the shape instability, while shear modulus increases the natural frequency, which changes the unstable mode. We also explain the contributions of rotational and irrotational fields to the viscoelastic stresses in the surroundings and at the bubble surface, as these contributions affect the damping rate and the unstable mode. Our analysis on the role of viscoelasticity is potentially useful to measure viscoelastic properties of soft materials by experimentally observing the shape oscillations of a bubble.
Collapse
Affiliation(s)
- Kazuya Murakami
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Renaud Gaudron
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Eric Johnsen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Haedrich J, Stumpf C, Denison MS. Rapid extraction of total lipids and lipophilic POPs from all EU-regulated foods of animal origin: Smedes' method revisited and enhanced. ENVIRONMENTAL SCIENCES EUROPE 2020; 32:118. [PMID: 33614386 PMCID: PMC7891496 DOI: 10.1186/s12302-020-00396-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Persistent organic pollutants (POPs) such as dioxins, dioxin-like chemicals and non-dioxin-like PCBs causing adverse effects to human health bio-accumulate through the food web due to their affinity for adipose tissues. Foods of animal origin are therefore the main contributors to human dietary exposure. The European Union's (EU) food safety policy requires checking of a wide range of samples for compliance with legal limits on a regular basis. Several methods of varying efficiency are applied by official control laboratories for extraction of the different classes of lipids and associated POPs, bound to animal tissue and animal products in varying degrees, sometimes leading to discrepancies especially in fresh weight based analytical results. RESULTS Starting from Smedes' lipid extraction from marine tissue, we optimized the extraction efficiency for both lipids and lipophilic pollutants, abandoning the time-consuming centrifugation step. The resulting modified Smedes extraction (MSE) method was validated based on multiple analyses of a large number of real world samples, matrix calibration and performance assessment in proficiency testing utilizing both instrumental and bioanalytical methodologies. Intermediate precision in 12 different foods was below 3% in chicken eggs, egg powder, animal fat, fish, fish oil, poultry, whole milk, milk fat and milk powder, and below 5% in bovine meat, liver, and infant food. In comparison to Twisselmann hot extraction, results presented here show an increased efficiency of MSE by +25% for bovine liver, +14% for chicken eggs, +13% for poultry meat, +12% for fish, 8% for bovine meat, and 6% for infant food. CONCLUSIONS For the first time, a fast and reliable routine method is available that enables the analyst to reproducibly extract "total" lipids from any EU-regulated food sample of animal origin within 6 to 8 minutes. Increased efficiency translates into a considerable increase in both lipid and wet weight-based analytical results measured for associated POPs, reducing the risk of false non-compliant results. Compared to a 4 hour Twisselmann extraction, the extraction of 1000 samples using MSE would result in annual savings of about 250 hours or 32 working days. Our MSE procedure contributes to the European Commission's objective of harmonising analytical results across the EU generated according to Commission Regulation (EU) 2017/644.
Collapse
Affiliation(s)
- Johannes Haedrich
- European Union Reference Laboratory (EU-RL) for Dioxins and PCBs in Feed and Food, CVUA Freiburg, Bissierstraße 5, 79114 Freiburg, Germany
| | - Claudia Stumpf
- European Union Reference Laboratory (EU-RL) for Dioxins and PCBs in Feed and Food, CVUA Freiburg, Bissierstraße 5, 79114 Freiburg, Germany
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California Davis (UCD), One Shields Avenue, Davis, CA 95616, US
| |
Collapse
|
39
|
Min SH, Wijesinghe S, Lau EY, Berkowitz ML. Damage to Polystyrene Polymer Film by Shock Wave Induced Bubble Collapse. J Phys Chem B 2020; 124:7494-7499. [PMID: 32790408 DOI: 10.1021/acs.jpcb.0c04413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Metallic surfaces that are in contact with solutions are commonly used in numerous applications where these surfaces can be damaged by shock wave induced bubble collapse. Use of polymer films that coat such surfaces to prevent them from damage requires a better understanding of how much harm collapsing bubbles produce in the films. In this study, we report the results from coarse-grained molecular dynamics simulations to study the damage to polystyrene (PS) films coating a hard surface. The damage was caused by a collapsing nanobubble located in the proximity of the film and interacting with an impinging shock wave. This collapse produces a high-speed water jet that impacts the PS film with a greater force than the shock front and creates cavities/pits in the PS film. We observed that polymer molecules located in the jet vicinity undergo conformational extension in the direction perpendicular to the jet motion, while chain molecules in the rest of the film undergo compression. We also observed that damage to the film is sensitive to the strength of the shock wave.
