1
|
Kanthenga HT, Banicod RJS, Ntege W, Njiru MN, Javaid A, Tabassum N, Kim YM, Khan F. Functional diversity of AI-2/LuxS system in lactic acid bacteria: Impacts on biofilm formation and environmental resilience. Res Microbiol 2025:104296. [PMID: 40122434 DOI: 10.1016/j.resmic.2025.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
A key component of microbial communication, autoinducer-2 (AI-2) signaling, affects several physiological processes, including environmental adaptation and biofilm formation in lactic acid bacteria (LAB). The multifarious contribution of AI-2, synthesized by LuxS, in improving biofilms and tolerance to hostile conditions in LAB has been investigated in this review. The evolutionary conservation and diversity of AI-2 are shown by a phylogenetic analysis of luxS gene among several LAB species. Furthermore, AI-2 signaling in LAB improves resistance to unfavorable environmental factors, including pH fluctuations, temperature extremes, and antimicrobial agents. Lactic acid bacteria could set off defenses against harmful impacts from environmental stresses.
Collapse
Affiliation(s)
- Hopeful Tusalifye Kanthenga
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Department of Fisheries, Malawi College of Fisheries, Mangochi, 301401, Malawi
| | - Riza Jane S Banicod
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City, 1103, Philippines
| | - Wilson Ntege
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe, 10101, Uganda
| | - Moses Njeru Njiru
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea; Department of Fisheries and Aquaculture, Turkana County Government, Lodwar, 30500, Kenya
| | - Aqib Javaid
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea; Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Khan S. The Limits of Our Explanation: A Case Study in Myxococcus xanthus Cooperation. BIOLOGICAL THEORY 2024; 20:25-40. [PMID: 40161964 PMCID: PMC11947066 DOI: 10.1007/s13752-024-00479-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 09/19/2024] [Indexed: 04/02/2025]
Abstract
In this article, I demonstrate two ways in which our major theories of the evolution of cooperation may fail to capture particular social phenomena. The first shortcoming of our current major theories stems from the possibility of mischaracterizing the cooperative problem in game theory. The second shortcoming of our current major theories is the insensitivity of these explanatory models to ecological and genomic context. As a case study to illustrate these points, I will use the cooperative interaction of a species of myxobacteria called Myxococcus xanthus. M. xanthus cooperate in many areas of their life cycle-in quorum sensing, social motility, fruiting body formation, and predation. I focus in particular on predation as we have not yet discovered an adequate explanation of how they sustain cooperative predation in the face of developmental cheats. In explaining why we have not, I draw generalizable conclusions that shed light on our use of simplified models to explain real-world behaviors in a variety of organisms.
Collapse
Affiliation(s)
- Saira Khan
- Department of Philosophy, University of Bristol, Bristol, UK
| |
Collapse
|
3
|
Staps M, Tarnita CE, Kawakatsu M. Ecological principles for the evolution of communication in collective systems. Proc Biol Sci 2024; 291:20241562. [PMID: 39381908 PMCID: PMC11462452 DOI: 10.1098/rspb.2024.1562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 10/10/2024] Open
Abstract
Communication allows members of a collective to share information about their environment. Advanced collective systems, such as multicellular organisms and social insect colonies, vary in whether they use communication at all and, if they do, in what types of signals they use, but the origins of these differences are poorly understood. Here, we develop a theoretical framework to investigate the evolution and diversity of communication strategies under collective-level selection. We find that whether communication can evolve depends on a collective's external environment: communication only evolves in sufficiently stable environments, where the costs of sensing are high enough to disfavour independent sensing but not so high that the optimal strategy is to ignore the environment altogether. Moreover, we find that the evolution of diverse signalling strategies-including those relying on prolonged signalling (e.g. honeybee waggle dance), persistence of signals in the environment (e.g. ant trail pheromones) and brief but frequent communicative interactions (e.g. ant antennal contacts)-can be explained theoretically in terms of the interplay between the demands of the environment and internal constraints on the signal. Altogether, we provide a general framework for comparing communication strategies found in nature and uncover simple ecological principles that may contribute to their diversity.
Collapse
Affiliation(s)
- Merlijn Staps
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Corina E. Tarnita
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ08544, USA
| | - Mari Kawakatsu
- Department of Biology, University of Pennsylvania, Philadelphia, PA19104, USA
- Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA19104, USA
| |
Collapse
|
4
|
Hunt KL, Patel M, Croft DP, Franks DW, Green PA, Thompson FJ, Johnstone RA, Cant MA, Sankey DWE. The evolution of democratic peace in animal societies. Nat Commun 2024; 15:6583. [PMID: 39097569 PMCID: PMC11297998 DOI: 10.1038/s41467-024-50621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
A major goal in evolutionary biology is to elucidate common principles that drive human and other animal societies to adopt either a warlike or peaceful nature. One proposed explanation for the variation in aggression between human societies is the democratic peace hypothesis. According to this theory, autocracies are more warlike than democracies because autocratic leaders can pursue fights for private gain. However, autocratic and democratic decision-making processes are not unique to humans and are widely observed across a diverse range of non-human animal societies. We use evolutionary game theory to evaluate whether the logic of democratic peace may apply across taxa; specifically adapting the classic Hawk-Dove model to consider conflict decisions made by groups rather than individuals. We find support for the democratic peace hypothesis without mechanisms involving complex human institutions and discuss how these findings might be relevant to non-human animal societies. We suggest that the degree to which collective decisions are shared may explain variation in the intensity of intergroup conflict in nature.
Collapse
Affiliation(s)
- K L Hunt
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK.
| | - M Patel
- Centre of Excellence for Data Science, Artificial Intelligence and Modelling and Department of Biology, University of Hull, Hull, UK
| | - D P Croft
- Centre for Research in Animal Behaviour, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - D W Franks
- Department of Biology and Department of Computer Science, University of York, York, UK
| | - P A Green
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, USA
| | - F J Thompson
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - R A Johnstone
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - M A Cant
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - D W E Sankey
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK.
- School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Fenyvesi É, Berkl Z, Ligethy L, Fekete-Kertész I, Csizmazia M, Malanga M, Puskás I, Szőcs L, Iványi R, Kese I, Varga E, Szente L, Molnár M. Long-Chain Alkylthio Cyclodextrin Derivatives for Modulation of Quorum-Sensing-Based Bioluminescence in Aliivibrio fischeri Model System. Int J Mol Sci 2024; 25:7139. [PMID: 39000246 PMCID: PMC11241527 DOI: 10.3390/ijms25137139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Quorum sensing (QS) allows bacteria to coordinate their activities by producing and detecting low-molecular-weight signal molecules based on population density, thereby controlling the infectivity of bacteria through various virulence factors. Quorum-sensing inhibition is a promising approach to tackle bacterial communication. Cyclodextrins (CDs) are a class of cyclic oligosaccharides that reversibly encapsulate the acyl chain of the signal molecules, thereby preventing their binding to receptors and interrupting bacterial communication. This results in the inhibition of the expression of various properties, including different virulence factors. To examine the potential quorum-quenching (QQ) ability of newly prepared cyclodextrin derivatives, we conducted short-term tests using Aliivibrio fischeri, a heterotrophic marine bacterium capable of bioluminescence controlled by quorum sensing. α- and β-cyclodextrins monosubstituted with alkylthio moieties and further derivatized with quaternary ammonium groups were used as the test agents. The effect of these cyclodextrins on the quorum-sensing system of A. fischeri was investigated by adding them to an exponential growth phase of the culture and then measuring bioluminescence intensity, population growth, and cell viability. Our results demonstrate that the tested cyclodextrins have an inhibitory effect on the quorum-sensing system of A. fischeri. The inhibitory effect varies based on the length of the alkyl chain, with alkylthio substitution enhancing it and the presence of quaternary ammonium groups decreasing it. Our findings suggest that cyclodextrins can be a promising therapeutic agent for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Zsófia Berkl
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Laura Ligethy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Ildikó Fekete-Kertész
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Márton Csizmazia
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| | - Milo Malanga
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - István Puskás
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Levente Szőcs
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Róbert Iványi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - István Kese
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Erzsébet Varga
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos út 7, 1097 Budapest, Hungary; (M.M.); (I.P.); (L.S.); (R.I.); (I.K.); (E.V.); (L.S.)
