1
|
Peng H, Zhao M, Liu X, Tong T, Zhang W, Gong C, Chowdhury R, Wang Q. Biomimetic Materials to Fabricate Artificial Cells. Chem Rev 2024; 124:13178-13215. [PMID: 39591535 PMCID: PMC11671219 DOI: 10.1021/acs.chemrev.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As the foundation of life, a cell is generally considered an advanced microreactor with a complicated structure and function. Undeniably, this fascinating complexity motivates scientists to try to extricate themselves from natural living matter and work toward rebuilding artificial cells in vitro. Driven by synthetic biology and bionic technology, the research of artificial cells has gradually become a subclass. It is not only held import in many disciplines but also of great interest in its synthesis. Therefore, in this review, we have reviewed the development of cell and bionic strategies and focused on the efforts of bottom-up strategies in artificial cell construction. Different from starting with existing living organisms, we have also discussed the construction of artificial cells based on biomimetic materials, from simple cell scaffolds to multiple compartment systems, from the construction of functional modules to the simulation of crucial metabolism behaviors, or even to the biomimetic of communication networks. All of them could represent an exciting advance in the field. In addition, we will make a rough analysis of the bottlenecks in this field. Meanwhile, the future development of this field has been prospecting. This review may bridge the gap between materials engineering and life sciences, forming a theoretical basis for developing various life-inspired assembly materials.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College of Shaoxing University, 508 Huancheng Western Road, Shaoxing 312099, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyuan Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
2
|
Waechtler BE, Jayasankar R, Morin EP, Robinson DN. Benefits and challenges of reconstituting the actin cortex. Cytoskeleton (Hoboken) 2024; 81:843-863. [PMID: 38520148 PMCID: PMC11417134 DOI: 10.1002/cm.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
Collapse
Affiliation(s)
- Brooke E. Waechtler
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Rajan Jayasankar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
| | - Emma P. Morin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
3
|
Yamada T, Suzuki H. Microfluidics-based stable production of monodisperse giant unilamellar vesicles by oil-phase removal from double emulsion. J Liposome Res 2024:1-7. [PMID: 39470184 DOI: 10.1080/08982104.2024.2420337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Giant liposomes, or giant unilamellar vesicles (GUVs), have been utilized as cell-size bioreactors to replicate the physical and chemical properties of biological cells. However, conventional methods for preparing GUVs typically lack precise control over their size. Several research groups have recently developed microfluidic techniques to create monodisperse GUVs by generating water-in-oil-in-water (W/O/W) droplets with a thin oil layer that subsequently transform into GUVs. However, the formation of a thin oil shell requires the intricate control of the flow rate, which can be both challenging and unstable. In this study, we investigated the design of a two-step flow-focusing microfluidic channel to produce stable W/O/W droplets. These droplets underwent substantial oil layer reduction through spontaneous removal by fluidic shear forces. Consequently, the majority of the oil layer in the W/O/W droplets was reduced, improving uniformity of GUVs.
Collapse
Affiliation(s)
- Tomoki Yamada
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| |
Collapse
|
4
|
Hakami N, Burgstaller A, Gao N, Rutz A, Mann S, Staufer O. Functional Integration of Synthetic Cells into 3D Microfluidic Devices for Artificial Organ-On-Chip Technologies. Adv Healthc Mater 2024; 13:e2303334. [PMID: 38794823 DOI: 10.1002/adhm.202303334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Microfluidics plays a pivotal role in organ-on-chip technologies and in the study of synthetic cells, especially in the development and analysis of artificial cell models. However, approaches that use synthetic cells as integral functional components for microfluidic systems to shape the microenvironment of natural living cells cultured on-chip are not explored. Here, colloidosome-based synthetic cells are integrated into 3D microfluidic devices, pioneering the concept of synthetic cell-based microenvironments for organs-on-chip. Methods are devised to create dense and stable networks of silica colloidosomes, enveloped by supported lipid bilayers, within microfluidic channels. These networks promote receptor-ligand interactions with on-chip cultured cells. Furthermore, a technique is introduced for the controlled release of growth factors from the synthetic cells into the channels, using a calcium alginate-based hydrogel formation within the colloidosomes. To demonstrate the potential of the technology, a modular plug-and-play lymph-node-on-a-chip prototype that guides the expansion of primary human T cells by stimulating receptor ligands on the T cells and modulating their cytokine environment is presented. This integration of synthetic cells into microfluidic systems offers a new direction for organ-on-chip technologies and suggests further avenues for exploration in potential therapeutic applications.
Collapse
Affiliation(s)
- Niki Hakami
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Ning Gao
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angela Rutz
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, Bristol, BS8 1TS, UK
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, Bristol, BS8 1TS, UK
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
| |
Collapse
|
5
|
Ngocho K, Yang X, Wang Z, Hu C, Yang X, Shi H, Wang K, Liu J. Synthetic Cells from Droplet-Based Microfluidics for Biosensing and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400086. [PMID: 38563581 DOI: 10.1002/smll.202400086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Synthetic cells function as biological mimics of natural cells by mimicking salient features of cells such as metabolism, response to stimuli, gene expression, direct metabolism, and high stability. Droplet-based microfluidic technology presents the opportunity for encapsulating biological functional components in uni-lamellar liposome or polymer droplets. Verified by its success in the fabrication of synthetic cells, microfluidic technology is widely replacing conventional labor-intensive, expensive, and sophisticated techniques justified by its ability to miniaturize and perform batch production operations. In this review, an overview of recent research on the preparation of synthetic cells through droplet-based microfluidics is provided. Different synthetic cells including lipid vesicles (liposome), polymer vesicles (polymersome), coacervate microdroplets, and colloidosomes, are systematically discussed. Efforts are then made to discuss the design of a variety of microfluidic chips for synthetic cell preparation since the combination of microfluidics with bottom-up synthetic biology allows for reproductive and tunable construction of batches of synthetic cell models from simple structures to higher hierarchical structures. The recent advances aimed at exploiting them in biosensors and other biomedical applications are then discussed. Finally, some perspectives on the challenges and future developments of synthetic cell research with microfluidics for biomimetic science and biomedical applications are provided.
Collapse
Affiliation(s)
- Kleins Ngocho
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xilei Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Zefeng Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Cunjie Hu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Xiaohai Yang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Hui Shi
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State key laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
6
|
Wippold JA, Chu M, Renberg R, Li Y, Adams B, Han A. XPORT ENTRAP: A droplet microfluidic platform for enhanced DNA transfer between microbial species. N Biotechnol 2024; 81:10-19. [PMID: 38408724 DOI: 10.1016/j.nbt.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
A significant hurdle for the widespread implementation and use of synthetic biology is the challenge of highly efficient introduction of DNA into microorganisms. This is especially a barrier for the utilization of non-model organisms and/or novel chassis species for a variety of applications, ranging from molecular biology to biotechnology and biomanufacturing applications. Common approaches to episomal and chromosomal gene editing, which employ techniques such as chemical competence and electroporation, are typically only amenable to a small subset of microbial species while leaving the vast majority of microorganisms in nature genetically inaccessible. To address this challenge, we have employed the previously described B. subtilis broad-host conjugation strain, XPORT, which was modularly designed for loading DNA cargo and conjugating such DNA into recalcitrant microbes. In this current work, we have leveraged and adapted the XPORT strain for use in a droplet microfluidic platform to enable increased efficiency of conjugation-based DNA transfer. The system named DNA ENTRAP (DNA ENhanced TRAnsfer Platform) utilizes cell-encapsulated water-in-oil emulsion droplets as pico-liter-volume bioreactors that allows controlled contacts between the donor and receiver cells within the emulsion bioreactor. This allowed enhanced XPORT-mediated genetic transfer over the current benchtop XPORT process, demonstrated using two different Bacillus subtilis strains (donor and receiver), as well as increased throughput (e.g., number of successfully conjugated cells) due to the automated assay steps inherent to microfluidic lab-on-a-chip systems. DNA ENTRAP paves the way for a streamlined automation of culturing and XPORT-mediated genetic transfer processes as well as future high-throughput cell engineering and screening applications.
