1
|
Chunyan X, Qaria MA, Qi X, Daochen Z. The role of microorganisms in petroleum degradation: Current development and prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161112. [PMID: 36586680 DOI: 10.1016/j.scitotenv.2022.161112] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Petroleum hydrocarbon compounds are persistent organic pollutants, which can cause permanent damage to ecosystems due to their biomagnification. Bioremediation of oil is currently the main solution for the remediation of petroleum hydrocarbon pollutants in ecosystems. Despite several lab studies on oil microbial biodegradation efficiency, still there are various challenges for microorganisms to perform efficiently in outside environments. Herewith, investigating efficient biodegradation technologies through discovering new microorganisms, biodegradation pathways modification, and new bioremediations technologies are in great demand. The degradation of petroleum pollutants by microorganisms and the remediation of contaminated soils are achieved through their key enzymes and metabolic pathways. Although, several challenges hinder the effective biodegradation processes such as the toxic environment, long chains and versatility of petroleum hydrocarbons and the existence of the full metabolism pathways in a single microorganism. There are several developed oil biodegradation strategies by microorganisms such as synthetic biology, biofilm, recombinant technology and microbial consortia. Herewith, the application of multi-omics technology to discover oil-contaminated environments microbial communities, synthetic biology, microbial consortia, and other technologies would help improve the efficiency of microbial remediation.
Collapse
Affiliation(s)
- Xu Chunyan
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Majjid A Qaria
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xu Qi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zhu Daochen
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
2
|
Davies JA. Real-World Synthetic Biology: Is It Founded on an Engineering Approach, and Should It Be? Life (Basel) 2019; 9:life9010006. [PMID: 30621107 PMCID: PMC6463249 DOI: 10.3390/life9010006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 12/22/2022] Open
Abstract
Authors often assert that a key feature of 21st-century synthetic biology is its use of an 'engineering approach'; design using predictive models, modular architecture, construction using well-characterized standard parts, and rigorous testing using standard metrics. This article examines whether this is, or even should be, the case. A brief survey of synthetic biology projects that have reached, or are near to, commercial application outside laboratories shows that they showed very few of these attributes. Instead, they featured much trial and error, and the use of specialized, custom components and assays. What is more, consideration of the special features of living systems suggest that a conventional engineering approach will often not be helpful. The article concludes that the engineering approach may be useful in some projects, but it should not be used to define or constrain synthetic biological endeavour, and that in fact the conventional engineering has more to gain by expanding and embracing more biological ways of working.
Collapse
Affiliation(s)
- Jamie A Davies
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh EH8 9YL, UK.
| |
Collapse
|
3
|
Abstract
Energy is a key driver of the modern economy, therefore modeling and simulation of energy systems has received significant research attention. We review the major developments in this area and propose two ways to categorize the diverse contributions. The first categorization is according to the modeling approach, namely into computational, mathematical, and physical models. With this categorization, we highlight certain novel hybrid approaches that combine aspects of the different groups proposed. The second categorization is according to field namely Process Systems Engineering (PSE) and Energy Economics (EE). We use the following criteria to illustrate the differences: the nature of variables, theoretical underpinnings, level of technological aggregation, spatial and temporal scales, and model purposes. Traditionally, the Process Systems Engineering approach models the technological characteristics of the energy system endogenously. However, the energy system is situated in a broader economic context that includes several stakeholders both within the energy sector and in other economic sectors. Complex relationships and feedback effects exist between these stakeholders, which may have a significant impact on strategic, tactical, and operational decision-making. Leveraging the expertise built in the Energy Economics field on modeling these complexities may be valuable to process systems engineers. With this categorization, we present the interactions between the two fields, and make the case for combining the two approaches. We point out three application areas: (1) optimal design and operation of flexible processes using demand and price forecasts, (2) sustainability analysis and process design using hybrid methods, and (3) accounting for the feedback effects of breakthrough technologies. These three examples highlight the value of combining Process Systems Engineering and Energy Economics models to get a holistic picture of the energy system in a wider economic and policy context.