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary; (Z.B.); (L.L.); (I.F.-K.); (M.C.)
| |
Collapse
|
6
|
Chen X, Li J, Liao R, Shi X, Xing Y, Xu X, Xiao H, Xiao D. Bibliometric analysis and visualization of quorum sensing research over the last two decade. Front Microbiol 2024; 15:1366760. [PMID: 38646636 PMCID: PMC11026600 DOI: 10.3389/fmicb.2024.1366760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Background Quorum sensing (QS) research stands as a pivotal and multifaceted domain within microbiology, holding profound implications across various scientific disciplines. This bibliometric analysis seeks to offer an extensive overview of QS research, covering the period from 2004 to 2023. It aims to elucidate the hotspots, trends, and the evolving dynamics within this research domain. Methods We conducted an exhaustive review of the literature, employing meticulous data curation from the Science Citation Index Extension (SCI-E) within the Web of Science (WOS) database. Subsequently, our survey delves into evolving publication trends, the constellation of influential authors and institutions, key journals shaping the discourse, global collaborative networks, and thematic hotspots that define the QS research field. Results The findings demonstrate a consistent and growing interest in QS research throughout the years, encompassing a substantial dataset of 4,849 analyzed articles. Journals such as Frontiers in Microbiology have emerged as significant contributor to the QS literature, highlighting the increasing recognition of QS's importance across various research fields. Influential research in the realm of QS often centers on microbial communication, biofilm formation, and the development of QS inhibitors. Notably, leading countries engaged in QS research include the United States, China, and India. Moreover, the analysis identifies research focal points spanning diverse domains, including pharmacological properties, genetics and metabolic pathways, as well as physiological and signal transduction mechanisms, reaffirming the multidisciplinary character of QS research. Conclusion This bibliometric exploration provides a panoramic overview of the current state of QS research. The data portrays a consistent trend of expansion and advancement within this domain, signaling numerous prospects for forthcoming research and development. Scholars and stakeholders engaged in the QS field can harness these findings to navigate the evolving terrain with precision and speed, thereby enhancing our comprehension and utilization of QS in various scientific and clinical domains.
Collapse
Affiliation(s)
- Xinghan Chen
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqi Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruohan Liao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiujun Shi
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yan Xing
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xuewen Xu
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haitao Xiao
- Department of Burns and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongqin Xiao
- Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| |
Collapse
|
7
|
Fekete-Kertész I, Berkl Z, Buda K, Fenyvesi É, Szente L, Molnár M. Quorum quenching effect of cyclodextrins on the pyocyanin and pyoverdine production of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2024; 108:271. [PMID: 38517512 PMCID: PMC10959793 DOI: 10.1007/s00253-024-13104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/24/2024]
Abstract
Various virulence determinants in Pseudomonas aeruginosa are regulated by the quorum sensing (QS) network producing and releasing signalling molecules. Two of these virulence determinants are the pyocyanin and pyoverdine, which interfere with multiple cellular functions during infection. The application of QS-inhibiting agents, such as cyclodextrins (CDs), appears to be a promising approach. Further to method development, this research tested in large-volume test systems the effect of α- and β-CD (ACD, BCD) at 1, 5, and 10 mM concentrations on the production of pyocyanin in the P. aeruginosa model system. The concentration and time-dependent quorum quenching effect of native CDs and their derivatives on pyoverdine production was tested in a small-volume high-throughput system. In the large-volume system, both ACD and BCD significantly inhibited pyocyanin production, but ACD to a greater extent. 10 mM ACD resulted in 58% inhibition, while BCD only ~40%. Similarly, ACD was more effective in the inhibition of pyoverdine production; nevertheless, the results of RMANOVA demonstrated the significant efficiency of both ACD and BCD, as well as their derivatives. Both the contact time and the cyclodextrin treatments significantly influenced pyoverdine production. In this case, the inhibitory effect of ACD after 48 h at 12.5 mM was 57%, while the inhibitory effect of BCD and its derivatives was lower than 40%. The high-level significant inhibition of both pyocyanin and pyoverdine production by ACD was detectable. Consequently, the potential value of CDs as QS inhibitors and the antivirulence strategy should be considered. KEYPOINTS: • Applicability of a simplified method for quantification of pyocyanin production was demonstrated. • The cyclodextrins significantly affected the pyocyanin and pyoverdine production. • The native ACD exhibited the highest attenuation in pyoverdine production.
Collapse
Affiliation(s)
- Ildikó Fekete-Kertész
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Zsófia Berkl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Kata Buda
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary
| | - Éva Fenyvesi
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos u. 7., Budapest, H-1097, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R&D Laboratory Ltd., Illatos u. 7., Budapest, H-1097, Hungary
| | - Mónika Molnár
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, Műegyetem rkp. 3., Budapest, H-1111, Hungary.
| |
Collapse
|
8
|
Maddela NR, Abiodun AS, Zhang S, Prasad R. Biofouling in Membrane Bioreactors-Mitigation and Current Status: a Review. Appl Biochem Biotechnol 2023; 195:5643-5668. [PMID: 36418712 DOI: 10.1007/s12010-022-04262-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Biological fouling as termed biofouling is caused by varied living organisms and is difficult to eliminate from the environment thus becoming a major issue during membrane bioreactors. Biofouling in membrane bioreactors (MBRs) is a crucial problem in increasing liquid pressure due to reduced pore diameter, clogging of the membrane pores, and alteration of the chemical composition of the water which greatly limits the growth of MBRs. Thus, membrane biofouling and/or microbial biofilms is a hot research topic to improve the market competitiveness of the MBR technology. Though several antibiofouling strategies (addition of bioflocculant or sponge into MBRs) came to light, biological approaches are sustainable and more practicable. Among the biological approaches, quorum sensing-based biofouling control (so-called quorum quenching) is an interesting and promising tool in combating biofouling issues in the MBRs. Several review articles have been published in the area of membrane biofouling and mitigation approaches. However, there is no single source of information about biofouling and/or biofilm formation in different environmental settings and respective problems, antibiofilm strategies and current status, quorum quenching, and its futurity. Thus, the objectives of the present review were to provide latest insights on mechanism of membrane biofouling, quorum sensing molecules, biofilm-associated problems in different environmental setting and antibiofilm strategies, special emphasis on quorum quenching, and its futurity in the biofilm/biofouling control. We believe that these insights greatly help in the better understanding of biofouling and aid in the development of sustainable antibiofouling strategies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departmento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Aransiola Sesan Abiodun
- Bioresources Development Centre, National Biotechnology Development Agency (NABDA), Ogbomoso, Nigeria
| | - Shaoqing Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
9
|
Collective decision-making in Pseudomonas aeruginosa involves transient segregation of quorum-sensing activities across cells. Curr Biol 2022; 32:5250-5261.e6. [PMID: 36417904 DOI: 10.1016/j.cub.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
A hallmark of bacterial sociality is that groups can coordinate cooperative actions through a cell-to-cell communication process called quorum sensing (QS). QS regulates key bacterial phenotypes such as virulence in infections and digestion of extracellular compounds in the environment. Although QS responses are typically studied as group-level phenotypes, it is unclear whether individuals coordinate their actions at the single-cell level or whether group phenotypes simply reflect the sum of their noisy members. Here, we studied the behavior of Pseudomonas aeruginosa individuals by tracking their temporal commitments to the two intertwined Las and Rhl-QS systems, from low to high population density. Using chromosomally integrated fluorescent gene reporters, we found that QS gene expression (signal, receptor, and cooperative exoproduct) was noisy with heterogeneity peaking during the build-up phase of QS. Moreover, we observed the formation of discrete subgroups of cells that transiently segregate into two gene expression states: low Las-receptor expressers that instantly activate exoproduct production and high Las-receptor expressers with delayed exoproduct production. Later, gene expression activities converged with all cells fully committing to QS. We developed general mathematical models to show that gene expression segregation can mechanistically be spurred by molecular resource limitations during the initiation phase of regulatory cascades such as QS. Moreover, our models indicate that gene expression segregation across cells can operate as a built-in brake enabling a temporary bet-hedging strategy in unpredictable environments. Altogether, our work reveals that studying the behavior of bacterial individuals is key to understanding emergent collective actions at the group level.