Collapse
Affiliation(s)
- Jose A Wippold
- United States Combat Capabilities Development Command Army Research Laboratory - DEVCOM ARL, Adelphi, MD, USA
| | - Monica Chu
- United States Combat Capabilities Development Command Army Research Laboratory - DEVCOM ARL, Adelphi, MD, USA
| | - Rebecca Renberg
- United States Combat Capabilities Development Command Army Research Laboratory - DEVCOM ARL, Adelphi, MD, USA
| | - Yuwen Li
- Department of Electrical and Computer Engineering, USA
| | - Bryn Adams
- United States Combat Capabilities Development Command Army Research Laboratory - DEVCOM ARL, Adelphi, MD, USA.
| | - Arum Han
- Department of Electrical and Computer Engineering, USA; Department of Biomedical Engineering, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Zhang Z, Howlett MG, Silvester E, Kukura P, Fletcher SP. A Chemical Reaction Network Drives Complex Population Dynamics in Oscillating Self-Reproducing Vesicles. J Am Chem Soc 2024; 146:18262-18269. [PMID: 38917079 PMCID: PMC11240260 DOI: 10.1021/jacs.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
We report chemically fueled oscillations of vesicles. The population cycling of vesicles is driven by their self-reproduction and collapse within a biphasic reaction network involving the interplay of molecular and supramolecular events. We studied the oscillations on the molecular and supramolecular scales and tracked vesicle populations in time by interferometric scattering microscopy and dynamic light scattering. Complex supramolecular events were observed during oscillations─including vesicle reproduction, growth, and decomposition─and differences in the number, size, and mass of aggregates can often be observed within and between pulses. This system's dynamic behavior is reminiscent of a reproductive cycle in living cells.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Michael G. Howlett
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Emma Silvester
- The
Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K.
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Philipp Kukura
- The
Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Stephen P. Fletcher
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
8
|
Fasciano S, Wang S. Recent advances of droplet-based microfluidics for engineering artificial cells. SLAS Technol 2024; 29:100090. [PMID: 37245659 DOI: 10.1016/j.slast.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
Artificial cells, synthetic cells, or minimal cells are microengineered cell-like structures that mimic the biological functions of cells. Artificial cells are typically biological or polymeric membranes where biologically active components, including proteins, genes, and enzymes, are encapsulated. The goal of engineering artificial cells is to build a living cell with the least amount of parts and complexity. Artificial cells hold great potential for several applications, including membrane protein interactions, gene expression, biomaterials, and drug development. It is critical to generate robust, stable artificial cells using high throughput, easy-to-control, and flexible techniques. Recently, droplet-based microfluidic techniques have shown great potential for the synthesis of vesicles and artificial cells. Here, we summarized the recent advances in droplet-based microfluidic techniques for the fabrication of vesicles and artificial cells. We first reviewed the different types of droplet-based microfluidic devices, including flow-focusing, T-junction, and coflowing. Next, we discussed the formation of multi-compartmental vesicles and artificial cells based on droplet-based microfluidics. The applications of artificial cells for studying gene expression dynamics, artificial cell-cell communications, and mechanobiology are highlighted and discussed. Finally, the current challenges and future outlook of droplet-based microfluidic methods for engineering artificial cells are discussed. This review will provide insights into scientific research in synthetic biology, microfluidic devices, membrane interactions, and mechanobiology.
Collapse
Affiliation(s)
- Samantha Fasciano
- Department of Cellular and Molecular Biology, University of New Haven, West Haven, CT, USA
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven, West Haven, CT, USA.
| |
Collapse
|
9
|
Aslan Y, McGleish O, Reboud J, Cooper JM. Alignment-free construction of double emulsion droplet generation devices incorporating surface wettability contrast. LAB ON A CHIP 2023; 23:5173-5179. [PMID: 37966340 DOI: 10.1039/d3lc00584d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Although polydimethylsiloxane (PDMS) is a versatile and easy-to-use material for microfluidics, its inherent hydrophobicity often necessitates specific hydrophilic treatment to fabricate microchip architectures for generating double emulsions. These additional processing steps frequently lead to increased complexity, potentially creating barriers to the wider use of promising microfluidic techniques. Here we describe an alignment-free spatial hydrophilic PDMS patterning technique to produce devices for the creation of double emulsions using combinations of PDMS and PDMS/surfactant bilayers. The technique enables us to achieve selective patterning and alignment-free bonding, producing reliable and reproducible water-in-oil-in-water W/O/W droplet emulsions. Our method involves processing devices in a vertical orientation, with the wetting transition contrast being achieved simply by imaging whilst adjusting the PDMS pouring speed (using a mobile phone, for example). We successfully obtain hydrophilic surfaces without distinguishable hydrophobic recovery using a range of surfactant concentrations. Droplet emulsions were produced with low coefficients of variation aligned with those generated with other, more complex, techniques (e.g. 3.8% and 3.1% for the inner and outer diameters, respectively). As a further example, the methods were also demonstrated for liposome production. In future we anticipate that the technique may be applied to other fields, including e.g. reagent delivery, DNA amplification, and encapsulated cell studies.
Collapse
Affiliation(s)
- Yunus Aslan
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Olivia McGleish
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Julien Reboud
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| | - Jonathan M Cooper
- Division of Biomedical Engineering, University of Glasgow, Glasgow G12 8LT, UK.
| |
Collapse
|
10
|
Van de Cauter L, van Buren L, Koenderink GH, Ganzinger KA. Exploring Giant Unilamellar Vesicle Production for Artificial Cells - Current Challenges and Future Directions. SMALL METHODS 2023; 7:e2300416. [PMID: 37464561 DOI: 10.1002/smtd.202300416] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Indexed: 07/20/2023]
Abstract
Creating an artificial cell from the bottom up is a long-standing challenge and, while significant progress has been made, the full realization of this goal remains elusive. Arguably, one of the biggest hurdles that researchers are facing now is the assembly of different modules of cell function inside a single container. Giant unilamellar vesicles (GUVs) have emerged as a suitable container with many methods available for their production. Well-studied swelling-based methods offer a wide range of lipid compositions but at the expense of limited encapsulation efficiency. Emulsion-based methods, on the other hand, excel at encapsulation but are only effective with a limited set of membrane compositions and may entrap residual additives in the lipid bilayer. Since the ultimate artificial cell will need to comply with both specific membrane and encapsulation requirements, there is still no one-method-fits-all solution for GUV formation available today. This review discusses the state of the art in different GUV production methods and their compatibility with GUV requirements and operational requirements such as reproducibility and ease of use. It concludes by identifying the most pressing issues and proposes potential avenues for future research to bring us one step closer to turning artificial cells into a reality.
Collapse
Affiliation(s)
- Lori Van de Cauter
- Autonomous Matter Department, AMOLF, Amsterdam, 1098 XG, The Netherlands
| | - Lennard van Buren
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | | |
Collapse
|
11
|
Kumar R, Dzikonski D, Bekker E, Vornhusen R, Vitali V, Imbrock J, Denz C. Fabrication and mechanical characterization of hydrogel-based 3D cell-like structures. OPTICS EXPRESS 2023; 31:29174-29186. [PMID: 37710723 DOI: 10.1364/oe.496888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023]
Abstract
In this article, we demonstrate the fabrication of 3D cell-like structures using a femtosecond laser-based two-photon polymerization technique. By employing poly(ethylene glycol) diacrylate monomers as a precursor solution, we fabricate 3D hemispheres that resemble morphological and biomechanical characteristics of natural cells. We employ an optical tweezers-based microrheology technique to measure the viscoelastic properties of the precursor solutions inside and outside the structures. In addition, we demonstrate the interchangeability of the precursor solution within fabricated structures without impairing the microstructures. The combination of two-photon polymerization and microrheological measurements by optical tweezers demonstrated here represents a powerful toolbox for future investigations into cell mimic and artificial cell studies.