Collapse
Affiliation(s)
- Sa Hoon Min
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sidath Wijesinghe
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edmond Y Lau
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Max L Berkowitz
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
40
|
Pförringer D, Braun KF, Mühlhofer H, Schneider J, Stemberger A, Seifried E, Pohlscheidt E, Seidel M, Edenharter G, Duscher D, Burgkart R, Obermeier A. Novel method for reduction of virus load in blood plasma by sonication. Eur J Med Res 2020; 25:12. [PMID: 32264953 PMCID: PMC7137245 DOI: 10.1186/s40001-020-00410-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Aim of the present study is the evaluation of ultrasound as a physical method for virus inactivation in human plasma products prior to transfusion. Our study is focused on achieving a high level of virus inactivation simultaneously leaving blood products unaltered, measured by the level of degradation of coagulation factors, especially in third world countries where virus contamination of blood products poses a major problem. Virus inactivation plays an important role, especially in the light of newly discovered or unknown viruses, which cannot be safely excluded via prior testing. METHODS Taking into account the necessary protection of the relevant coagulation activity for plasma, the basis for a sterile virus inactivation under shielding gas insufflation was developed for future practical use. Influence of frequency and power density in the range of soft and hard cavitation on the inactivation of transfusion-relevant model viruses for Hepatitis-(BVDV = bovine diarrhea virus), for Herpes-(SFV = Semliki Forest virus, PRV = pseudorabies virus) and Parvovirus B19 (PPV = porcine parvovirus) were examined. Coagulation activity was examined via standard time parameters to minimize reduction of functionality of coagulation proteins. A fragmentation of coagulation proteins via ultrasound was ruled out via gel electrophoresis. The resulting virus titer was examined using end point titration. RESULTS Through CO2 shielding gas insufflation-to avoid radical emergence effects-the coagulation activity was less affected and the time window for virus inactivation substantially widened. In case of the non-lipidated model virus (AdV-luc = luciferase expressing adenoviral vector), the complete destruction of the virus capsid through hard cavitation was proven via scanning electron microscopy (SEM). This can be traced back to microjets and shockwaves occurring in hard cavitation. The degree of inactivation seems to depend on size and compactness of the type of viruses. Using our pre-tested and subsequently chosen process parameters with the exception of the small PPV, all model viruses were successfully inactivated and reduced by up to log 3 factor. For a broad clinical usage, protection of the coagulation activities may require further optimization. CONCLUSIONS Building upon the information gained, an optimum inactivation can be reached via raising of power density up to 1200 W and simultaneous lowering of frequency down to 27 kHz. In addition, the combination of the two physical methods UV treatment and ultrasound may yield optimum results without the need of substance removal after the procedure.
Collapse
Affiliation(s)
- D Pförringer
- Klinikum rechts der Isar der Technischen Universität München, Klinik und Poliklinik für Unfallchirurgie, Ismaninger Str. 22, 81675, Munich, Germany.