Collapse
|
10
|
Rattray JB, Thomas SA, Wang Y, Molotkova E, Gurney J, Varga JJ, Brown SP. Bacterial Quorum Sensing Allows Graded and Bimodal Cellular Responses to Variations in Population Density. mBio 2022; 13:e0074522. [PMID: 35583321 PMCID: PMC9239169 DOI: 10.1128/mbio.00745-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Quorum sensing (QS) is a mechanism of cell-cell communication that connects gene expression to environmental conditions (e.g., cell density) in many bacterial species, mediated by diffusible signal molecules. Current functional studies focus on qualitatively distinct QS ON/OFF states. In the context of density sensing, this view led to the adoption of a "quorum" analogy in which populations sense when they are above a sufficient density (i.e., "quorate") to efficiently turn on cooperative behaviors. This framework overlooks the potential for intermediate, graded responses to shifts in the environment. In this study, we tracked QS-regulated protease (lasB) expression and showed that Pseudomonas aeruginosa can deliver a graded behavioral response to fine-scale variation in population density, on both the population and single-cell scales. On the population scale, we saw a graded response to variation in population density (controlled by culture carrying capacity). On the single-cell scale, we saw significant bimodality at higher densities, with separate OFF and ON subpopulations that responded differentially to changes in density: a static OFF population of cells and increasing intensity of expression among the ON population of cells. Together, these results indicate that QS can tune gene expression to graded environmental change, with no critical cell mass or "quorum" at which behavioral responses are activated on either the individual-cell or population scale. In an infection context, our results indicate there is not a hard threshold separating a quorate "attack" mode from a subquorate "stealth" mode. IMPORTANCE Bacteria can be highly social, controlling collective behaviors via cell-cell communication mechanisms known as quorum sensing (QS). QS is now a large research field, yet a basic question remains unanswered: what is the environmental resolution of QS? The notion of a threshold, or "quorum," separating coordinated ON and OFF states is a central dogma in QS, but recent studies have shown heterogeneous responses at a single cell scale. Using Pseudomonas aeruginosa, we showed that populations generate graded responses to environmental variation through shifts in the proportion of cells responding and the intensity of responses. In an infection context, our results indicate that there is not a hard threshold separating a quorate "attack" mode and a subquorate "stealth" mode.
Collapse
Affiliation(s)
- Jennifer B. Rattray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Stephen A. Thomas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- Graduate Program in Quantitative Biosciences (QBioS), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Yifei Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- The Institute for Data Engineering and Science (IDEaS), Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Evgeniya Molotkova
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - John J. Varga
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sam P. Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Abstract
Quorum sensing is described as a widespread cell density-dependent signaling mechanism in bacteria. Groups of cells coordinate gene expression by secreting and responding to diffusible signal molecules. Theory, however, predicts that individual cells may short-circuit this mechanism by directly responding to the signals they produce irrespective of cell density. In this study, we characterize this self-sensing effect in the acyl-homoserine lactone quorum sensing system of Pseudomonas aeruginosa. We show that antiactivators, a set of proteins known to affect signal sensitivity, function to prevent self-sensing. Measuring quorum-sensing gene expression in individual cells at very low densities, we find that successive deletion of antiactivator genes qteE and qslA produces a bimodal response pattern, in which increasing proportions of constitutively induced cells coexist with uninduced cells. Comparing responses of signal-proficient and -deficient cells in cocultures, we find that signal-proficient cells show a much higher response in the antiactivator mutant background but not in the wild-type background. Our results experimentally demonstrate the antiactivator-dependent transition from group- to self-sensing in the quorum-sensing circuitry of P. aeruginosa. Taken together, these findings extend our understanding of the functional capacity of quorum sensing. They highlight the functional significance of antiactivators in the maintenance of group-level signaling and experimentally prove long-standing theoretical predictions.
Collapse
|
12
|
Frequency modulation of a bacterial quorum sensing response. Nat Commun 2022; 13:2772. [PMID: 35589697 PMCID: PMC9120067 DOI: 10.1038/s41467-022-30307-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
In quorum sensing, bacteria secrete or release small molecules into the environment that, once they reach a certain threshold, trigger a behavioural change in the population. As the concentration of these so-called autoinducers is supposed to reflect population density, they were originally assumed to be continuously produced by all cells in a population. However, here we show that in the α-proteobacterium Sinorhizobium meliloti expression of the autoinducer synthase gene is realized in asynchronous stochastic pulses that result from scarcity and, presumably, low binding affinity of the key activator. Physiological cues modulate pulse frequency, and pulse frequency in turn modulates the velocity with which autoinducer levels in the environment reach the threshold to trigger the quorum sensing response. We therefore propose that frequency-modulated pulsing in S. meliloti represents the molecular mechanism for a collective decision-making process in which each cell's physiological state and need for behavioural adaptation is encoded in the pulse frequency with which it expresses the autoinducer synthase gene; the pulse frequencies of all members of the population are then integrated in the common pool of autoinducers, and only once this vote crosses the threshold, the response behaviour is initiated.
Collapse
|
13
|
Manicka S, Marques-Pita M, Rocha LM. Effective connectivity determines the critical dynamics of biochemical networks. J R Soc Interface 2022; 19:20210659. [PMID: 35042384 PMCID: PMC8767216 DOI: 10.1098/rsif.2021.0659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Living systems comprise interacting biochemical components in very large networks. Given their high connectivity, biochemical dynamics are surprisingly not chaotic but quite robust to perturbations-a feature C.H. Waddington named canalization. Because organisms are also flexible enough to evolve, they arguably operate in a critical dynamical regime between order and chaos. The established theory of criticality is based on networks of interacting automata where Boolean truth values model presence/absence of biochemical molecules. The dynamical regime is predicted using network connectivity and node bias (to be on/off) as tuning parameters. Revising this to account for canalization leads to a significant improvement in dynamical regime prediction. The revision is based on effective connectivity, a measure of dynamical redundancy that buffers automata response to some inputs. In both random and experimentally validated systems biology networks, reducing effective connectivity makes living systems operate in stable or critical regimes even though the structure of their biochemical interaction networks predicts them to be chaotic. This suggests that dynamical redundancy may be naturally selected to maintain living systems near critical dynamics, providing both robustness and evolvability. By identifying how dynamics propagates preferably via effective pathways, our approach helps to identify precise ways to design and control network models of biochemical regulation and signalling.
Collapse
Affiliation(s)
- Santosh Manicka
- Center for Social and Biomedical Complexity, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Manuel Marques-Pita
- Center for Social and Biomedical Complexity, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Universidade Lusófona, CICANT and COPELABS, Campo Grande 388, 1700-097 Lisbon, Portugal
| | - Luis M. Rocha
- Center for Social and Biomedical Complexity, Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN, USA
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Binghamton University, State University of New York, Binghamton, NY, USA
| |
Collapse
|
14
|
Khaledi M, Afkhami H, Matouri RN, Dezfuli AAZ, Bakhti S. Effective Strategies to Deal With Infection in Burn Patient. J Burn Care Res 2021; 43:931-935. [PMID: 34935044 DOI: 10.1093/jbcr/irab226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Treatment of bacterial infection is difficult. Treatment protocol of burned patient is hard. Furthermore, treatment in burned patients is accompanied with problems such as complexity in diagnosis of infection's agent, multiple infections, being painful, and involving with different organelles. There are different infections of Gram-positive and Gram-negative bacteria in burned patients. From important bacteria can be noted to Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus that have high range of morbidity and mortality. Treatment of those bacterial infections is extremely important. Hence, many studies about methods of treatment of bacterial infections have published. Herein, we have suggested practical methods for example ant virulence therapies, nanotechnology, vaccine, and photodynamic therapy in treatment of bacterial infections. Those methods have been done in many researches and had good effect.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Hamed Afkhami
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Raed Nezhad Matouri
- Department of Medical Library and Information Sciences, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shahriar Bakhti
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
15
|
Delago A, Gregor R, Dubinsky L, Dandela R, Hendler A, Krief P, Rayo J, Aharoni A, Meijler MM. A Bacterial Quorum Sensing Molecule Elicits a General Stress Response in Saccharomyces cerevisiae. Front Microbiol 2021; 12:632658. [PMID: 34603220 PMCID: PMC8481950 DOI: 10.3389/fmicb.2021.632658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria assess their population density through a chemical communication mechanism termed quorum sensing, in order to coordinate group behavior. Most research on quorum sensing has focused primarily on its role as an intraspecies chemical signaling mechanism that enables the regulation of certain phenotypes through targeted gene expression. However, in recent years several seminal studies have revealed important phenomena in which quorum sensing molecules appear to serve additional roles as interspecies signals that may regulate microbial ecology. In this study, we asked whether the budding yeast Saccharomyces cerevisiae can sense chemical signals from prokaryotes. When exposed to a variety of quorum sensing molecules from different bacterial species and from Candida albicans we found that N-(3-oxododecanoyl)-L-homoserine lactone (C12) from the opportunistic human pathogen Pseudomonas aeruginosa induces a remarkable stress response in yeast. Microarray experiments confirmed and aided in interpreting these findings, showing a unique and specific expression pattern that differed significantly from the response to previously described stress factors. We further characterized this response and report preliminary findings on the molecular basis for the recognition of C12 by the yeast.