Collapse
|
12
|
Sheshachala S, Huber B, Schuetzke J, Mikut R, Scharnweber T, Domínguez CM, Mutlu H, Niemeyer CM. Charge controlled interactions between DNA-modified silica nanoparticles and fluorosurfactants in microfluidic water-in-oil droplets. NANOSCALE ADVANCES 2023; 5:3914-3923. [PMID: 37496619 PMCID: PMC10367961 DOI: 10.1039/d3na00124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Microfluidic droplets are an important tool for studying and mimicking biological systems, e.g., to examine with high throughput the interaction of biomolecular components and the functionality of natural cells, or to develop basic principles for the engineering of artificial cells. Of particular importance is the approach to generate a biomimetic membrane by supramolecular self-assembly of nanoparticle components dissolved in the aqueous phase of the droplets at the inner water/oil interface, which can serve both to mechanically reinforce the droplets and as an interaction surface for cells and other components. While this interfacial assembly driven by electrostatic interaction of surfactants is quite well developed for water/mineral oil (W/MO) systems, no approaches have yet been described to exploit this principle for water/fluorocarbon oil (W/FO) emulsion droplets. Since W/FO systems exhibit not only better compartmentalization but also gas solubility properties, which is particularly crucial for live cell encapsulation and cultivation, we report here the investigation of charged fluorosurfactants for the self-assembly of DNA-modified silica nanoparticles (SiNP-DNA) at the interface of microfluidic W/FO emulsions. To this end, an efficient multicomponent Ugi reaction was used to synthesize the novel fluorosurfactant M4SURF to study the segregation and accumulation of negatively charged SiNP-DNA at the inner interface of microfluidic droplets. Comparative measurements were performed with the negatively charged fluorosurfactant KRYTOX, which can also induce SiNP-DNA segregation in the presence of cations. The segregation dynamics is characterized and preliminary results of cell encapsulation in the SiNP-DNA functionalized droplets are shown.
Collapse
Affiliation(s)
- Sahana Sheshachala
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Birgit Huber
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Jan Schuetzke
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Tim Scharnweber
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Carmen M Domínguez
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces (IBG 1), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
13
|
Liu L, Wang C, Liu F, Zhao H. Polymerization-Induced Proteinosome Formation Initiated by Artificial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4456-4465. [PMID: 36926885 DOI: 10.1021/acs.langmuir.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cellular communication is essential for living cells to coordinate the individual cellular responses and make collective behaviors. In the past decade, the communications between artificial cells have aroused great interest due to the potential applications of the structures in bioscience and biotechnology. To mimic the cellular communication, artificial cell assisted synthesis of proteinosomes was studied in this research. Multienzyme proteinosomes with glucose oxidase (GOx) and horseradish peroxidase (HRP) decorated on the membranes were synthesized by the thermally triggered self-assembly approach. Free radicals produced in a cascade reaction taking place on the surfaces of the multienzyme proteinosomes initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM at a temperature above LCST of PNIPAM in the presence of bovine serum albumin (BSA) or alcohol dehydrogenase (ADH)/acetaldehyde dehydrogenase (ALDH), and daughter proteinosomes with BSA or ADH/ALDH on the surfaces were fabricated. The structures of the GOx/HRP initiator proteinosomes, and the synthesized daughter proteinosomes were characterized with transmission electron microscopy, atomic force microscopy, fluorescence microscopy, dynamic light scattering, and micro-DSC. Enzyme activity assays demonstrate the high bioactivities of the enzymes on the surfaces of the initiator and the synthesized daughter proteinosomes.
Collapse
Affiliation(s)
- Luyang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Chen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Fang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
14
|
Udono H, Gong J, Sato Y, Takinoue M. DNA Droplets: Intelligent, Dynamic Fluid. Adv Biol (Weinh) 2023; 7:e2200180. [PMID: 36470673 DOI: 10.1002/adbi.202200180] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Breathtaking advances in DNA nanotechnology have established DNA as a promising biomaterial for the fabrication of programmable higher-order nano/microstructures. In the context of developing artificial cells and tissues, DNA droplets have emerged as a powerful platform for creating intelligent, dynamic cell-like machinery. DNA droplets are a microscale membrane-free coacervate of DNA formed through phase separation. This new type of DNA system couples dynamic fluid-like property with long-established DNA programmability. This hybrid nature offers an advantageous route to facile and robust control over the structures, functions, and behaviors of DNA droplets. This review begins by describing programmable DNA condensation, commenting on the physical properties and fabrication strategies of DNA hydrogels and droplets. By presenting an overview of the development pathways leading to DNA droplets, it is shown that DNA technology has evolved from static, rigid systems to soft, dynamic systems. Next, the basic characteristics of DNA droplets are described as intelligent, dynamic fluid by showcasing the latest examples highlighting their distinctive features related to sequence-specific interactions and programmable mechanical properties. Finally, this review discusses the potential and challenges of numerical modeling able to connect a robust link between individual sequences and macroscopic mechanical properties of DNA droplets.
Collapse
Affiliation(s)
- Hirotake Udono
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Jing Gong
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| | - Yusuke Sato
- Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Takinoue
- Department of Computer Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan
| |
Collapse
|
15
|
Herianto S, Chien PJ, Ho JAA, Tu HL. Liposome-based artificial cells: From gene expression to reconstitution of cellular functions and phenotypes. BIOMATERIALS ADVANCES 2022; 142:213156. [PMID: 36302330 DOI: 10.1016/j.bioadv.2022.213156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation. Yet constructing liposome artificial cells from the genetic level, which is central to generate self-sustained systems remains highly challenging. Indeed, many studies have successfully established the expression of gene-coded proteins inside liposomes. Further, recent endeavors to build a direct integration of gene-expressed proteins for reconstituting molecular functions and phenotypes in liposomes have also significantly increased. Thus, this review presents the development of liposome-based artificial cells to demonstrate the process of gene-expressed proteins and their reconstitution to perform desired molecular and cell-like functions. The molecular and cellular phenotypes discussed here include the self-production of membrane phospholipids, division, shape deformation, self-DNA/RNA replication, fusion, and intercellular communication. Together, this review gives a comprehensive overview of gene-expressing liposomes that can stimulate further research of this technology and achieve artificial cells with superior properties in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
16
|
Li J, Deng Y, Xu W, Zhao R, Chen T, Wang M, Xu E, Zhou J, Wang W, Liu D. Multiscale modeling of food thermal processing for insight, comprehension, and utilization of heat and mass transfer: A state-of-the-art review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Jiang W, Wu Z, Gao Z, Wan M, Zhou M, Mao C, Shen J. Artificial Cells: Past, Present and Future. ACS NANO 2022; 16:15705-15733. [PMID: 36226996 DOI: 10.1021/acsnano.2c06104] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial cells are constructed to imitate natural cells and allow researchers to explore biological process and the origin of life. The construction methods for artificial cells, through both top-down or bottom-up approaches, have achieved great progress over the past decades. Here we present a comprehensive overview on the development of artificial cells and their properties and applications. Artificial cells are derived from lipids, polymers, lipid/polymer hybrids, natural cell membranes, colloidosome, metal-organic frameworks and coacervates. They can be endowed with various functions through the incorporation of proteins and genes on the cell surface or encapsulated inside of the cells. These modulations determine the properties of artificial cells, including producing energy, cell growth, morphology change, division, transmembrane transport, environmental response, motility and chemotaxis. Multiple applications of these artificial cells are discussed here with a focus on therapeutic applications. Artificial cells are used as carriers for materials and information exchange and have been shown to function as targeted delivery systems of personalized drugs. Additionally, artificial cells can function to substitute for cells with impaired function. Enzyme therapy and immunotherapy using artificial cells have been an intense focus of research. Finally, prospects of future development of cell-mimic properties and broader applications are highlighted.
Collapse
Affiliation(s)
- Wentao Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ziyu Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zheng Gao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
18
|
Ganar KA, Leijten L, Deshpande S. Actinosomes: Condensate-Templated Containers for Engineering Synthetic Cells. ACS Synth Biol 2022; 11:2869-2879. [PMID: 35948429 PMCID: PMC9396703 DOI: 10.1021/acssynbio.2c00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Engineering synthetic cells has a broad appeal, from
understanding
living cells to designing novel biomaterials for therapeutics, biosensing,
and hybrid interfaces. A key prerequisite to creating synthetic cells
is a three-dimensional container capable of orchestrating biochemical
reactions. In this study, we present an easy and effective technique
to make cell-sized porous containers, coined actinosomes, using the
interactions between biomolecular condensates and the actin cytoskeleton.