| | - K F Braun
- Klinikum rechts der Isar der Technischen Universität München, Klinik und Poliklinik für Unfallchirurgie, Ismaninger Str. 22, 81675, Munich, Germany.,Charite, Universitätsmedizin Berlin, Unfallchirurgie, Zentrum für Muskuloskeletale Chirurgie, Berlin, Germany
| | - H Mühlhofer
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| | - J Schneider
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - A Stemberger
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| | - E Seifried
- DRK-Blutspendedienst, Institut für Transfusionsmedizin und Immunhämatologie, Sandhofstrasse 1, 60528, Frankfurt, Germany
| | - E Pohlscheidt
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| | - M Seidel
- Institut für Wasserchemie & Chemische Balneologie, Lehrstuhl für Analytische Chemie und Wasserchemie, Technische Universität München, Marchioninistr. 17, 81377, Munich, Germany
| | - G Edenharter
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Anästhesie, Munich, Germany
| | - D Duscher
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Plastische Chirurgie, Ismaninger Str. 22, 81675, Munich, Germany
| | - R Burgkart
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| | - A Obermeier
- Klinikum rechts der Isar der Technischen Universität München, Klinik für Orthopädie und Sportorthopädie, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
41
|
Molefe L, Peters IR. Jet direction in bubble collapse within rectangular and triangular channels. Phys Rev E 2019; 100:063105. [PMID: 31962541 DOI: 10.1103/physreve.100.063105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Indexed: 06/10/2023]
Abstract
A vapor bubble collapsing near a solid boundary in a liquid produces a liquid jet that points toward the boundary. The direction of this jet has been studied for boundaries such as flat planes and parallel walls enclosing a channel. Extending these investigations to enclosed polygonal boundaries, we experimentally measure jet direction for collapsing bubbles inside a square and an equilateral triangular channel. Following the method of Tagawa and Peters [Phys. Rev. Fluids 3, 081601 (2018)10.1103/PhysRevFluids.3.081601] for predicting the jet direction in corners, we model the bubble as a sink in a potential flow and demonstrate by experiment that analytical solutions accurately predict jet direction within an equilateral triangle and square. We further use the method to develop predictions for several other polygons, specifically, a rectangle, an isosceles right triangle, and a 30^{∘}-60^{∘}-90^{∘} right triangle.
Collapse
Affiliation(s)
- Lebo Molefe
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
- The University of Chicago, Chicago, Illinois 60637, USA
| | - Ivo R Peters
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
42
|
Silvani G, Scognamiglio C, Caprini D, Marino L, Chinappi M, Sinibaldi G, Peruzzi G, Kiani MF, Casciola CM. Reversible Cavitation-Induced Junctional Opening in an Artificial Endothelial Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905375. [PMID: 31762158 DOI: 10.1002/smll.201905375] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/24/2019] [Indexed: 06/10/2023]
Abstract
Targeting pharmaceuticals through the endothelial barrier is crucial for drug delivery. In this context, cavitation-assisted permeation shows promise for effective and reversible opening of intercellular junctions. A vessel-on-a-chip is exploited to investigate and quantify the effect of ultrasound-excited microbubbles-stable cavitation-on endothelial integrity. In the vessel-on-a-chip, the endothelial cells form a complete lumen under physiological shear stress, resulting in intercellular junctions that exhibit barrier functionality. Immunofluorescence microscopy is exploited to monitor vascular integrity following vascular endothelial cadherin staining. It is shown that microbubbles amplify the ultrasound effect, leading to the formation of interendothelial gaps that cause barrier permeabilization. The total gap area significantly increases with pressure amplitude compared to the control. Gap opening is fully reversible with gap area distribution returning to the control levels 45 min after insonication. The proposed integrated platform allows for precise and repeatable in vitro measurements of cavitation-enhanced endothelium permeability and shows potential for validating irradiation protocols for in vivo applications.