Collapse
Affiliation(s)
- Antonia Delago
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rachel Gregor
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Luba Dubinsky
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Rambabu Dandela
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Adi Hendler
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Pnina Krief
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Josep Rayo
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Amir Aharoni
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Michael M Meijler
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.,The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
16
|
Miller WB, Enguita FJ, Leitão AL. Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution. Cells 2021; 10:1125. [PMID: 34066959 PMCID: PMC8148535 DOI: 10.3390/cells10051125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.
Collapse
Affiliation(s)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
17
|
Cyclodextrin-mediated quorum quenching in the Aliivibrio fischeri bioluminescence model system – Modulation of bacterial communication. Int J Pharm 2021; 594:120150. [DOI: 10.1016/j.ijpharm.2020.120150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
|
18
|
Tourigny DS. Cooperative metabolic resource allocation in spatially-structured systems. J Math Biol 2021; 82:5. [PMID: 33479850 DOI: 10.1007/s00285-021-01558-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/30/2020] [Accepted: 10/27/2020] [Indexed: 10/22/2022]
Abstract
Natural selection has shaped the evolution of cells and multi-cellular organisms such that social cooperation can often be preferred over an individualistic approach to metabolic regulation. This paper extends a framework for dynamic metabolic resource allocation based on the maximum entropy principle to spatiotemporal models of metabolism with cooperation. Much like the maximum entropy principle encapsulates 'bet-hedging' behaviour displayed by organisms dealing with future uncertainty in a fluctuating environment, its cooperative extension describes how individuals adapt their metabolic resource allocation strategy to further accommodate limited knowledge about the welfare of others within a community. The resulting theory explains why local regulation of metabolic cross-feeding can fulfil a community-wide metabolic objective if individuals take into consideration an ensemble measure of total population performance as the only form of global information. The latter is likely supplied by quorum sensing in microbial systems or signalling molecules such as hormones in multi-cellular eukaryotic organisms.
Collapse
Affiliation(s)
- David S Tourigny
- Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
19
|
Ostovar G, Naughton KL, Boedicker JQ. Computation in bacterial communities. Phys Biol 2020; 17:061002. [PMID: 33035198 DOI: 10.1088/1478-3975/abb257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bacteria across many scales are involved in a dynamic process of information exchange to coordinate activity and community structure within large and diverse populations. The molecular components bacteria use to communicate have been discovered and characterized, and recent efforts have begun to understand the potential for bacterial signal exchange to gather information from the environment and coordinate collective behaviors. Such computations made by bacteria to coordinate the action of a population of cells in response to information gathered by a multitude of inputs is a form of collective intelligence. These computations must be robust to fluctuations in both biological, chemical, and physical parameters as well as to operate with energetic efficiency. Given these constraints, what are the limits of computation by bacterial populations and what strategies have evolved to ensure bacterial communities efficiently work together? Here the current understanding of information exchange and collective decision making that occur in microbial populations will be reviewed. Looking toward the future, we consider how a deeper understanding of bacterial computation will inform future direction in microbiology, biotechnology, and biophysics.
Collapse
Affiliation(s)
- Ghazaleh Ostovar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, United States of America
| | | | | |
Collapse
|
20
|
Schrom EC, Levin SA, Graham AL. Quorum sensing via dynamic cytokine signaling comprehensively explains divergent patterns of effector choice among helper T cells. PLoS Comput Biol 2020; 16:e1008051. [PMID: 32730250 PMCID: PMC7392205 DOI: 10.1371/journal.pcbi.1008051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022] Open
Abstract
In the animal kingdom, various forms of swarming enable groups of autonomous individuals to transform uncertain information into unified decisions which are probabilistically beneficial. Crossing scales from individual to group decisions requires dynamically accumulating signals among individuals. In striking parallel, the mammalian immune system is also a group of decentralized autonomous units (i.e. cells) which collectively navigate uncertainty with the help of dynamically accumulating signals (i.e. cytokines). Therefore, we apply techniques of understanding swarm behavior to a decision-making problem in the mammalian immune system, namely effector choice among CD4+ T helper (Th) cells. We find that incorporating dynamic cytokine signaling into a simple model of Th differentiation comprehensively explains divergent observations of this process. The plasticity and heterogeneity of individual Th cells, the tunable mixtures of effector types that can be generated in vitro, and the polarized yet updateable group effector commitment often observed in vivo are all explained by the same set of underlying molecular rules. These rules reveal that Th cells harness dynamic cytokine signaling to implement a system of quorum sensing. Quorum sensing, in turn, may confer adaptive advantages on the mammalian immune system, especially during coinfection and during coevolution with manipulative parasites. This highlights a new way of understanding the mammalian immune system as a cellular swarm, and it underscores the power of collectives throughout nature.
Collapse
Affiliation(s)
- Edward C. Schrom
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
21
|
Miller WB, Baluška F, Torday JS. Cellular senomic measurements in Cognition-Based Evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 156:20-33. [PMID: 32738355 DOI: 10.1016/j.pbiomolbio.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/20/2020] [Accepted: 07/04/2020] [Indexed: 12/27/2022]
Abstract
All living entities are cognitive and dependent on ambiguous information. Any assessment of that imprecision is necessarily a measuring function. Individual cells measure information to sustain self-referential homeostatic equipoise (self-identity) in juxtaposition to the external environment. The validity of that information is improved by its collective assessment. The reception of cellular information obliges thermodynamic reactions that initiate a self-reinforcing work channel. This expresses as natural cellular engineering and niche constructions which become the complex interrelated tissue ecologies of holobionts. Multicellularity is collaborative cellular information management directed towards the optimization of information quality through its collective measured assessment. Biology and its evolution can now be re-framed as the continuous process of self-referential cellular measurement in the perpetual defense of individual cellular self-identities through the collective form.
Collapse
Affiliation(s)
| | | | - John S Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, USA.
| |
Collapse
|
22
|
Wang X, Tian L, Ren Y, Zhao Z, Du H, Zhang Z, Drinkwater BW, Mann S, Han X. Chemical Information Exchange in Organized Protocells and Natural Cell Assemblies with Controllable Spatial Positions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906394. [PMID: 32105404 DOI: 10.1002/smll.201906394] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/12/2020] [Indexed: 06/10/2023]
Abstract
An ultrasound-based platform is established to prepare homogenous arrays of giant unilamellar vesicles (GUVs) or red blood cell (RBCs), or hybrid assemblies of GUV/RBCs. Due to different responses to the modulation of the acoustic standing wave pressure field between the GUVs and RBCs, various types of protocell/natural cell hybrid assemblies are prepared with the ability to undergo reversible dynamic reconfigurations from vertical to horizontal alignments, or from 1D to 2D arrangements. A two-step enzymatic cascade reaction between transmitter glucose oxidase-containing GUVs and peroxidase-active receiver RBCs is used to implement chemical signal transduction in the different hybrid micro-arrays. Taken together, the obtained results suggest that the ultrasound-based micro-array technology can be used as an alternative platform to explore chemical communication pathways between protocells and natural cells, providing new opportunities for bottom-up synthetic biology.
Collapse
Affiliation(s)
- Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liangfei Tian
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhongyang Zhao
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hang Du
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shandong Province, Weihai, 264209, China
| | - Zhizhou Zhang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Marine Antifouling Engineering Technology Center of Shandong Province, Weihai, 264209, China
| | - Bruce W Drinkwater
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
23
|
Wang Y, Rattray JB, Thomas SA, Gurney J, Brown SP. In silico bacteria evolve robust cooperaion via complex quorum-sensing strategies. Sci Rep 2020; 10:8628. [PMID: 32451396 PMCID: PMC7248119 DOI: 10.1038/s41598-020-65076-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Many species of bacteria collectively sense and respond to their social and physical environment via 'quorum sensing' (QS), a communication system controlling extracellular cooperative traits. Despite detailed understanding of the mechanisms of signal production and response, there remains considerable debate over the functional role(s) of QS: in short, what is it for? Experimental studies have found support for diverse functional roles: density sensing, mass-transfer sensing, genotype sensing, etc. While consistent with theory, these results cannot separate whether these functions were drivers of QS adaption, or simply artifacts or 'spandrels' of systems shaped by distinct ecological pressures. The challenge of separating spandrels from drivers of adaptation is particularly hard to address using extant bacterial species with poorly understood current ecologies (let alone their ecological histories). To understand the relationship between defined ecological challenges and trajectories of QS evolution, we used an agent-based simulation modeling approach. Given genetic mixing, our simulations produce behaviors that recapitulate features of diverse microbial QS systems, including coercive (high signal/low response) and generalized reciprocity (signal auto-regulation) strategists - that separately and in combination contribute to QS-dependent resilience of QS-controlled cooperation in the face of diverse cheats. We contrast our in silico results given defined ecological challenges with bacterial QS architectures that have evolved under largely unknown ecological contexts, highlighting the critical role of genetic constraints in shaping the shorter term (experimental evolution) dynamics of QS. More broadly, we see experimental evolution of digital organisms as a complementary tool in the search to understand the emergence of complex QS architectures and functions.