This approach uses polypeptide/nucleoside triphosphate condensates
and localizes actin monomers on their surface. By triggering actin
polymerization and using osmotic gradients, the condensates are transformed
into containers, with the boundary made up of actin filaments and
polylysine polymers. We show that the guanosine triphosphate (GTP)-to-adenosine
triphosphate (ATP) ratio is a crucial parameter for forming actinosomes:
insufficient ATP prevents condensate dissolution, while excess ATP
leads to undesired crumpling. Permeability studies reveal the porous
surface of actinosomes, allowing small molecules to pass through while
restricting bigger macromolecules within the interior. We show the
functionality of actinosomes as bioreactors by carrying out in vitro protein translation within them. Actinosomes are
a handy addition to the synthetic cell platform, with appealing properties
like ease of production, inherent encapsulation capacity, and a potentially
active surface to trigger signaling cascades and form multicellular
assemblies, conceivably useful for biotechnological applications.
Collapse
Affiliation(s)
- Ketan A Ganar
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Liza Leijten
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
19
|
Guo JK, Gao Y, Ling J, Yuan Y, Wang X, Song JK. Laser processing of microdroplet structure of liquid crystal in 3D. OPTICS EXPRESS 2022; 30:26018-26026. [PMID: 36236800 DOI: 10.1364/oe.459332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/25/2022] [Indexed: 06/16/2023]
Abstract
Processing of mesoscale structures of soft matter and liquid is of great importance in both science and engineering. In this work, we introduce the concept of laser-assisted micromachining to this field and inject a certain number of microdroplets into a preselected location on the surface of a liquid crystal drop through laser irradiation. The impact of laser energy on the triggered injection is discussed. The sequentially injected microdroplets are spontaneously captured by the defect ring in the host drop and transported along this defect track as micro-cargos. By precisely manipulating the laser beam, the tailored injection of droplets is achieved, and the injected droplets self-assemble into one necklace ring within the host drop. The result provides a bottom-up approach for the in-situ and three-dimensional microfabrication of droplet structure of soft matter using a laser beam, which may be applicable in the development of optical and photonic devices.
Collapse
|
20
|
Chien PJ, Shih YL, Cheng CT, Tu HL. Chip assisted formation of phase-separated liposomes for reconstituting spatial protein-lipid interactions. LAB ON A CHIP 2022; 22:2540-2548. [PMID: 35667105 DOI: 10.1039/d2lc00089j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spatially organized molecular interactions are fundamental features underlying many biochemical processes in cells. These spatially defined reactions are essential to ensure high signaling specificity and are indispensable for maintaining cell functions. The construction of synthetic cell models that can resemble such properties is thus important yet less investigated. In this study, we present a reliable method for the rapid production of highly uniform phase-separated liposomes as synthetic cell models. Specifically, a microfluidics-based strategy coupled with custom reagents for generating size-tunable liposomes with various lipid compositions is presented. In addition, an important cell signaling interacting pair, the pleckstrin homology (PH) domain and PIP2 lipid, is used to demonstrate the controlled molecular assembly inside these liposomes. The result shows that PIP2 on phase-separated domains successfully recruits the PH domains to realize spatially defined molecular interactions. Such a system is versatile and can be expanded to synthesize other proteins for realizing multiplexed molecular interactions in the same liposome. Phase-separated lipid domains can also be used to recruit targeted proteins to initiate localized reactions, thus paving the way for organizing a complex signaling cascade in the synthetic cell.
Collapse
Affiliation(s)
- Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
| | - Yi-Lun Shih
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chieh-Teng Cheng
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taiwan
| |
Collapse
|
21
|
Interface evolution and pinch-off mechanism of droplet in two-phase liquid flow through T-junction microfluidic system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Lu Y, Allegri G, Huskens J. Vesicle-based artificial cells: materials, construction methods and applications. MATERIALS HORIZONS 2022; 9:892-907. [PMID: 34908080 PMCID: PMC8900604 DOI: 10.1039/d1mh01431e] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 05/27/2023]
Abstract
The construction of artificial cells with specific cell-mimicking functions helps to explore complex biological processes and cell functions in natural cell systems and provides an insight into the origins of life. Bottom-up methods are widely used for engineering artificial cells based on vesicles by the in vitro assembly of biomimetic materials. In this review, the design of artificial cells with a specific function is discussed, by considering the selection of synthetic materials and construction technologies. First, a range of biomimetic materials for artificial cells is reviewed, including lipid, polymeric and hybrid lipid/copolymer materials. Biomaterials extracted from natural cells are also covered in this part. Then, the formation of microscale, giant unilamellar vesicles (GUVs) is reviewed based on different technologies, including gentle hydration, electro-formation, phase transfer and microfluidic methods. Subsequently, applications of artificial cells based on single vesicles or vesicle networks are addressed for mimicking cell behaviors and signaling processes. Microreactors for synthetic biology and cell-cell communication are highlighted here as well. Finally, current challenges and future trends for the development and applications of artificial cells are described.
Collapse
Affiliation(s)
- Yao Lu
- Molecular NanoFabrication Group, Department of Molecules & Materials, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Giulia Allegri
- Molecular NanoFabrication Group, Department of Molecules & Materials, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Jurriaan Huskens
- Molecular NanoFabrication Group, Department of Molecules & Materials, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| |
Collapse
|
23
|
Maurya R, Gohil N, Bhattacharjee G, Alzahrani KJ, Ramakrishna S, Singh V. Microfluidics for single cell analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:203-215. [PMID: 35033285 DOI: 10.1016/bs.pmbts.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cells have several internal molecules that are present in low amounts and any fluctuation in its number drives a change in cell behavior. These molecules present inside the cells are continuously fluctuating, thus producing noises in the intrinsic environment and thereby directly affecting the cellular behavior. Single-cell analysis using microfluidics is an important tool for monitoring cell behavior by analyzing internal molecules. Several gene circuits have been designed for this purpose that are labeled with fluorescence encoding genes for monitoring cell dynamics and behavior. We discuss herewith designed and fabricated microfluidics devices that are used for trapping and tracking cells under controlled environmental conditions. This chapter highlights microfluidics chip for monitoring cells to promote their basic understanding.
Collapse
Affiliation(s)
- Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
24
|
Zhang Y, Wang J, Yu C, Xia K, Yang B, Zhang Y, Ying L, Wang C, Huang X, Chen Q, Shen L, Li F, Liang C. Advances in single-cell sequencing and its application to musculoskeletal system research. Cell Prolif 2022; 55:e13161. [PMID: 34888976 PMCID: PMC8780907 DOI: 10.1111/cpr.13161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, single-cell sequencing (SCS) technologies have continued to advance with improved operating procedures and reduced cost, leading to increasing practical adoption among researchers. These emerging technologies have superior abilities to analyse cell heterogeneity at a single-cell level, which have elevated multi-omics research to a higher level. In some fields of research, application of SCS has enabled many valuable discoveries, and musculoskeletal system offers typical examples. This article reviews some major scientific issues and recent advances in musculoskeletal system. In addition, combined with SCS technologies, the research of cell or tissue heterogeneity in limb development and various musculoskeletal system clinical diseases also provides new possibilities for treatment strategies. Finally, this article discusses the challenges and future development potential of SCS and recommends the direction of future applications of SCS to musculoskeletal medicine.