Collapse
|
4
|
Walker GM, Walker RSK. Enhancing Yeast Alcoholic Fermentations. ADVANCES IN APPLIED MICROBIOLOGY 2018; 105:87-129. [PMID: 30342724 DOI: 10.1016/bs.aambs.2018.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The production of ethanol by yeast fermentation represents the largest of all global biotechnologies. Consequently, the yeast Saccharomyces cerevisiae is the world's premier industrial microorganism, which is responsible not only for the production of alcoholic beverages, including beer, wine, and distilled spirits, but also for the billions of liters of bioethanol produced annually for use as a renewable transportation fuel. Although humankind has exploited the fermentative activities of yeasts for millennia, many aspects of alcohol fermentation remain poorly understood. This chapter will review some of the key considerations in optimizing industrial alcohol fermentations with a particular emphasis on enhancement opportunities involving cell physiology and strain engineering of the major microbial ethanologen, the yeast S. cerevisiae.
Collapse
Affiliation(s)
- Graeme M Walker
- School of Science, Engineering & Technology, Abertay University, Dundee, Scotland, United Kingdom
| | - Roy S K Walker
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Characterisation of novel biomass degradation enzymes from the genome of Cellulomonas fimi. Enzyme Microb Technol 2018; 113:9-17. [PMID: 29602392 PMCID: PMC5892457 DOI: 10.1016/j.enzmictec.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/11/2017] [Accepted: 02/12/2018] [Indexed: 01/06/2023]
Abstract
Identified over 90 putative polysaccharide degrading ORFs in C. fimi genome. Cloned 14 putative cellulolytic ORFs as BioBricks, screened them for activity. Partially purified AfsB, BxyF, BxyH and XynF and characterised them further. BxyH proved highly temperature and alkaline pH tolerant. BioBricks are an easy method for screening genes for specific activities.
Recent analyses of genome sequences belonging to cellulolytic bacteria have revealed many genes potentially coding for cellulosic biomass degradation enzymes. Annotation of these genes however, is based on few biochemically characterised examples. Here we present a simple strategy based on BioBricks for the rapid screening of candidate genes expressed in Escherichia coli. As proof of principle we identified over 70 putative biomass degrading genes from bacterium Cellulomonas fimi, expressing a subset of these in BioBrick format. Six novel genes showed activity in E. coli. Four interesting enzymes were characterised further. α-l-arabinofuranosidase AfsB, β-xylosidases BxyF and BxyH and multi-functional β-cellobiosidase/xylosidase XynF were partially purified to determine their optimum pH, temperature and kinetic parameters. One of these enzymes, BxyH, was unexpectedly found to be highly active at strong alkaline pH and at temperatures as high as 100 °C. This report demonstrates a simple method of quickly screening and characterising putative genes as BioBricks.
Collapse
|
6
|
Pathak VM, Navneet. Review on the current status of polymer degradation: a microbial approach. BIORESOUR BIOPROCESS 2017. [DOI: 10.1186/s40643-017-0145-9] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
7
|
Lakhundi SS, Duedu KO, Cain N, Nagy R, Krakowiak J, French CE. Citrobacter freundii as a test platform for recombinant cellulose degradation systems. Lett Appl Microbiol 2016; 64:35-42. [PMID: 27617802 DOI: 10.1111/lam.12668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/27/2016] [Accepted: 09/08/2016] [Indexed: 01/03/2023]
Abstract
Cellulosic biomass represents a huge reservoir of renewable carbon, but converting it into useful products is challenging. Attempts to transfer cellulose degradation capability to industrially useful micro-organisms have met with limited success, possibly due to poorly understood synergy between multiple cellulases. This is best studied by co-expression of many combinations of cellulases and associated proteins. Here, we describe the development of a test platform based on Citrobacter freundii, a cellobiose-assimilating organism closely related to Escherichia coli. Standard E. coli cloning vectors worked well in Cit. freundii. Expression of cellulases CenA and Cex of Cellulomonas fimi in Cit. freundii gave recombinant strains which were able to grow at the expense of cellulosic filter paper or microcrystalline cellulose (Avicel) in a mineral medium supplemented with a small amount of yeast extract. Periodic physical agitation of the cultures was highly beneficial for growth at the expense of filter paper. This provides a test platform for the expression of combinations of genes encoding biomass-degrading enzymes to develop effective genetic cassettes for degradation of different biomass streams. SIGNIFICANCE AND IMPACT OF THE STUDY Biofuels have been shown to be the best sustainable and alternative source of fuel to replace fossil fuels. Of the different types of feedstocks used for producing biofuels, lignocellulosic biomass is the most abundant. Converting this biomass to useful products has met with little success. Different approaches are being used and microbial platforms are the most promising and sustainable method. This study shows that Citrobacter freundii is a better test platform than Escherichia coli for testing various combinations of cellulases for the development of microbial systems for biomass conversion.