Collapse
Affiliation(s)
- Yifei Wang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
- The Institute for Data Engineering and Science (IDEaS), Georgia Institute of Technology, Atlanta, 30332 GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
| | - Jennifer B Rattray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Stephen A Thomas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Graduate Program in Quantitative Biosciences (QBioS), Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - James Gurney
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA
| | - Sam P Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, 30332 GA, USA.
| |
Collapse
|
24
|
Fang K, Park OJ, Hong SH. Controlling biofilms using synthetic biology approaches. Biotechnol Adv 2020; 40:107518. [PMID: 31953206 PMCID: PMC7125041 DOI: 10.1016/j.biotechadv.2020.107518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022]
Abstract
Bacterial biofilms are formed by the complex but ordered regulation of intra- or inter-cellular communication, environmentally responsive gene expression, and secretion of extracellular polymeric substances. Given the robust nature of biofilms due to the non-growing nature of biofilm bacteria and the physical barrier provided by the extracellular matrix, eradicating biofilms is a very difficult task to accomplish with conventional antibiotic or disinfectant treatments. Synthetic biology holds substantial promise for controlling biofilms by improving and expanding existing biological tools, introducing novel functions to the system, and re-conceptualizing gene regulation. This review summarizes synthetic biology approaches used to eradicate biofilms via protein engineering of biofilm-related enzymes, utilization of synthetic genetic circuits, and the development of functional living agents. Synthetic biology also enables beneficial applications of biofilms through the production of biomaterials and patterning biofilms with specific temporal and spatial structures. Advances in synthetic biology will add novel biofilm functionalities for future therapeutic, biomanufacturing, and environmental applications.
Collapse
Affiliation(s)
- Kuili Fang
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Oh-Jin Park
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA; Department of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, Jilin, People's Republic of China
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
25
|
Pilkiewicz KR, Lemasson BH, Rowland MA, Hein A, Sun J, Berdahl A, Mayo ML, Moehlis J, Porfiri M, Fernández-Juricic E, Garnier S, Bollt EM, Carlson JM, Tarampi MR, Macuga KL, Rossi L, Shen CC. Decoding collective communications using information theory tools. J R Soc Interface 2020; 17:20190563. [PMID: 32183638 PMCID: PMC7115225 DOI: 10.1098/rsif.2019.0563] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/28/2020] [Indexed: 02/03/2023] Open
Abstract
Organisms have evolved sensory mechanisms to extract pertinent information from their environment, enabling them to assess their situation and act accordingly. For social organisms travelling in groups, like the fish in a school or the birds in a flock, sharing information can further improve their situational awareness and reaction times. Data on the benefits and costs of social coordination, however, have largely allowed our understanding of why collective behaviours have evolved to outpace our mechanistic knowledge of how they arise. Recent studies have begun to correct this imbalance through fine-scale analyses of group movement data. One approach that has received renewed attention is the use of information theoretic (IT) tools like mutual information, transfer entropy and causation entropy, which can help identify causal interactions in the type of complex, dynamical patterns often on display when organisms act collectively. Yet, there is a communications gap between studies focused on the ecological constraints and solutions of collective action with those demonstrating the promise of IT tools in this arena. We attempt to bridge this divide through a series of ecologically motivated examples designed to illustrate the benefits and challenges of using IT tools to extract deeper insights into the interaction patterns governing group-level dynamics. We summarize some of the approaches taken thus far to circumvent existing challenges in this area and we conclude with an optimistic, yet cautionary perspective.
Collapse
Affiliation(s)
- K. R. Pilkiewicz
- Environmental Laboratory, U.S. Army Engineer Research and Development Center (EL-ERDC), Vicksburg, MS, USA
| | | | - M. A. Rowland
- Environmental Laboratory, U.S. Army Engineer Research and Development Center (EL-ERDC), Vicksburg, MS, USA
| | - A. Hein
- National Oceanic and Atmospheric Administration, Santa Cruz, CA, USA
- University of California, Santa Cruz, CA, USA
| | - J. Sun
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - A. Berdahl
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - M. L. Mayo
- Environmental Laboratory, U.S. Army Engineer Research and Development Center (EL-ERDC), Vicksburg, MS, USA
| | - J. Moehlis
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - M. Porfiri
- Department of Mechanical and Aerospace Engineering and Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, USA
| | | | - S. Garnier
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, USA
| | - E. M. Bollt
- Department of Mathematics, Clarkson University, Potsdam, NY, USA
| | - J. M. Carlson
- Department of Physics, University of California, Santa Barbara, CA, USA
| | - M. R. Tarampi
- Department of Psychology, University of Hartford, West Hartford, CT, USA
| | - K. L. Macuga
- School of Psychological Science, Oregon State University, Corvallis, OR, USA
| | - L. Rossi
- Department of Mathematical Sciences, University of Delaware, Newark, DE, USA
| | - C.-C. Shen
- Department of Computer and Information Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
26
|
Godoy-Diana R, Vacher J, Raspa V, Thiria B. On the Fluid Dynamical Effects of Synchronization in Side-by-Side Swimmers. Biomimetics (Basel) 2019; 4:biomimetics4040077. [PMID: 31817389 PMCID: PMC6963834 DOI: 10.3390/biomimetics4040077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 11/18/2022] Open
Abstract
In-phase and anti-phase synchronization of neighboring swimmers is examined experimentally using two self-propelled independent flexible foils swimming side-by-side in a water tank. The foils are actuated by pitching oscillations at one extremity—the head of the swimmers—and the flow engendered by their undulations is analyzed using two-dimensional particle image velocimetry in their frontal symmetry plane. Following recent observations on the behavior of real fish, we focus on the comparison between in-phase and anti-phase actuation by fixing all other geometric and kinematic parameters. We show that swimming with a neighbor is beneficial for both synchronizations tested, as compared to swimming alone, with an advantage for the anti-phase synchronization. We show that the advantage of anti-phase synchronization in terms of swimming performance for the two-foil “school” results from the emergence of a periodic coherent jet between the two swimmers.
Collapse
|
27
|
Sivadon P, Barnier C, Urios L, Grimaud R. Biofilm formation as a microbial strategy to assimilate particulate substrates. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:749-764. [PMID: 31342619 DOI: 10.1111/1758-2229.12785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
In most ecosystems, a large part of the organic carbon is not solubilized in the water phase. Rather, it occurs as particles made of aggregated hydrophobic and/or polymeric natural or man-made organic compounds. These particulate substrates are degraded by extracellular digestion/solubilization implemented by heterotrophic bacteria that form biofilms on them. Organic particle-degrading biofilms are widespread and have been observed in aquatic and terrestrial natural ecosystems, in polluted and man-driven environments and in the digestive tracts of animals. They have central ecological functions as they are major players in carbon recycling and pollution removal. The aim of this review is to highlight bacterial adhesion and biofilm formation as central mechanisms to exploit the nutritive potential of organic particles. It focuses on the mechanisms that allow access and assimilation of non-dissolved organic carbon, and considers the advantage provided by biofilms for gaining a net benefit from feeding on particulate substrates. Cooperative and competitive interactions taking place in biofilms feeding on particulate substrates are also discussed.