Collapse
Affiliation(s)
- Yongxiang Zhang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Jingkai Wang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Chao Yu
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Kaishun Xia
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Biao Yang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Yuang Zhang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Liwei Ying
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Chenggui Wang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Xianpeng Huang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Qixin Chen
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Li Shen
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouChina
- Hangzhou Innovation CenterZhejiang UniversityHangzhouChina
| | - Fangcai Li
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Chengzhen Liang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
25
|
Siedlik MJ, Issadore D. Pico-washing: simultaneous liquid addition and removal for continuous-flow washing of microdroplets. MICROSYSTEMS & NANOENGINEERING 2022; 8:46. [PMID: 35498338 PMCID: PMC9050730 DOI: 10.1038/s41378-022-00381-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 05/19/2023]
Abstract
Droplet microfluidics is based on a toolbox of several established unit operations, including droplet generation, incubation, mixing, pico-injection, and sorting. In the last two decades, the development of droplet microfluidic systems, which incorporate these multiple unit operations into a workflow, has demonstrated unique capabilities in fields ranging from single-cell transcriptomic analyses to materials optimization. One unit operation that is sorely underdeveloped in droplet microfluidics is washing, exchange of the fluid in a droplet with a different fluid. Here, we demonstrate what we name the "pico-washer," a unit operation capable of simultaneously adding fluid to and removing fluid from droplets in flow while requiring only a small footprint on a microfluidic chip. We describe the fabrication strategy, device architecture, and process parameters required for stable operation of this technology, which is capable of operating with kHz droplet throughput. Furthermore, we provide an image processing workflow to characterize the washing process with microsecond and micrometer resolution. Finally, we demonstrate the potential for integrated droplet workflows by arranging two of these unit operations in series with a droplet generator, describe a design rule for stable operation of the pico-washer when integrated into a system, and validate this design rule experimentally. We anticipate that this technology will contribute to continued development of the droplet microfluidics toolbox and the realization of novel droplet-based, multistep biological and chemical assays.
Collapse
Affiliation(s)
- Michael J. Siedlik
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 United States
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104 United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104 United States
| |
Collapse
|
26
|
Wang C, Yang J, Lu Y. Modularize and Unite: Toward Creating a Functional Artificial Cell. Front Mol Biosci 2021; 8:781986. [PMID: 34912849 PMCID: PMC8667554 DOI: 10.3389/fmolb.2021.781986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
An artificial cell is a simplified model of a living system, bringing breakthroughs into both basic life science and applied research. The bottom-up strategy instructs the construction of an artificial cell from nonliving materials, which could be complicated and interdisciplinary considering the inherent complexity of living cells. Although significant progress has been achieved in the past 2 decades, the area is still facing some problems, such as poor compatibility with complex bio-systems, instability, and low standardization of the construction method. In this review, we propose creating artificial cells through the integration of different functional modules. Furthermore, we divide the function requirements of an artificial cell into four essential parts (metabolism, energy supplement, proliferation, and communication) and discuss the present researches. Then we propose that the compartment and the reestablishment of the communication system would be essential for the reasonable integration of functional modules. Although enormous challenges remain, the modular construction would facilitate the simplification and standardization of an artificial cell toward a natural living system. This function-based strategy would also broaden the application of artificial cells and represent the steps of imitating and surpassing nature.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Junzhu Yang
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Ministry of Education, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Tivony R, Fletcher M, Al Nahas K, Keyser UF. A Microfluidic Platform for Sequential Assembly and Separation of Synthetic Cell Models. ACS Synth Biol 2021; 10:3105-3116. [PMID: 34761904 PMCID: PMC8609574 DOI: 10.1021/acssynbio.1c00371] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Cell-sized vesicles
like giant unilamellar vesicles (GUVs) are
established as a promising biomimetic model for studying cellular
phenomena in isolation. However, the presence of residual components
and byproducts, generated during vesicles preparation and manipulation,
severely limits the utility of GUVs in applications like synthetic
cells. Therefore, with the rapidly growing field of synthetic biology,
there is an emergent demand for techniques that can continuously purify
cell-like vesicles from diverse residues, while GUVs are being simultaneously
synthesized and manipulated. We have developed a microfluidic platform
capable of purifying GUVs through stream bifurcation, where a vesicles
suspension is partitioned into three fractions: purified GUVs, residual
components, and a washing solution. Using our purification approach,
we show that giant vesicles can be separated from various residues—which
range in size and chemical composition—with a very high efficiency
(e = 0.99), based on size and deformability of the
filtered objects. In addition, by incorporating the purification module
with a microfluidic-based GUV-formation method, octanol-assisted liposome
assembly (OLA), we established an integrated production-purification
microfluidic unit that sequentially produces, manipulates, and purifies
GUVs. We demonstrate the applicability of the integrated device to
synthetic biology through sequentially fusing SUVs with freshly prepared
GUVs and separating the fused GUVs from extraneous SUVs and oil droplets
at the same time.
Collapse
Affiliation(s)
- Ran Tivony
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
28
|
Amirifar L, Besanjideh M, Nasiri R, Shamloo A, Nasrollahi F, de Barros NR, Davoodi E, Erdem A, Mahmoodi M, Hosseini V, Montazerian H, Jahangiry J, Darabi MA, Haghniaz R, Dokmeci MR, Annabi N, Ahadian S, Khademhosseini A. Droplet-based microfluidics in biomedical applications. Biofabrication 2021; 14. [PMID: 34781274 DOI: 10.1088/1758-5090/ac39a9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Droplet-based microfluidic systems have been employed to manipulate discrete fluid volumes with immiscible phases. Creating the fluid droplets at microscale has led to a paradigm shift in mixing, sorting, encapsulation, sensing, and designing high throughput devices for biomedical applications. Droplet microfluidics has opened many opportunities in microparticle synthesis, molecular detection, diagnostics, drug delivery, and cell biology. In the present review, we first introduce standard methods for droplet generation (i.e., passive and active methods) and discuss the latest examples of emulsification and particle synthesis approaches enabled by microfluidic platforms. Then, the applications of droplet-based microfluidics in different biomedical applications are detailed. Finally, a general overview of the latest trends along with the perspectives and future potentials in the field are provided.
Collapse
Affiliation(s)
- Leyla Amirifar
- Mechanical Engineering, Sharif University of Technology, Tehran, Iran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Mohsen Besanjideh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Rohollah Nasiri
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Tehran, 11365-11155, Iran (the Islamic Republic of)
| | | | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Elham Davoodi
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Ahmet Erdem
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Hossein Montazerian
- Bioengineering, University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | - Jamileh Jahangiry
- University of California - Los Angeles, Los Angeles, Los Angeles, 90095, UNITED STATES
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Nasim Annabi
- Chemical Engineering, UCLA, Los Angeles, Los Angeles, California, 90095, UNITED STATES
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, Los Angeles, 90024, UNITED STATES
| |
Collapse
|
29
|
Ge X, Rubinstein BY, He Y, Bruce FNO, Li L, Leshansky AM, Li Z. Double emulsions with ultrathin shell by microfluidic step-emulsification. LAB ON A CHIP 2021; 21:1613-1622. [PMID: 33683225 DOI: 10.1039/d0lc01044h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Double emulsions with ultrathin shells are important in some biomedical applications, such as controlled drug release. However, the existing production techniques require two or more manipulation steps, or more complicated channel geometry, to form thin-shell double emulsions. This work presents a novel microfluidic tri-phasic step-emulsification device, with an easily fabricated double-layer PDMS channel, for production of oil-in-oil-in-water and water-in-water-in-oil double emulsions in a single step. The shell thickness is controlled by the flow rates and can reach 1.4% of the μm-size droplet diameter. Four distinct emulsification regimes are observed depending on the experimental conditions. A theoretical model for the tri-phasic step-emulsification is proposed to predict the boundaries separating the four regimes of emulsification in plane of two dimensionless capillary numbers, Ca. The theory yields two coupled nonlinear differential equations that can be solved numerically to find the approximate shape of the free interfaces in the shallow (Hele-Shaw) microfluidic channel. This approximation is then used as the initial guess for the more accurate finite element method solution, showing very good agreement with the experimental findings. This study demonstrates the feasibility of co-flow step-emulsification as a promising method to production of double (and multiple) emulsions and micro-capsules with ultrathin shells of controllable thickness.