Collapse
Affiliation(s)
- Giulia Silvani
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Chiara Scognamiglio
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Davide Caprini
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Luca Marino
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
| | - Mauro Chinappi
- Department of Industrial Engineering, Università di Roma Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy
| | - Giorgia Sinibaldi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
| | - Giovanna Peruzzi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Mohammad F Kiani
- Department of Mechanical Engineering, College of Engineering, Temple University, Philadelphia, PA, 19122, USA
| | - Carlo M Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| |
Collapse
|
43
|
Zhang L, Zhang J, Deng J. Numerical investigation on the collapse of a bubble cluster near a solid wall. Phys Rev E 2019; 99:043108. [PMID: 31108661 DOI: 10.1103/physreve.99.043108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 11/07/2022]
Abstract
This paper studies numerically the collapse of a cluster of cavitation bubbles (as a primitive model for a bubble cloud) near a solid wall. The homogeneous two-phase mixture model is used, with the liquid-vapor interface resolved by volume of fluid method. The liquid is treated as compressible, allowing the propagation of pressure waves at the speeds determined by a state equation. This cluster consists of 27 identical bubbles, evenly distributed in a cubic region, with various bubble-wall and bubble-bubble distances considered. Our simulations suggest that the bubble-wall distance plays a more significant role. The maximum impulsive pressure of 41MPa is achieved when the cluster is very close to the wall. The inward progress of collapse is observed by examining the evolutions of bubble shapes and flow fields, with two distinctly different sequences of collapse identified between the small and large bubble-wall distances. At a large bubble distance, the centermost bubble is the last to collapse, while at a small bubble distance, it is the central bubble nearest to the wall which collapses lastly. This difference can also explain the more intensive impulsive pressure for the smaller bubble-wall distances. The proposed numerical approach is of special interest because it can resolve the details of bubble-bubble and bubble-wall interactions, which are significant to the study of the collapse of a cavitation cloud, and its potential damage to hydraulic systems.
Collapse
Affiliation(s)
- Lingxin Zhang
- Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jing Zhang
- Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jian Deng
- Department of Mechanics, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
44
|
Abou Ali E, Bordacahar B, Mestas JL, Batteux F, Lafon C, Camus M, Prat F. Ultrasonic cavitation induces necrosis and impairs growth in three-dimensional models of pancreatic ductal adenocarcinoma. PLoS One 2018; 13:e0209094. [PMID: 30596678 PMCID: PMC6312319 DOI: 10.1371/journal.pone.0209094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is a rapidly increasing cause of mortality whose dismal prognosis is mainly due to overwhelming chemoresistance. New therapeutic approaches include physical agents such as ultrasonic cavitation, but clinical applications require further insights in the mechanisms of cytotoxicity. 3-D in vitro culture models such as spheroids exploit realistic spatial, biochemical and cellular heterogeneity that may bridge some of the experimental gap between conventional in vitro and in vivo experiments. PURPOSE To assess the feasibility and efficiency of inertial cavitation associated or not with chemotherapy, in a spheroid model of PDAC. METHODS We used DT66066 cells, derived from a genetically-engineered murine PDAC, isolated from KPC-transgenic mice (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1- Cre). Spheroids were obtained by either a standard centrifugation-based method, or by using a magnetic nano-shuttle method allowing the formation of spheroids within 24 hours and facilitating their handling. The spheroids were exposed to ultrasonic inertial cavitation in a specially designed setup. Eight or nine spheroids were analyzed for each of 4 conditions: control, gemcitabine alone, US cavitation alone, US cavitation + gemcitabine. Five US inertial cavitation indexes, corresponding to increased US intensities, were evaluated. The effectiveness of treatment was assessed after 24 hours with the following criteria: spheroid size (growth), ratio of phase S-entered cells (proliferation), proportion of cells in apoptosis or necrosis (mortality). These parameters were assessed by quantitative immunofluorescence techniques. RESULTS The 3D culture model presented excellent reproducibility. Cavitation induced a significant decrease in the size of spheroids, an effect significantly correlated to an increasing cavitation index (p < 0.0001). The treatment induced cell death whose predominant mechanism was necrosis (p < 0.0001). There was a tendency to a synergistic effect of US cavitation and gemcitabine at 5μM concentration, however significant in only one of the cavitation indexes used (p = 0. 013). CONCLUSION Ultrasonic inertial cavitation induced a significant reduction of tumor growth in a spheroid model of PDAC., with necrosis rather than apoptosis as a Cell dominant mechanism of cell death. More investigations are needed to understand the potential role of inertial cavitation in overcoming chemoresistance.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Culture Techniques