Collapse
Affiliation(s)
- S S Lakhundi
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - K O Duedu
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,School of Basic & Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - N Cain
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - R Nagy
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J Krakowiak
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - C E French
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
French CE, Horsfall L, Barnard DK, Duedu K, Fletcher E, Joshi N, Kane SD, Lakhundi SS, Liu CK, Oltmanns J, Radford D, Salinas A, White J, Elfick A. Beyond Genetic Engineering: Technical Capabilities in the Application Fields of Biocatalysis and Biosensors. Synth Biol (Oxf) 2015. [DOI: 10.1007/978-3-319-02783-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
9
|
|
10
|
You C, Chen H, Myung S, Sathitsuksanoh N, Ma H, Zhang XZ, Li J, Zhang YHP. Enzymatic transformation of nonfood biomass to starch. Proc Natl Acad Sci U S A 2013; 110:7182-7. [PMID: 23589840 PMCID: PMC3645547 DOI: 10.1073/pnas.1302420110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The global demand for food could double in another 40 y owing to growth in the population and food consumption per capita. To meet the world's future food and sustainability needs for biofuels and renewable materials, the production of starch-rich cereals and cellulose-rich bioenergy plants must grow substantially while minimizing agriculture's environmental footprint and conserving biodiversity. Here we demonstrate one-pot enzymatic conversion of pretreated biomass to starch through a nonnatural synthetic enzymatic pathway composed of endoglucanase, cellobiohydrolyase, cellobiose phosphorylase, and alpha-glucan phosphorylase originating from bacterial, fungal, and plant sources. A special polypeptide cap in potato alpha-glucan phosphorylase was essential to push a partially hydrolyzed intermediate of cellulose forward to the synthesis of amylose. Up to 30% of the anhydroglucose units in cellulose were converted to starch; the remaining cellulose was hydrolyzed to glucose suitable for ethanol production by yeast in the same bioreactor. Next-generation biorefineries based on simultaneous enzymatic biotransformation and microbial fermentation could address the food, biofuels, and environment trilemma.