Collapse
Affiliation(s)
- Xinjin Ge
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| | | | - Yifeng He
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| | - Frederick N O Bruce
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| | - Liaonan Li
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| | - Alexander M Leshansky
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | - Zhenzhen Li
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| |
Collapse
|
30
|
Zhang Y, Chen Y, Yang X, He X, Li M, Liu S, Wang K, Liu J, Mann S. Giant Coacervate Vesicles As an Integrated Approach to Cytomimetic Modeling. J Am Chem Soc 2021; 143:2866-2874. [PMID: 33566601 DOI: 10.1021/jacs.0c12494] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although giant unilamellar vesicles (GUVs) have been extensively studied as synthetic cell-like microcompartments, their applicability as cytomimetic models is severely compromised by low levels of membrane permeability, low encapsulation efficiencies, and high physicochemical instability. Here, we develop an integrated cytomimetic model comprising a macromolecularly crowded interior with high sequestration efficiency and enclosed within a phospholipid membrane that is permeable to molecules below a molecular weight cutoff of ca. 4 kDa. The protocells are readily prepared by spontaneous assembly of a phospholipid membrane on the surface of preformed polynucleotide/polysaccharide coacervate microdroplets and are designated as giant coacervate vesicles (GCVs). Partial anchoring of the GCV membrane to the underlying coacervate phase results in increased robustness, lower membrane fluidity, and increased permeability compared with GUV counterparts. As a consequence, enzyme and ribozyme catalysis can be triggered in the molecularly crowded interior of the GCV but not inside the GUVs when small molecule substrates or inducers are present in the external environment. By integrating processes of membrane-mediated compartmentalization and liquid-liquid microphase separation, GCVs could offer substantial advantages as cytomimetic models, synthetic protocells, and artificial biomolecular microreactors.
Collapse
Affiliation(s)
- Yanwen Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Yufeng Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Xiaohai Yang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Xiaoxiao He
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | | | - Songyang Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Kemin Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Jianbo Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P. R. China
| | - Stephen Mann
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
31
|
Han W, Chen X. New insights into generation of highly controllable monodisperse high-throughput microdroplets in a T-junction microchannel with step structure. J DISPER SCI TECHNOL 2021; 42:306-317. [DOI: 10.1080/01932691.2019.1679643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Wenbo Han
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, China
| | - Xueye Chen
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, China
| |
Collapse
|
32
|
Altenburg WJ, Yewdall NA, Vervoort DFM, van Stevendaal MHME, Mason AF, van Hest JCM. Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells. Nat Commun 2020; 11:6282. [PMID: 33293610 PMCID: PMC7722712 DOI: 10.1038/s41467-020-20124-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
The cell cytosol is crowded with high concentrations of many different biomacromolecules, which is difficult to mimic in bottom-up synthetic cell research and limits the functionality of existing protocellular platforms. There is thus a clear need for a general, biocompatible, and accessible tool to more accurately emulate this environment. Herein, we describe the development of a discrete, membrane-bound coacervate-based protocellular platform that utilizes the well-known binding motif between Ni2+-nitrilotriacetic acid and His-tagged proteins to exercise a high level of control over the loading of biologically relevant macromolecules. This platform can accrete proteins in a controlled, efficient, and benign manner, culminating in the enhancement of an encapsulated two-enzyme cascade and protease-mediated cargo secretion, highlighting the potency of this methodology. This versatile approach for programmed spatial organization of biologically relevant proteins expands the protocellular toolbox, and paves the way for the development of the next generation of complex yet well-regulated synthetic cells.
Collapse
Affiliation(s)
- Wiggert J Altenburg
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - N Amy Yewdall
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Daan F M Vervoort
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Marleen H M E van Stevendaal
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Alexander F Mason
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| |
Collapse
|
33
|
Huang D, Gibeley SB, Xu C, Xiao Y, Celik O, Ginsberg HN, Leong KW. Engineering liver microtissues for disease modeling and regenerative medicine. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909553. [PMID: 33390875 PMCID: PMC7774671 DOI: 10.1002/adfm.201909553] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 05/08/2023]
Abstract
The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.
Collapse
Affiliation(s)
- Dantong Huang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Sarah B. Gibeley
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cong Xu
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Ozgenur Celik
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Henry N. Ginsberg
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
34
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
35
|
Linsenmeier M, Kopp MRG, Stavrakis S, de Mello A, Arosio P. Analysis of biomolecular condensates and protein phase separation with microfluidic technology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118823. [PMID: 32800925 DOI: 10.1016/j.bbamcr.2020.118823] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022]
Abstract
An increasing body of evidence shows that membraneless organelles are key components in cellular organization. These observations open a variety of outstanding questions about the physico-chemical rules underlying their assembly, disassembly and functions. Some molecular determinants of biomolecular condensates are challenging to probe and understand in complex in vivo systems. Minimalistic in vitro reconstitution approaches can fill this gap, mimicking key biological features, while maintaining sufficient simplicity to enable the analysis of fundamental aspects of biomolecular condensates. In this context, microfluidic technologies are highly attractive tools for the analysis of biomolecular phase transitions. In addition to enabling high-throughput measurements on small sample volumes, microfluidic tools provide for exquisite control of self-assembly in both time and space, leading to accurate quantitative analysis of biomolecular phase transitions. Here, with a specific focus on droplet-based microfluidics, we describe the advantages of microfluidic technology for the analysis of several aspects of phase separation. These include phase diagrams, dynamics of assembly and disassembly, rheological and surface properties, exchange of materials with the surrounding environment and the coupling between compartmentalization and biochemical reactions. We illustrate these concepts with selected examples, ranging from simple solutions of individual proteins to more complex mixtures of proteins and RNA, which represent synthetic models of biological membraneless organelles. Finally, we discuss how this technology may impact the bottom-up fabrication of synthetic artificial cells and for the development of synthetic protein materials in biotechnology.
Collapse
Affiliation(s)
- Miriam Linsenmeier
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Marie R G Kopp
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Andrew de Mello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|
36
|
Zhou L, Shi H, Li Z, He C. Recent Advances in Complex Coacervation Design from Macromolecular Assemblies and Emerging Applications. Macromol Rapid Commun 2020; 41:e2000149. [DOI: 10.1002/marc.202000149] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/29/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Lili Zhou
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Huihui Shi
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering A:STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| | - Chaobin He
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
- Institute of Materials Research and Engineering A:STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way, Innovis, #08‐03 Singapore 138634 Singapore
| |
Collapse
|
37
|
Waghwani HK, Uchida M, Fu CY, LaFrance B, Sharma J, McCoy K, Douglas T. Virus-Like Particles (VLPs) as a Platform for Hierarchical Compartmentalization. Biomacromolecules 2020; 21:2060-2072. [PMID: 32319761 DOI: 10.1021/acs.biomac.0c00030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hierarchically self-assembled structures are common in biology, but it is often challenging to design and fabricate synthetic analogs. The archetypal cell is defined by hierarchically organized multicompartmentalized structures with boundaries that delineate the interior from exterior environments and is an inspiration for complex functional materials. Here, we have demonstrated an approach to the design and construction of a nested protein cage system that can additionally incorporate the packing of other functional macromolecules and exhibit some of the features of a minimal synthetic cell-like material. We have demonstrated a strategy for controlled co-packaging of subcompartments, ferritin (Fn) cages, together with active cellobiose-hydrolyzing β-glycosidase enzyme macromolecules, CelB, inside the sequestered volume of the bacteriophage P22 capsid. Using controlled in vitro assembly, we were able to modulate the stoichiometry of Fn cages and CelB encapsulated inside the P22 to control the degree of compartmentalization. The co-encapsulated enzyme CelB showed catalytic activity even when packaged at high total macromolecular concentrations comparable to an intracellular environment. This approach could be used as a model to create synthetic protein-based protocells that can confine smaller functionalized proto-organelles and additional macromolecules to support a range of biochemical reactions.