Collapse
Affiliation(s)
- Pierre Sivadon
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| | - Claudie Barnier
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| | - Laurent Urios
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| | - Régis Grimaud
- CNRS/Université de Pau et des Pays de l'Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux UMR5254, Pau, 64000, France
| |
Collapse
|
28
|
Kindler O, Pulkkinen O, Cherstvy AG, Metzler R. Burst statistics in an early biofilm quorum sensing model: the role of spatial colony-growth heterogeneity. Sci Rep 2019; 9:12077. [PMID: 31427659 PMCID: PMC6700081 DOI: 10.1038/s41598-019-48525-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023] Open
Abstract
Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called “autoinducers”) and themselves sense the autoinducer concentration in their vicinity. Once—due to increased local cell density inside a “cluster” of the growing colony—the concentration of autoinducers exceeds a threshold value, cells in this clusters get “induced” into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology.
Collapse
Affiliation(s)
- Oliver Kindler
- Institute for Physics & Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| | - Otto Pulkkinen
- Institute for Molecular Medicine Finland and Helsinki Institute for Information Technology, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany.
| |
Collapse
|
29
|
Salahshour M. Phase Diagram and Optimal Information Use in a Collective Sensing System. PHYSICAL REVIEW LETTERS 2019; 123:068101. [PMID: 31491131 DOI: 10.1103/physrevlett.123.068101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 06/10/2023]
Abstract
We consider a population of individuals living in an uncertain environment. Individuals are able to make noisy observations of the environment and communicate using signals. We show that the model shows an order-disorder transition from an ordered phase in low communication noise in which a consensus about the environmental state is formed to a disordered phase in high communication noise in which no consensus is formed. There are different consensus states: informed consensus in which consensus on the correct belief about the environmental state is formed, and misinformed consensus in which consensus on a wrong belief is formed. Based on the consensus state reached, the ordered phase is decomposed into multistable states separated by first order transitions. We show that the inference capability of the population in a changing environment is maximized on the edge of bistability: on the border between an informed consensus phase and a bistable phase in which both informed and misinformed consensuses are stable. In addition, we show that an optimal level of noise in communication increases the responsiveness of the population to environmental changes in a resonancelike phenomenon. Furthermore, the beneficial effect of noise is the most crucial in a fast changing environment.
Collapse
Affiliation(s)
- Mohammad Salahshour
- Department of Physics, Sharif University of Technology, P.O. Box 11165-9161, Tehran, Iran
| |
Collapse
|
30
|
Ben Said M, Ben Saad M, Achouri F, Bousselmi L, Ghrabi A. Detection of active pathogenic bacteria under stress conditions using lytic and specific phage. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:282-289. [PMID: 31537764 DOI: 10.2166/wst.2019.271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we have monitored the potential activity of a foodborne and waterborne pathogenic bacterium, Salmonella typhi, under starvation conditions. The interaction between lytic phage and starved-VBNC pathogenic bacteria was studied to establish reliable methods for the detection of active cells before resuscitation. The analysis of phage kinetic parameters has demonstrated the flexibility of lytic with the quantity and mainly the quality of host cells. After 2 h of phage-starved-VBNC bacteria interaction, the reduction of phage amplification rate can reveal the ability of specific-lytic phage to recognize and to attach to their host cells with a probability of burst and release of infectious phages by active bacteria. After an extension of the latent period, the boost of the phage amplification rate was directly related to the positive interaction between potential intracellular 'engaged' phages and potential active bacteria. Furthermore, the modeling of the Salmonella-specific phage growth cycle in relationship with starved host cells can highlight the impact of the viability and the activity state of the host cells on the phage's growth cycle.
Collapse
Affiliation(s)
- Myriam Ben Said
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| | - Marwa Ben Saad
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| | - Faouzi Achouri
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| | - Latifa Bousselmi
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| | - Ahmed Ghrabi
- Wastewater and Environment Laboratory, Center of Researches and Water Technologies of Borj-Cedria Tourist Route of Soliman, Nabeul PO-box N°273, 8020 Soliman, Tunisia E-mail:
| |
Collapse
|
31
|
Seynos-García E, Castañeda-Lucio M, Muñoz-Rojas J, López-Pliego L, Villalobos M, Bustillos-Cristales R, Fuentes-Ramírez LE. Loci Identification of a N-acyl Homoserine Lactone Type Quorum Sensing System and a New LysR-type Transcriptional Regulator Associated with Antimicrobial Activity and Swarming in Burkholderia Gladioli UAPS07070. Open Life Sci 2019; 14:165-178. [PMID: 33817149 PMCID: PMC7874821 DOI: 10.1515/biol-2019-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
A random transposition mutant library of B. gladioli UAPS07070 was analyzed for searching mutants with impaired microbial antagonism. Three derivates showed diminished antimicrobial activity against a sensitive strain. The mutated loci showed high similarity to the quorum sensing genes of the AHL-synthase and its regulator. Another mutant was affected in a gene coding for a LysrR-type transcriptional regulator. The production of toxoflavin, the most well known antimicrobial-molecule and a major virulence factor of plant-pathogenic B. glumae and B. gladioli was explored. The absence of a yellowish pigment related to toxoflavin and the undetectable transcription of toxA in the mutants indicated the participation of the QS system and of the LysR-type transcriptional regulator in the regulation of toxoflavin. Additionally, those genes were found to be related to the swarming phenotype. Lettuce inoculated with the AHL synthase and the lysR mutants showed less severe symptoms. We present evidence of the participation of both, the quorum sensing and for the first time, of a LysR-type transcriptional regulator in antibiosis and swarming phenotype in a strain of B. gladioli
Collapse
Affiliation(s)
- E Seynos-García
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - M Castañeda-Lucio
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - J Muñoz-Rojas
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - L López-Pliego
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - M Villalobos
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Carretera Estatal Sta Inés Tecuexcomac‑Tepetitla, km. 1.5, C.P: 90700 Tepetitla de Lárdizabal, Tlaxcala,Mexico
| | - R Bustillos-Cristales
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - L E Fuentes-Ramírez
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| |
Collapse
|
32
|
Bruce JB, West SA, Griffin AS. Functional amyloids promote retention of public goods in bacteria. Proc Biol Sci 2019; 286:20190709. [PMID: 31138071 DOI: 10.1098/rspb.2019.0709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The growth and virulence of bacteria depends upon a number of factors that are secreted into the environment. These factors can diffuse away from the producing cells, to be either lost or used by cells that do not produce them (cheats). Mechanisms that act to reduce the loss of secreted factors through diffusion are expected to be favoured. One such mechanism may be the production of Fap fibrils, needle-like fibres on the cell surface observed in P. aeruginosa, which can transiently bind several secreted metabolites produced by cells. We test whether Fap fibrils help retain a secreted factor, the iron-scavenging molecule pyoverdine, and hence reduce the potential for exploitation by non-producing, cheating cells. We found that: (i) wild-type cells retain more iron-chelating metabolites than fibril non-producers; (ii) purified Fap fibrils can prevent the loss of the iron-chelators PQS ( Pseudomonas quinolone signal) and pyoverdine; and (iii) pyoverdine non-producers have higher fitness in competition with fibril non-producers than with wild-type cells. Our results suggest that by limiting the loss of a costly public good, Fap fibrils may play an important role in stabilizing cooperative production of secreted factors.
Collapse
Affiliation(s)
- John B Bruce
- Department of Zoology, University of Oxford , Oxford , UK
| | - Stuart A West
- Department of Zoology, University of Oxford , Oxford , UK
| | | |
Collapse
|
33
|
Phase transitions and asymmetry between signal comprehension and production in biological communication. Sci Rep 2019; 9:3428. [PMID: 30837574 PMCID: PMC6401316 DOI: 10.1038/s41598-019-40141-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/11/2019] [Indexed: 01/06/2023] Open
Abstract
We introduce a model for collective information acquisition from the environment, in a biological population. In this model, individuals can make noisy observations of the environment, and communicate their observation by production and comprehension of signals. As the communication noise decreases, the model shows an order-disorder transition from a disordered phase in which no consensus about the environmental state exists to an ordered phase where the population forms a consensus about the environmental state. The ordered phase itself is composed of an informed consensus, in which the correct belief about the environment prevails, and an uninformed consensus phase, in which consensus on a random belief about the environmental state is formed. The probability of reaching informed consensus increases with increasing the observation probability. This phenomenology implies that a maximum noise level, and a minimum observation probability are necessary for informed consensus in a communicating population. Furthermore, we show that the fraction of observant individuals needed for the group to reach informed consensus decreases with increasing population size. This results from a shift in the uninformed-informed transition to smaller observation probabilities by increasing population size. Importantly, we also find that an amount of noise in signal production deteriorates the information flow and the inference capability, more than the same amount of noise in comprehension. This finding implies that there is higher selection pressure to reduce noise in production of signals compared to comprehension. Regarding this asymmetry, we propose an experimental design to separately measure comprehension and production noise in a given population and test the predicted asymmetry.