Collapse
Affiliation(s)
- Chun You
- Biological Systems Engineering Department
| | - Hongge Chen
- Biological Systems Engineering Department
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Suwan Myung
- Biological Systems Engineering Department
- Institute for Critical Technology and Applied Science, and
| | - Noppadon Sathitsuksanoh
- Biological Systems Engineering Department
- Institute for Critical Technology and Applied Science, and
| | - Hui Ma
- Gate Fuels, Inc., Blacksburg, VA 24060
| | - Xiao-Zhou Zhang
- Biological Systems Engineering Department
- Gate Fuels, Inc., Blacksburg, VA 24060
| | - Jianyong Li
- Biochemistry Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Y.-H. Percival Zhang
- Biological Systems Engineering Department
- Institute for Critical Technology and Applied Science, and
- Gate Fuels, Inc., Blacksburg, VA 24060
- BioEnergy Science Center, Department of Energy, Oak Ridge, TN 37831; and
- Cell Free Bioinnovations, Inc., Blacksburg, VA 24060
| |
Collapse
|
11
|
Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG. Metabolic engineering of plant oils and waxes for use as industrial feedstocks. PLANT BIOTECHNOLOGY JOURNAL 2013. [PMID: 23190163 DOI: 10.1111/pbi.12023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Society has come to rely heavily on mineral oil for both energy and petrochemical needs. Plant lipids are uniquely suited to serve as a renewable source of high-value fatty acids for use as chemical feedstocks and as a substitute for current petrochemicals. Despite the broad variety of acyl structures encountered in nature and the cloning of many genes involved in their biosynthesis, attempts at engineering economic levels of specialty industrial fatty acids in major oilseed crops have so far met with only limited success. Much of the progress has been hampered by an incomplete knowledge of the fatty acid biosynthesis and accumulation pathways. This review covers new insights based on metabolic flux and reverse engineering studies that have changed our view of plant oil synthesis from a mostly linear process to instead an intricate network with acyl fluxes differing between plant species. These insights are leading to new strategies for high-level production of industrial fatty acids and waxes. Furthermore, progress in increasing the levels of oil and wax structures in storage and vegetative tissues has the potential to yield novel lipid production platforms. The challenge and opportunity for the next decade will be to marry these technologies when engineering current and new crops for the sustainable production of oil and wax feedstocks.
Collapse
|
12
|
Pasotti L, Politi N, Zucca S, Cusella De Angelis MG, Magni P. Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices. PLoS One 2012; 7:e39407. [PMID: 22911685 PMCID: PMC3401228 DOI: 10.1371/journal.pone.0039407] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 05/24/2012] [Indexed: 11/24/2022] Open
Abstract
Background Modularity is a crucial issue in the engineering world, as it enables engineers to achieve predictable outcomes when different components are interconnected. Synthetic Biology aims to apply key concepts of engineering to design and construct new biological systems that exhibit a predictable behaviour. Even if physical and measurement standards have been recently proposed to facilitate the assembly and characterization of biological components, real modularity is still a major research issue. The success of the bottom-up approach strictly depends on the clear definition of the limits in which biological functions can be predictable. Results The modularity of transcription-based biological components has been investigated in several conditions. First, the activity of a set of promoters was quantified in Escherichia coli via different measurement systems (i.e., different plasmids, reporter genes, ribosome binding sites) relative to an in vivo reference promoter. Second, promoter activity variation was measured when two independent gene expression cassettes were assembled in the same system. Third, the interchangeability of input modules (a set of constitutive promoters and two regulated promoters) connected to a fixed output device (a logic inverter) expressing GFP was evaluated. The three input modules provide tunable transcriptional signals that drive the output device. If modularity persists, identical transcriptional signals trigger identical GFP outputs. To verify this, all the input devices were individually characterized and then the input-output characteristic of the logic inverter was derived in the different configurations. Conclusions Promoters activities (referred to a standard promoter) can vary when they are measured via different reporter devices (up to 22%), when they are used within a two-expression-cassette system (up to 35%) and when they drive another device in a functionally interconnected circuit (up to 44%). This paper provides a significant contribution to the study of modularity limitations in building biological systems by providing useful data on context-dependent variability of biological components.
Collapse
Affiliation(s)
- Lorenzo Pasotti
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale, Università degli Studi di Pavia, Pavia, Italy
| | - Nicolò Politi
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale, Università degli Studi di Pavia, Pavia, Italy
| | - Susanna Zucca
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale, Università degli Studi di Pavia, Pavia, Italy
| | | | - Paolo Magni
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Pavia, Italy
- Centro di Ingegneria Tissutale, Università degli Studi di Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
13
|
Heterologous expression of plant cell wall degrading enzymes for effective production of cellulosic biofuels. J Biomed Biotechnol 2012; 2012:405842. [PMID: 22911272 PMCID: PMC3403577 DOI: 10.1155/2012/405842] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/20/2012] [Indexed: 11/17/2022] Open
Abstract
A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an ideal host organism is very important, because each host organism has its own unique features. Synthetic biology-aided tools enable heterologous expression of PCDE in recombinant E. coli or Z. mobilis and allow successful consolidated bioprocessing (CBP) in these microorganisms. In-planta expression provides an opportunity to simplify the process of enzyme production and plant biomass processing and leads to self-deconstruction of plant cell walls. Although the future of currently available technologies is difficult to predict, a complete and viable platform will most likely be available through the integration of the existing approaches with the development of breakthrough technologies.