Collapse
Affiliation(s)
- Hitesh Kumar Waghwani
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Masaki Uchida
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States.,Department of Chemistry, California State University Fresno, Fresno, California 93740, United States
| | - Chi-Yu Fu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Benjamin LaFrance
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Jhanvi Sharma
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kimberly McCoy
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
38
|
Huang F, Zhu Z, Niu Y, Zhao Y, Si T, Xu RX. Coaxial oblique interface shearing: tunable generation and sorting of double emulsions for spatial gradient drug release. LAB ON A CHIP 2020; 20:1249-1258. [PMID: 32129401 DOI: 10.1039/d0lc00111b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We propose a coaxial oblique interface shearing (COIS) process for one-step generation of double emulsions which are synchronously sorted with spatial gradient distributions. As a coaxial needle supplying the inner and outer liquids obliquely vibrates across an air-liquid interface, the pinch-off of the compound liquid neck arises and the resultant double emulsions moves with tunable lateral displacements in the receiving phase. In the COIS process, the morphology and size of the double emulsions are heavily dependent on the vibration frequency and the inner and outer liquid flow rates. The lateral droplet displacements changing with process parameters can be precisely controlled in experiments and predicted theoretically by the Stokes drift model. Furthermore, the feasibility of the COIS process in spatial gradient drug release is verified. The double emulsions sorted along a specific direction are available for spatial gradient release under thermal and chemical environments, respectively. The COIS technique has great potential in fields of sensors, spatial gradient materials, advanced drug delivery and biomedical applications.
Collapse
Affiliation(s)
- Fangsheng Huang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | | | | | |
Collapse
|
39
|
Miele Y, Mingotaud AF, Caruso E, Malacarne MC, Izzo L, Lonetti B, Rossi F. Hybrid giant lipid vesicles incorporating a PMMA-based copolymer. Biochim Biophys Acta Gen Subj 2020; 1865:129611. [PMID: 32272202 DOI: 10.1016/j.bbagen.2020.129611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND In recent years, there has been a growing interest in the formation of copolymer-lipid hybrid self-assemblies, which allow combining and improving the main features of pure lipid-based and copolymer-based systems known for their potential applications in the biomedical field. As the most common method used to obtain giant vesicles is electroformation, most systems so far used low Tg polymers for their flexibility at room temperature. METHODS Copolymers used in the hybrid vesicles have been synthesized by a modified version of the ATRP, namely the Activators ReGenerated by Electron Transfer ATRP and characterized by NMR and DSC. Giant hybrid vesicles have been obtained using electroformation and droplet transfer method. Confocal fluorescence microscopy was used to image the vesicles. RESULTS Electroformation enabled to obtain hybrid vesicles in a narrow range of compositions (15 mol% was the maximum copolymer content). This range could be extended by the use of a droplet transfer method, which enabled obtaining hybrid vesicles incorporating a methacrylate-based polymer in a wide range of compositions. Proof of the hybrid composition was obtained by fluorescence microscopy using labeled lipids and copolymers. CONCLUSIONS This work describes for the first time, to the best of our knowledge, the formation of giant hybrid polymer/lipid vesicles formed with such a content of a polymethylmethacrylate copolymer, the glass temperature of which is above room temperature. GENERAL SIGNIFICANCE This work shows that polymer structures, more complex than the ones mostly employed, can be possibly included in giant hybrid vesicles by using the droplet transfer method. This will give easier access to functionalized and stimuli-responsive giant vesicles and to systems exhibiting a tunable permeability, these systems being relevant for biological and technological applications.
Collapse
Affiliation(s)
- Ylenia Miele
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, F-31062 Toulouse cedex 9, France
| | - Enrico Caruso
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant, 3, 21100 Varese, Italy
| | - Miryam C Malacarne
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant, 3, 21100 Varese, Italy
| | - Lorella Izzo
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, via J. H. Dunant, 3, 21100 Varese, Italy.
| | - Barbara Lonetti
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Rte de Narbonne, F-31062 Toulouse cedex 9, France.
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences - DEEP Sciences - Pian dei Mantellini 44, 53100 Siena, Italy
| |
Collapse
|
40
|
Prangemeier T, Lehr FX, Schoeman RM, Koeppl H. Microfluidic platforms for the dynamic characterisation of synthetic circuitry. Curr Opin Biotechnol 2020; 63:167-176. [PMID: 32172160 DOI: 10.1016/j.copbio.2020.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023]
Abstract
Generating novel functionality from well characterised synthetic parts and modules lies at the heart of synthetic biology. Ideally, circuitry is rationally designed in silico with quantitatively predictive models to predetermined design specifications. Synthetic circuits are intrinsically stochastic, often dynamically modulated and set in a dynamic fluctuating environment within a living cell. To build more complex circuits and to gain insight into context effects, intrinsic noise and transient performance, characterisation techniques that resolve both heterogeneity and dynamics are required. Here we review recent advances in both in vitro and in vivo microfluidic technologies that are suitable for the characterisation of synthetic circuitry, modules and parts.
Collapse
Affiliation(s)
- Tim Prangemeier
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - François-Xavier Lehr
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - Rogier M Schoeman
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany
| | - Heinz Koeppl
- Centre for Synthetic Biology, Department of Electrical Engineering and Information Technology, Department of Biology, Technische Universität Darmstadt, Germany.
| |
Collapse
|
41
|
Ai Y, Xie R, Xiong J, Liang Q. Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903940. [PMID: 31603270 DOI: 10.1002/smll.201903940] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/20/2019] [Indexed: 05/18/2023]
Abstract
Fabrication of artificial biomimetic materials has attracted abundant attention. As one of the subcategories of biomimetic materials, artificial cells are highly significant for multiple disciplines and their synthesis has been intensively pursued. In order to manufacture robust "alive" artificial cells with high throughput, easy operation, and precise control, flexible microfluidic techniques are widely utilized. Herein, recent advances in microfluidic-based methods for the synthesis of droplets, vesicles, and artificial cells are summarized. First, the advances of droplet fabrication and manipulation on the T-junction, flow-focusing, and coflowing microfluidic devices are discussed. Then, the formation of unicompartmental and multicompartmental vesicles based on microfluidics are summarized. Furthermore, the engineering of droplet-based and vesicle-based artificial cells by microfluidics is also reviewed. Moreover, the artificial cells applied for imitating cell behavior and acting as bioreactors for synthetic biology are highlighted. Finally, the current challenges and future trends in microfluidic-based artificial cells are discussed. This review should be helpful for researchers in the fields of microfluidics, biomaterial fabrication, and synthetic biology.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
42
|
Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904673. [PMID: 31702878 DOI: 10.1002/smll.201904673] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Indexed: 06/10/2023]
Abstract
In the past two decades, microfluidics-based particle production is widely applied for multiple biological usages. Compared to conventional bulk methods, microfluidic-assisted particle production shows significant advantages, such as narrower particle size distribution, higher reproducibility, improved encapsulation efficiency, and enhanced scaling-up potency. Herein, an overview of the recent progress of the microfluidics technology for nano-, microparticles or droplet fabrication, and their biological applications is provided. For both nano-, microparticles/droplets, the previously established mechanisms behind particle production via microfluidics and some typical examples during the past five years are discussed. The emerging interdisciplinary technologies based on microfluidics that have produced microparticles or droplets for cellular analysis and artificial cells fabrication are summarized. The potential drawbacks and future perspectives are also briefly discussed.
Collapse
Affiliation(s)
- Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andre Python
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, OX3 7LF, Oxford, UK
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
43
|
Ayoubi-Joshaghani MH, Dianat-Moghadam H, Seidi K, Jahanban-Esfahalan A, Zare P, Jahanban-Esfahlan R. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnol Bioeng 2020; 117:1204-1229. [PMID: 31840797 DOI: 10.1002/bit.27248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Thanks to the synthetic biology, the laborious and restrictive procedure for producing a target protein in living microorganisms by biotechnological approaches can now experience a robust, pliant yet efficient alternative. The new system combined with lab-on-chip microfluidic devices and nanotechnology offers a tremendous potential envisioning novel cell-free formats such as DNA brushes, hydrogels, vesicular particles, droplets, as well as solid surfaces. Acting as robust microreactors/microcompartments/minimal cells, the new platforms can be tuned to perform various tasks in a parallel and integrated manner encompassing gene expression, protein synthesis, purification, detection, and finally enabling cell-cell signaling to bring a collective cell behavior, such as directing differentiation process, characteristics of higher order entities, and beyond. In this review, we issue an update on recent cell-free protein synthesis (CFPS) formats. Furthermore, the latest advances and applications of CFPS for synthetic biology and biotechnology are highlighted. In the end, contemporary challenges and future opportunities of CFPS systems are discussed.