Collapse
|
34
|
Fan G, Bressloff PC. Modeling the Role of Feedback in the Adaptive Response of Bacterial Quorum Sensing. Bull Math Biol 2019; 81:1479-1505. [PMID: 30693430 DOI: 10.1007/s11538-019-00570-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/15/2019] [Indexed: 10/27/2022]
Abstract
Bacterial quorum sensing (QS) is a form of intercellular communication that relies on the production and detection of diffusive signaling molecules called autoinducers. Such a mechanism allows the bacteria to track their cell density in order to regulate group behavior, such as biofilm formation and bioluminescence. In a number of bacterial QS systems, including V. harveyi, multiple signaling pathways are integrated into a single phosphorylation-dephosphorylation cycle. In this paper, we propose a weight control mechanism, in which QS uses feedback loops to 'decode' the integrated signals by actively changing the sensitivity in different pathways. We first use a slow/fast analysis to reduce a single-cell model to a planar dynamical system involving the concentrations of phosphorylated signaling protein LuxU and a small non-coding RNA. In addition to identifying the weight control mechanism, we show that adding a feedback loop can lead to a bistable QS response in certain parameter regimes. We then combine the slow/fast analysis with a contraction mapping theorem in order to reduce a population model to an effective single-cell model, and show how the weight control mechanism allows bacteria to have a finer discrimination of their social and physical environment.
Collapse
Affiliation(s)
- Gaoyang Fan
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Paul C Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
35
|
Hojo M, Fujii K, Inaba Y, Motoyasu Y, Kawahara Y. Automatically recognizing strategic cooperative behaviors in various situations of a team sport. PLoS One 2018; 13:e0209247. [PMID: 30562367 PMCID: PMC6298668 DOI: 10.1371/journal.pone.0209247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/03/2018] [Indexed: 11/19/2022] Open
Abstract
Understanding multi-agent cooperative behavior is challenging in various scientific and engineering domains. In some cases, such as team sports, many cooperative behaviors can be visually categorized and labeled manually by experts. However, these actions which are manually categorized with the same label based on its function have low spatiotemporal similarity. In other words, it is difficult to find similar and different structures of the motions with the same and different labels, respectively. Here, we propose an automatic recognition system for strategic cooperative plays, which are the minimal, basic, and diverse plays in a ball game. Using player’s moving distance, geometric information, and distances among players, the proposed method accurately discriminated not only the cooperative plays in a primary area, i.e., near the ball, but also those distant from a primary area. We also propose a method to classify more detailed types of cooperative plays in various situations. The proposed framework, which sheds light on inconspicuous players to play important roles, could have a potential to detect well-defined and labeled cooperative behaviors.
Collapse
Affiliation(s)
- Motokazu Hojo
- RIKEN Center for Advanced Intelligence Project, Osaka, Japan
| | - Keisuke Fujii
- RIKEN Center for Advanced Intelligence Project, Osaka, Japan
- * E-mail:
| | - Yuki Inaba
- Japanese Institute of Sports Sciences, Tokyo, Japan
| | | | - Yoshinobu Kawahara
- RIKEN Center for Advanced Intelligence Project, Osaka, Japan
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| |
Collapse
|
36
|
|
37
|
Huang X, Zhu J, Cai Z, Lao Y, Jin H, Yu K, Zhang B, Zhou J. Profiles of quorum sensing (QS)-related sequences in phycospheric microorganisms during a marine dinoflagellate bloom, as determined by a metagenomic approach. Microbiol Res 2018; 217:1-13. [PMID: 30384903 DOI: 10.1016/j.micres.2018.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
The complicated relationships among environmental microorganisms are regulated by quorum sensing (QS). Understanding QS-based signals could shed light on the interactions between microbial communities in certain environments. Although QS characteristics have been widely discussed, few studies have been conducted on the role of QS in phycospheric microorganisms. Here, we used metagenomics to examine the profile of AI-1 (AinS, HdtS, LuxI) and AI-2 (LuxS) autoinducers from a deeply sequenced microbial database, obtained from a complete dinoflagellate bloom. A total of 3001 putative AI-1 homologs and 130 AI-2 homologs were identified. The predominant member among the AI groups was HdtS. The abundance of HdtS, AinS, and LuxS increased as the bloom developed, whereas the abundance of LuxI showed the opposite trend. Phylogenetic analysis suggested that HdtS and LuxI synthase originated mainly from alpha-, beta-, and gamma-Proteobacteria, whereas AinS synthase originated solely from Vibrionales. In comparison to AI-1, the sequences related to AI-2 (LuxS) demonstrated a much wider taxonomic coverage. Some significant correlations were found between dominant species and QS signals. In addition to the QS, we also performed parallel analysis of the quorum quenching (QQ) sequences. In comparison to QS, the relative abundance of QQ signals was lower; however, an obvious frequency correlation was observed. These results suggested that QS and QQ signals co-participate in regulating microbial communities during an algal bloom. These data helped to reveal the characteristic behavior of algal symbiotic bacteria, and facilitated a better understanding of microbial dynamics during an algal bloom event from a chemical ecological perspective.
Collapse
Affiliation(s)
- Xinqing Huang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Yongmin Lao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Hui Jin
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Ke Yu
- The Division of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Boya Zhang
- The Division of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China.
| |
Collapse
|
38
|
Paarporn K, Eksin C, Weitz JS. Information sharing for a coordination game in fluctuating environments. J Theor Biol 2018; 454:376-385. [PMID: 29964065 DOI: 10.1016/j.jtbi.2018.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022]
Abstract
Collective action dilemmas pervade the social and biological sciences - from human decision-making to bacterial quorum sensing. In these scenarios, individuals sense cues from the environment to adopt a suitable phenotype or change in behavior. However, when cues include signals from other individuals, then the appropriate behavior of each individual is linked. Here, we develop a framework to quantify the influence of information sharing on individual behavior in the context of two player coordination games. In this framework, the environment stochastically switches between two states, and the state determines which one of two actions players must coordinate on. Given a stochastically switching environment, we then consider two versions of the game that differ in the way players acquire information. In the first model, players independently sense private environmental cues, but do not communicate with each other. We find there are two types of strategies that emerge as Nash equilibria and fitness maximizers - players prefer to commit to one particular action when private information is poor, or prefer to employ phenotypic plasticity when it is good. The second model adds an additional layer of communication, where players share social cues as well. When the quality of social information is high, we find the socially optimal strategy is a novel "majority logic" strategy that bases decision-making on social cues. Our game-theoretic approach offers a principled way of investigating the role of communication in group decision-making under uncertain conditions.
Collapse
Affiliation(s)
- Keith Paarporn
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Ceyhun Eksin
- Industrial & Systems Engineering Department, Texas A&M University, College Station, TX 77843, United States.
| | - Joshua S Weitz
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
39
|
Castañeda-Tamez P, Ramírez-Peris J, Pérez-Velázquez J, Kuttler C, Jalalimanesh A, Saucedo-Mora MÁ, Jiménez-Cortés JG, Maeda T, González Y, Tomás M, Wood TK, García-Contreras R. Pyocyanin Restricts Social Cheating in Pseudomonas aeruginosa. Front Microbiol 2018; 9:1348. [PMID: 29997585 PMCID: PMC6030374 DOI: 10.3389/fmicb.2018.01348] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/04/2018] [Indexed: 01/23/2023] Open
Abstract
Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, such as exoproteases and siderophores, that are public goods utilized by the whole population of bacteria, regardless of whether they invested or not in their production. These public goods can be used by QS defective mutants for growth, and since these mutants do not contribute to public goods production, they are considered social cheaters. Pyocyanin is a phenazine that is a toxic, QS-controlled metabolite produced by P. aeruginosa. It is a redox-active compound and promotes the generation of reactive oxygen species; it also possesses antibacterial properties and increases fitness in competition with other bacterial species. Since QS-deficient individuals are less able to tolerate oxidative stress, we hypothesized that the pyocyanin produced by the wild-type population could promote selection of functional QS systems in this bacterium. Here, we demonstrate, using competition experiments and mathematical models, that, indeed, pyocyanin increases the fitness of the cooperative QS-proficient individuals and restricts the appearance of social cheaters. In addition, we also show that pyocyanin is able to select QS in other bacteria such as Acinetobacter baumannii.