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Mice
- Mice, Transgenic
- Microscopy, Fluorescence
- Models, Biological
- Necrosis
- Oxidative Stress/drug effects
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Sonication
- Spheroids, Cellular/cytology
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Gemcitabine
Collapse
Affiliation(s)
- Einas Abou Ali
- Cochin Hospital, Gastroenterology and Endoscopy Department, Paris, France
- Cochin Institute, Paris, France
| | - Benoit Bordacahar
- Cochin Hospital, Gastroenterology and Endoscopy Department, Paris, France
- Cochin Institute, Paris, France
| | - Jean-Louis Mestas
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France
| | - Frederic Batteux
- Cochin Institute, Paris, France
- Paris Descartes University, Paris, France
| | - Cyril Lafon
- Inserm, U1032, LabTau, Lyon, France; Université de Lyon, Lyon, France
| | - Marine Camus
- Cochin Hospital, Gastroenterology and Endoscopy Department, Paris, France
- Cochin Institute, Paris, France
- Paris Descartes University, Paris, France
| | - Frederic Prat
- Cochin Hospital, Gastroenterology and Endoscopy Department, Paris, France
- Cochin Institute, Paris, France
- Paris Descartes University, Paris, France
| |
Collapse
|
45
|
Brandner PA, Venning JA, Pearce BW. Wavelet analysis techniques in cavitating flows. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170242. [PMID: 29986914 PMCID: PMC6048584 DOI: 10.1098/rsta.2017.0242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/01/2018] [Indexed: 06/01/2023]
Abstract
Cavitating and bubbly flows involve a host of physical phenomena and processes ranging from nucleation, surface and interfacial effects, mass transfer via diffusion and phase change to macroscopic flow physics involving bubble dynamics, turbulent flow interactions and two-phase compressible effects. The complex physics that result from these phenomena and their interactions make for flows that are difficult to investigate and analyse. From an experimental perspective, evolving sensing technology and data processing provide opportunities for gaining new insight and understanding of these complex flows, and the continuous wavelet transform (CWT) is a powerful tool to aid in their elucidation. Five case studies are presented involving many of these phenomena in which the CWT was key to data analysis and interpretation. A diverse set of experiments are presented involving a range of physical and temporal scales and experimental techniques. Bubble turbulent break-up is investigated using hydroacoustics, bubble dynamics and high-speed imaging; microbubbles are sized using light scattering and ultrasonic sensing, and large-scale coherent shedding driven by various mechanisms are analysed using simultaneous high-speed imaging and physical measurement techniques. The experimental set-up, aspect of cavitation being addressed, how the wavelets were applied, their advantages over other techniques and key findings are presented for each case study.This paper is part of the theme issue 'Redundancy rules: the continuous wavelet transform comes of age'.
Collapse
Affiliation(s)
- Paul A Brandner
- Cavitation Research Laboratory, Australian Maritime College, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - James A Venning
- Cavitation Research Laboratory, Australian Maritime College, University of Tasmania, Launceston, Tasmania 7250, Australia
| | - Bryce W Pearce
- Cavitation Research Laboratory, Australian Maritime College, University of Tasmania, Launceston, Tasmania 7250, Australia
| |
Collapse
|
46
|
Wang M, Zhou Y. Numerical investigation of the inertial cavitation threshold by dual-frequency excitation in the fluid and tissue. ULTRASONICS SONOCHEMISTRY 2018; 42:327-338. [PMID: 29429677 DOI: 10.1016/j.ultsonch.2017.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/18/2017] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Inertial cavitation thresholds, which are defined as bubble growth by 2-fold from the equilibrium radius, by two types of ultrasonic excitation (at the classical single-frequency mode and dual-frequency mode) were calculated. The effect of the dual-frequency excitation on the inertial cavitation threshold in the different surrounding media (fluid and tissue) was studied, and the paramount parameters (driving frequency, amplitude ratio, phase difference, and frequency ratio) were also optimized to maximize the inertial cavitation. The numerical prediction confirms the previous experimental results that the dual-frequency excitation is capable of reducing the inertial cavitation threshold in comparison to the single-frequency one at the same output power. The dual-frequency excitation at the high frequency (i.e., 3.1 + 3.5 MHz vs. 1.1 + 1.3 MHz) is preferred in this study. The simulation results suggest that the same amplitudes of individual components, zero phase difference, and large frequency difference are beneficial for enhancing the bubble cavitation. Overall, this work may provide a theoretical model for further investigation of dual-frequency excitation and guidance of its applications for a better outcome.