Collapse
Affiliation(s)
| | | | - Khaled Seidi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Lai SN, Zhou X, Ouyang X, Zhou H, Liang Y, Xia J, Zheng B. Artificial Cells Capable of Long-Lived Protein Synthesis by Using Aptamer Grafted Polymer Hydrogel. ACS Synth Biol 2020; 9:76-83. [PMID: 31880928 DOI: 10.1021/acssynbio.9b00338] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein we report a new type of artificial cells capable of long-term protein expression and regulation. We constructed the artificial cells by grafting anti-His-tag aptamer into the polymer backbone of the hydrogel particles, and then immobilizing the His-tagged proteinaceous factors of the transcription and translation system into the hydrogel particles. Long-term protein expression for at least 16 days was achieved by continuously flowing feeding buffer through the artificial cells. The effect of various metal ions on the protein expression in the artificial cells was investigated. Utilizing the lac operator-repressor system, we could regulate the expression level of eGFP in the artificial cells by controlling the β-D-1-thiogalatopyranoside (IPTG) concentration in the feeding buffer. The artificial cells based on the aptamer grafted hydrogel provide a useful platform for gene circuit engineering, metabolic engineering, drug delivery, and biosensors.
Collapse
Affiliation(s)
- Sze Nga Lai
- Department of Chemistry , The Chinese University of Hong Kong , Sha Tin , Hong Kong
| | - Xiaoyu Zhou
- Department of Chemistry , The Chinese University of Hong Kong , Sha Tin , Hong Kong
- Department of Biomedical Sciences , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon , Hong Kong
| | - Xiaofei Ouyang
- Department of Chemistry , The Chinese University of Hong Kong , Sha Tin , Hong Kong
| | - Hui Zhou
- Department of Chemistry , The Chinese University of Hong Kong , Sha Tin , Hong Kong
| | - Yujie Liang
- Department of Chemistry , The Chinese University of Hong Kong , Sha Tin , Hong Kong
| | - Jiang Xia
- Department of Chemistry , The Chinese University of Hong Kong , Sha Tin , Hong Kong
| | - Bo Zheng
- Department of Chemistry , The Chinese University of Hong Kong , Sha Tin , Hong Kong
| |
Collapse
|
45
|
Han W, Chen X. Effect of Geometry Configuration on the Merged Droplet Formation in a Double T-Junction. MICROGRAVITY SCIENCE AND TECHNOLOGY 2019; 31:855-864. [DOI: 10.1007/s12217-019-09720-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/13/2019] [Indexed: 01/12/2025]
|
46
|
Lane SIR, Butement J, Harrington J, Underwood T, Shrimpton J, West J. Perpetual sedimentation for the continuous delivery of particulate suspensions. LAB ON A CHIP 2019; 19:3771-3775. [PMID: 31608915 DOI: 10.1039/c9lc00774a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Particle sedimentation is deleterious to a tremendous variety of microfluidic applications. Using an open instrumentation approach we show that syringe rotation retains particles in a suspended state, providing a universal solution for the continuous delivery of particulate samples to microfluidic processors.
Collapse
Affiliation(s)
- Simon I R Lane
- Faculty of Engineering and Physical Sciences, University of Southampton, UK and Institute for Life Sciences, University of Southampton, UK.
| | - Jonathan Butement
- Institute for Life Sciences, University of Southampton, UK. and Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Jack Harrington
- Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - Tim Underwood
- Institute for Life Sciences, University of Southampton, UK. and Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| | - John Shrimpton
- Faculty of Engineering and Physical Sciences, University of Southampton, UK
| | - Jonathan West
- Institute for Life Sciences, University of Southampton, UK. and Cancer Sciences, Faculty of Medicine, University of Southampton, UK
| |
Collapse
|
47
|
Bashirzadeh Y, Liu AP. Encapsulation of the cytoskeleton: towards mimicking the mechanics of a cell. SOFT MATTER 2019; 15:8425-8436. [PMID: 31621750 DOI: 10.1039/c9sm01669d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The cytoskeleton of a cell controls all the aspects of cell shape changes and motility from its physiological functions for survival to reproduction to death. The structure and dynamics of the cytoskeletal components: actin, microtubules, intermediate filaments, and septins - recently regarded as the fourth member of the cytoskeleton family - are conserved during evolution. Such conserved and effective control over the mechanics of the cell makes the cytoskeletal components great candidates for in vitro reconstitution and bottom-up synthetic biology studies. Here, we review the recent efforts in reconstitution of the cytoskeleton in and on membrane-enclosed biomimetic systems and argue that co-reconstitution and synergistic interplay between cytoskeletal filaments might be indispensable for efficient mechanical functionality of active minimal cells. Further, mechanical equilibrium in adherent eukaryotic cells is achieved by the formation of integrin-based focal contacts with extracellular matrix (ECM) and the transmission of stresses generated by actomyosin contraction to ECM. Therefore, a minimal mimic of such balance of forces and quasi-static kinetics of the cell by bottom-up reconstitution requires a careful construction of contractile machineries and their link with adhesive contacts. In this review, in addition to cytoskeletal crosstalk, we provide a perspective on reconstruction of cell mechanical equilibrium by reconstitution of cortical actomyosin networks in lipid membrane vesicles adhered on compliant substrates and also discuss future perspectives of this active research area.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
48
|
Grösche M, Korvink JG, Rabe KS, Niemeyer CM. Comparison of Storage Methods for Microfluidically Produced Water‐in‐Oil Droplets. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maximilian Grösche
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Jan G. Korvink
- Karlsruhe Institute of Technology (KIT)Institute of Microstructure Technology (IMT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Kersten S. Rabe
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Karlsruhe Institute of Technology (KIT)Institute for Biological Interfaces (IBG 1) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
49
|
Yoon DH, Nozaki Y, Tanaka D, Sekiguchi T, Shoji S. Integration of Horizontal and Vertical Microfluidic Modules for Core-Shell Droplet Generation and Chemical Application. MICROMACHINES 2019; 10:E613. [PMID: 31540177 PMCID: PMC6780611 DOI: 10.3390/mi10090613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
This paper presents a method for utilizing three-dimensional microfluidic channels fully to realize multiple functions in a single device. The final device structure was achieved by combining three independent modules that consisted of horizontal and vertical channels. The device allowed for the one-step generation of water-in-oil-in-water droplets without the need for partial treatment of the polydimethylsiloxane channel surface using separate modules for generating water-in-oil droplets on the horizontal plane and oil-in-water droplets on the vertical plane. The second vertically structured module provided an efficient flow for the generation of highly wettable liquid droplets, and tuning of the first horizontally structured module enabled different modes of inner-core encapsulation within the oil shell. The successful integration of the vertical and horizontal channels for core-shell droplet generation and the chemical synthesis of a metal complex within the droplets were evaluated. The proposed approach of integrating independent modules will expand and enhance the functions of microfluidic platforms.
Collapse
Affiliation(s)
- Dong Hyun Yoon
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Yoshito Nozaki
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, 513, Tsurumaki-cho, Waseda, Shinjuku-ku, Tokyo 162-0041, Japan.
| | - Shuichi Shoji
- Faculty of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
50
|
Synthetic life on a chip. Emerg Top Life Sci 2019; 3:559-566. [PMID: 33523171 DOI: 10.1042/etls20190097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 02/01/2023]
Abstract
In this article, we argue that on-chip microfluidic systems provide an attractive technology when it comes to designing synthetic cells. We emphasize the importance of the surrounding environment for both living systems in nature and for developing artificial self-sustaining entities. On-chip microfluidic devices provide a high degree of control over the production of cell-like synthetic entities as well as over the local microenvironment that these soft-matter-based synthetic cells experience. Rapid progress in microfluidic fabrication technology has led to a variety of production and manipulation tools that establish on-chip environments as a versatile platform and arguably the best route forward for realizing synthetic life.
Collapse
|