Collapse
|
14
|
Zheng Z, Chen T, Zhao M, Wang Z, Zhao X. Engineering Escherichia coli for succinate production from hemicellulose via consolidated bioprocessing. Microb Cell Fact 2012; 11:37. [PMID: 22455836 PMCID: PMC3340313 DOI: 10.1186/1475-2859-11-37] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/29/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The recalcitrant nature of hemicellulosic materials and the high cost in depolymerization are the primary obstacles preventing the use of xylan as feedstock for fuel and chemical production. Consolidated bioprocessing, incorporating enzyme-generating, biomass-degrading and bioproduct-producing capabilities into a single microorganism, could potentially avoid the cost of the dedicated enzyme generation in the process of xylan utilization. In this study, we engineered Escherichia coli strains capable of exporting three hemicellulases to the broth for the succinate production directly from beechwood xylan. RESULTS Xylanases were extracellular environment-directed by fusing with OsmY. Subsequently, twelve variant OsmY fused endoxylanase-xylosidase combinations were characterized and tested. The combination of XynC-A from Fibrobacter succinogenes S85 and XyloA from Fusarium graminearum which appeared to have optimal enzymatic properties was identified as the best choice for xylan hydrolysis (0.18 ± 0.01 g/l protein in the broth with endoxylanase activity of 12.14 ± 0.34 U/mg protein and xylosidase activity of 92 ± 3 mU/mg protein at 8 h after induction). Further improvements of hemicellulases secretion were investigated by lpp deletion, dsbA overexpression and expression level optimization. With co-expression of α-arabinofuranosidase, the engineered E. coli could hydrolyze beechwood xylan to pentose monosaccharides. The hemicellulolytic capacity was further integrated with a succinate-producing strain to demonstrate the production of succinate directly from xylan without externally supplied hydrolases and any other organic nutrient. The resulting E. coli Z6373 was able to produce 0.37 g/g succinate from xylan anaerobically equivalent to 76% of that from xylan acid hydrolysates. CONCLUSIONS This report represents a promising step towards the goal of hemicellulosic chemical production. This engineered E. coli expressing and secreting three hemicellulases demonstrated a considerable succinate production on the released monosaccharides from xylan. The ability to use lower-cost crude feedstock will make biological succinate production more economically attractive.
Collapse
Affiliation(s)
- Zongbao Zheng
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Zucca S, Pasotti L, Mazzini G, De Angelis MGC, Magni P. Characterization of an inducible promoter in different DNA copy number conditions. BMC Bioinformatics 2012; 13 Suppl 4:S11. [PMID: 22536957 PMCID: PMC3314568 DOI: 10.1186/1471-2105-13-s4-s11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bottom-up programming of living organisms to implement novel user-defined biological capabilities is one of the main goals of synthetic biology. Currently, a predominant problem connected with the construction of even simple synthetic biological systems is the unpredictability of the genetic circuitry when assembled and incorporated in living cells. Copy number, transcriptional/translational demand and toxicity of the DNA-encoded functions are some of the major factors which may lead to cell overburdening and thus to nonlinear effects on system output. It is important to disclose the linearity working boundaries of engineered biological systems when dealing with such phenomena. RESULTS The output of an N-3-oxohexanoyl-L-homoserine lactone (HSL)-inducible RFP-expressing device was studied in Escherichia coli in different copy number contexts, ranging from 1 copy per cell (integrated in the genome) to hundreds (via multicopy plasmids). The system is composed by a luxR constitutive expression cassette and a RFP gene regulated by the luxI promoter, which is activated by the HSL-LuxR complex. System output, in terms of promoter activity as a function of HSL concentration, was assessed relative to the one of a reference promoter in identical conditions by using the Relative Promoter Units (RPU) approach. Nonlinear effects were observed in the maximum activity, which is identical in single and low copy conditions, while it decreases for higher copy number conditions. In order to properly compare the luxI promoter strength among all the conditions, a mathematical modeling approach was used to relate the promoter activity to the estimated HSL-LuxR complex concentration, which is the actual activator of transcription. During model fitting, a correlation between the copy number and the dissociation constant of HSL-LuxR complex and luxI promoter was observed. CONCLUSIONS Even in a simple inducible system, nonlinear effects are observed and non-trivial data processing is necessary to fully characterize its operation. The in-depth analysis of model systems like this can contribute to the advances in the synthetic biology field, since increasing the knowledge about linearity and working boundaries of biological phenomena could lead to a more rational design of artificial systems, also through mathematical models, which, for example, have been used here to study hard-to-predict interactions.