Collapse
Affiliation(s)
- Mingjun Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798, Singapore; Motor Group, R&D, ASM Pacific Technology Ltd, 3/F, Watson Centre, 16-22 Kung Yip St, Kwai Chung, Hong Kong, PR China.
| | - Yufeng Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave., 639798, Singapore
| |
Collapse
|
47
|
Peruzzi G, Sinibaldi G, Silvani G, Ruocco G, Casciola CM. Perspectives on cavitation enhanced endothelial layer permeability. Colloids Surf B Biointerfaces 2018; 168:83-93. [PMID: 29486912 DOI: 10.1016/j.colsurfb.2018.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 12/20/2022]
Abstract
Traditional drug delivery systems, where pharmaceutical agents are conveyed to the target tissue through the blood circulation, suffer of poor therapeutic efficiency and limited selectivity largely due to the low permeability of the highly specialised biological interface represented by the endothelial layer. Examples concern cancer therapeutics or degenerative disorders where drug delivery is inhibited by the blood-brain barrier (BBB). Microbubbles injected into the bloodstream undergo volume oscillations under localised ultrasound irradiation and possibly collapse near the site of interest, with no effect on the rest of the endothelium. The resulting mechanical action induces a transient increase of the inter-cellular spaces and facilitates drug extravasation. This approach, already pursed in in vivo animal models, is extremely expensive and time-consuming. On the other hand in vitro studies using different kinds of microfluidic networks are firmly established in the pharmaceutical industry for drug delivery testing. The combination of the in vitro approach with ultrasound used to control microbubbles oscillations is expected to provide crucial information for developing cavitation enhanced drug delivery protocols and for screening the properties of the biological interface in presence of healthy or diseased tissues. Purpose of the present review is providing the state of the art in this rapidly growing field where cavitation is exploited as a viable technology to transiently modify the permeability of the biological interface. After describing current in vivo studies, particular emphasis will be placed on illustrating characteristics of micro-devices, biological functionalisation, properties of the artificial endothelium and ultrasound irradiation techniques.
Collapse
Affiliation(s)
- Giovanna Peruzzi
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giorgia Sinibaldi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| | - Giulia Silvani
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Physics, Sapienza University of Rome, Italy.
| | - Carlo Massimo Casciola
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Italy
| |
Collapse
|
48
|
Ye L, Zhu X, Wang L, Guo C. Study on characteristics of single cavitation bubble considering condensation and evaporation of kerosene steam under ultrasonic vibration honing. ULTRASONICS SONOCHEMISTRY 2018; 40:988-994. [PMID: 28946511 DOI: 10.1016/j.ultsonch.2017.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
Ultrasonic vibration honing technology is an effective means for materials difficult to machine, where cavitation occurs in grinding fluid under the action of ultrasound. To investigate the changes of single cavitation bubble characteristics in the grinding area and how honing parameters influence bubble characteristics, a dynamic model of single cavitation bubble in the ultrasonic vibration honing grinding area was established. The model was based on the bubble dynamics and considered the condensation and evaporation of kerosene steam and honing processing environment. The change rules of bubble radius, temperature, pressure and number of kerosene steam molecules inside the bubble were numerically simulated in the process of bubble moving. The results show that the condensation and evaporation of kerosene steam can help to explain the changes of temperature and pressure inside the bubble. Compared with ultrasonic vibration, the amplitude of bubble radius is greatly suppressed in the ultrasonic honing environment. However, the rate of movement of the bubble is faster. Meanwhile, the minimum values of pressure and temperature are larger, and the number of kerosene steam molecules is less. By studying the effect of honing factors on the movement of the cavitation bubble, it is found that honing pressure has a greater influence on bubble evolution characteristics, while rotation speed of honing head has a minor effect and the reciprocating speed of honing head has little impacts.