Collapse
Affiliation(s)
- Susanna Zucca
- Dipartimento di Informatica e Sistemistica, Università degli Studi di Pavia, Via Ferrata 1, I-27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
16
|
Abstract
Advances in systems biology are increasingly dependent upon the integration of various types of data and different methodologies to reconstruct how cells work at the systemic level. Thus, teams with a varied array of expertise and people with interdisciplinary training are needed. So far this training was thought to be more productive if aimed at the Masters or PhD level. At this level, multiple specialised and in-depth courses on the different subject matters of systems biology are taught to already well-prepared students. This approach is mostly based on the recognition that systems biology requires a wide background that is hard to find in undergraduate students. Nevertheless, and given the importance of the field, the authors argue that exposition of undergraduate students to the methods and paradigms of systems biology would be advantageous. Here they present and discuss a successful experiment in teaching systems biology to third year undergraduate biotechnology students at the University of Lleida in Spain. The authors' experience, together with that from others, argues for the adequateness of teaching systems biology at the undergraduate level. [Includes supplementary material].
Collapse
Affiliation(s)
- R Alves
- Universitat de Lleida, Departament Ciencies Mediques Basiques, Spain
| | | | | |
Collapse
|
17
|
Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010; 2010:761042. [PMID: 20414363 PMCID: PMC2857869 DOI: 10.1155/2010/761042] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/18/2009] [Accepted: 01/13/2010] [Indexed: 12/18/2022] Open
Abstract
Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.
Collapse
|
18
|
Foley PL, Shuler ML. Considerations for the design and construction of a synthetic platform cell for biotechnological applications. Biotechnol Bioeng 2010; 105:26-36. [PMID: 19816966 DOI: 10.1002/bit.22575] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The design and construction of an artificial bacterial cell could revolutionize biotechnological processes and technologies. A functional platform cell that can be easily customized for a pre-defined task would be useful for applications from producing therapeutics to decontaminating waste streams. The platform cell must be robust and highly efficient. A biotechnological platform cell is related to the concept of a minimal cell, but several factors beyond those necessary for a minimal cell must be considered for a synthetic organism designed for biotechnological applications. Namely, a platform cell must exhibit robust cell reproduction, decreased genetic drift, a physically robust cell envelope, efficient and simplified transcription and translation controls, and predictable metabolic interactions. Achieving a biotechnological platform cell will benefit from insights acquired from a minimal cell, but an approach of minimizing an existing organism's genome may be a more practical experimental approach. Escherichia coli possess many of the desired characteristics of a platform cell and could serve as a useful model organism for the design and construction of a synthetic platform organism. In this article we review briefly the current state of research in this field and outline specific characteristics that will be important for a biotechnologically relevant synthetic cell that has a minimized genome and efficient regulatory structure.
Collapse
Affiliation(s)
- P L Foley
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | | |
Collapse
|
19
|
Diez MS, Lam CM, Leprince A, Martins dos Santos VAP. (Re-)construction, characterization and modeling of systems for synthetic biology. Biotechnol J 2009; 4:1382-91. [DOI: 10.1002/biot.200900173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
|