Collapse
Affiliation(s)
- Linzheng Ye
- Modern Processing Theory and Technology Research Institute, School of Mechanical Engineering, North University of China, Taiyuan 030051, China.
| | - Xijing Zhu
- Modern Processing Theory and Technology Research Institute, School of Mechanical Engineering, North University of China, Taiyuan 030051, China
| | - Lujie Wang
- Modern Processing Theory and Technology Research Institute, School of Mechanical Engineering, North University of China, Taiyuan 030051, China; The 2nd Research Institute of China Electronics Technology Group Corporation, Taiyuan 030024, China
| | - Ce Guo
- Shanxi Key Laboratory of Precision Machining, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
49
|
Johansen K, Song JH, Johnston K, Prentice P. Deconvolution of acoustically detected bubble-collapse shock waves. ULTRASONICS 2017; 73:144-153. [PMID: 27657479 DOI: 10.1016/j.ultras.2016.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 05/12/2023]
Abstract
The shock wave emitted by the collapse of a laser-induced bubble is detected at propagation distances of 30, 40and50mm, using a PVdF needle hydrophone, with a non-flat end-of-cable frequency response, calibrated for magnitude and phase, from 125kHz to 20MHz. High-speed shadowgraphic imaging at 5×106 frames per second, 10nstemporal resolution and 256 frames per sequence, records the bubble deflation from maximum to minimum radius, the collapse and shock wave generation, and the subsequent rebound in unprecedented detail, for a single sequence of an individual bubble. The Gilmore equation for bubble oscillation is solved according to the resolved bubble collapse, and simulated shock wave profiles deduced from the acoustic emissions, for comparison to the hydrophone recordings. The effects of single-frequency calibration, magnitude-only and full waveform deconvolution of the experimental data are presented, in both time and frequency domains. Magnitude-only deconvolution increases the peak pressure amplitude of the measured shock wave by approximately 9%, from single-frequency calibration, with full waveform deconvolution increasing it by a further 3%. Full waveform deconvolution generates a shock wave profile that is in agreement with the simulated profile, filtered according to the calibration bandwidth. Implications for the detection and monitoring of acoustic cavitation, where the role of periodic bubble collapse shock waves has recently been realised, are discussed.
Collapse
Affiliation(s)
- Kristoffer Johansen
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Jae Hee Song
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Keith Johnston
- Division of Imaging and Technology, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Paul Prentice
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
| |
Collapse
|
50
|
Song JH, Johansen K, Prentice P. An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2494. [PMID: 27794293 DOI: 10.1121/1.4964633] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on applications of acoustic cavitation is often reported in terms of the features within the spectrum of the emissions gathered during cavitation occurrence. There is, however, limited understanding as to the contribution of specific bubble activity to spectral features, beyond a binary interpretation of stable versus inertial cavitation. In this work, laser-nucleation is used to initiate cavitation within a few millimeters of the tip of a needle hydrophone, calibrated for magnitude and phase from 125 kHz to 20 MHz. The bubble activity, acoustically driven at f0 = 692 kHz, is resolved with high-speed shadowgraphic imaging at 5 × 106 frames per second. A synthetic spectrum is constructed from component signals based on the hydrophone data, deconvolved within the calibration bandwidth, in the time domain. Cross correlation coefficients between the experimental and synthetic spectra of 0.97 for the f0/2 and f0/3 regimes indicate that periodic shock waves and scattered driving field predominantly account for all spectral features, including the sub-harmonics and their over-harmonics, and harmonics of f0.
Collapse
Affiliation(s)
- Jae Hee Song
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Kristoffer Johansen
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Paul Prentice
- Cavitation Laboratory, School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|