Collapse
Affiliation(s)
- Paulina Castañeda-Tamez
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jimena Ramírez-Peris
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Institute of Computational Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- Zentrum Mathematik, Technische Universität München, Munich, Germany
| | | | - Ammar Jalalimanesh
- Zentrum Mathematik, Technische Universität München, Munich, Germany
- Iranian Research Institute for Information Science and Technology (IRANDOC), Tehran, Iran
| | - Miguel Á. Saucedo-Mora
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J. Guillermo Jiménez-Cortés
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Yael González
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - María Tomás
- Department of Microbiology, Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, SERGAS, Universidade da Coruña, A Coruña, Spain
| | - Thomas K. Wood
- Department of Chemical Engineering, The Pennsylvania State University, State College, PA, United States
| | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
40
|
Davidson JD, Gordon DM. Spatial organization and interactions of harvester ants during foraging activity. J R Soc Interface 2018; 14:rsif.2017.0413. [PMID: 28978748 DOI: 10.1098/rsif.2017.0413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/11/2017] [Indexed: 11/12/2022] Open
Abstract
Local interactions, when individuals meet, can regulate collective behaviour. In a system without any central control, the rate of interaction may depend simply on how the individuals move around. But interactions could in turn influence movement; individuals might seek out interactions, or their movement in response to interaction could influence further interaction rates. We develop a general framework to address these questions, using collision theory to establish a baseline expected rate of interaction based on proximity. We test the models using data from harvester ant colonies. A colony uses feedback from interactions inside the nest to regulate foraging activity. Potential foragers leave the nest in response to interactions with returning foragers with food. The time series of interactions and local density of ants show how density hotspots lead to interactions that are clustered in time. A correlated random walk null model describes the mixing of potential and returning foragers. A model from collision theory relates walking speed and spatial proximity with the probability of interaction. The results demonstrate that although ants do not mix homogeneously, trends in interaction patterns can be explained simply by the walking speed and local density of surrounding ants.
Collapse
Affiliation(s)
- Jacob D Davidson
- Department of Collective Behavior, Max Planck Institute for Ornithology, Konstanz, Germany .,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
41
|
Bodelón G, Montes-García V, Pérez-Juste J, Pastoriza-Santos I. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Front Cell Infect Microbiol 2018; 8:143. [PMID: 29868499 PMCID: PMC5958199 DOI: 10.3389/fcimb.2018.00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial quorum sensing systems regulate the production of an ample variety of bioactive extracellular compounds that are involved in interspecies microbial interactions and in the interplay between the microbes and their hosts. The development of new approaches for enabling chemical detection of such cellular activities is important in order to gain new insight into their function and biological significance. In recent years, surface-enhanced Raman scattering (SERS) spectroscopy has emerged as an ultrasensitive analytical tool employing rationally designed plasmonic nanostructured substrates. This review highlights recent advances of SERS spectroscopy for label-free detection and imaging of quorum sensing-regulated processes in the human opportunistic pathogen Pseudomonas aeruginosa. We also briefly describe the challenges and limitations of the technique and conclude with a summary of future prospects for the field.
Collapse
Affiliation(s)
- Gustavo Bodelón
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Verónica Montes-García
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Jorge Pérez-Juste
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Isabel Pastoriza-Santos
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| |
Collapse
|
42
|
van Vliet S, Dal Co A, Winkler AR, Spriewald S, Stecher B, Ackermann M. Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions. Cell Syst 2018; 6:496-507.e6. [PMID: 29655705 DOI: 10.1016/j.cels.2018.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/24/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
Gene expression levels in clonal bacterial groups have been found to be spatially correlated. These correlations can partly be explained by the shared lineage history of nearby cells, although they could also arise from local cell-cell interactions. Here, we present a quantitative framework that allows us to disentangle the contributions of lineage history, long-range spatial gradients, and local cell-cell interactions to spatial correlations in gene expression. We study pathways involved in toxin production, SOS stress response, and metabolism in Escherichia coli microcolonies and find for all pathways that shared lineage history is the main cause of spatial correlations in gene expression levels. However, long-range spatial gradients and local cell-cell interactions also contributed to spatial correlations in SOS response, amino acid biosynthesis, and overall metabolic activity. Together, our data show that the phenotype of a cell is influenced by its lineage history and population context, raising the question of whether bacteria can arrange their activities in space to perform functions they cannot achieve alone.
Collapse
Affiliation(s)
- Simon van Vliet
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland; Department of Environmental Microbiology, Eawag, 8600 Dübendorf, Switzerland.
| | - Alma Dal Co
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland; Department of Environmental Microbiology, Eawag, 8600 Dübendorf, Switzerland
| | - Annina R Winkler
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland; Department of Environmental Microbiology, Eawag, 8600 Dübendorf, Switzerland
| | | | - Bärbel Stecher
- Max-von-Pettenkofer Institute, LMU Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), Partner Site LMU Munich, 80336 Munich, Germany
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland; Department of Environmental Microbiology, Eawag, 8600 Dübendorf, Switzerland
| |
Collapse
|
43
|
Waite AJ, Frankel NW, Emonet T. Behavioral Variability and Phenotypic Diversity in Bacterial Chemotaxis. Annu Rev Biophys 2018; 47:595-616. [PMID: 29618219 DOI: 10.1146/annurev-biophys-062215-010954] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Living cells detect and process external signals using signaling pathways that are affected by random fluctuations. These variations cause the behavior of individual cells to fluctuate over time (behavioral variability) and generate phenotypic differences between genetically identical individuals (phenotypic diversity). These two noise sources reduce our ability to predict biological behavior because they diversify cellular responses to identical signals. Here, we review recent experimental and theoretical advances in understanding the mechanistic origin and functional consequences of such variation in Escherichia coli chemotaxis-a well-understood model of signal transduction and behavior. After briefly summarizing the architecture and logic of the chemotaxis system, we discuss determinants of behavior and chemotactic performance of individual cells. Then, we review how cell-to-cell differences in protein abundance map onto differences in individual chemotactic abilities and how phenotypic variability affects the performance of the population. We conclude with open questions to be addressed by future research.
Collapse
Affiliation(s)
- Adam James Waite
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520; .,Current affiliation: Calico Life Sciences, LLC, South San Francisco, California 94080
| | - Nicholas W Frankel
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520; .,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520; .,Department of Physics, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
44
|
Bánsági T, Taylor AF. Switches induced by quorum sensing in a model of enzyme-loaded microparticles. J R Soc Interface 2018. [PMID: 29514986 DOI: 10.1098/rsif.2017.0945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Quorum sensing refers to the ability of bacteria and other single-celled organisms to respond to changes in cell density or number with population-wide changes in behaviour. Here, simulations were performed to investigate quorum sensing in groups of diffusively coupled enzyme microparticles using a well-characterized autocatalytic reaction which raises the pH of the medium: hydrolysis of urea by urease. The enzyme urease is found in both plants and microorganisms, and has been widely exploited in engineering processes. We demonstrate how increases in group size can be used to achieve a sigmoidal switch in pH at high enzyme loading, oscillations in pH at intermediate enzyme loading and a bistable, hysteretic switch at low enzyme loading. Thus, quorum sensing can be exploited to obtain different types of response in the same system, depending on the enzyme concentration. The implications for microorganisms in colonies are discussed, and the results could help in the design of synthetic quorum sensing for biotechnology applications such as drug delivery.
Collapse
Affiliation(s)
- Tamás Bánsági
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Annette F Taylor
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
45
|
Morales E, González-Valdez A, Servín-González L, Soberón-Chávez G. Pseudomonas aeruginosa quorum-sensing response in the absence of functional LasR and LasI proteins: the case of strain 148, a virulent dolphin isolate. FEMS Microbiol Lett 2018; 364:3861964. [PMID: 28591849 DOI: 10.1093/femsle/fnx119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that presents a complex regulatory network called 'quorum-sensing', which is responsible for the transcription of genes coding for several traits implicated in its pathogenicity. Strain 148 is a dolphin isolate that has been shown to produce quorum-sensing-regulated virulence traits and to be virulent in a mouse model, despite the fact that it contains a 20-kbp deletion that eliminates from the chromosome the lasR gene and the lasI promoter. LasR is a key quorum-sensing transcriptional regulator that, when coupled with the autoinducer 3-oxo-dodecanoyl homoserine lactone (3O-C12-HSL) produced by LasI, activates transcription of genes coding for some virulence-associated traits such as elastase, lasI, rhlI and rhlR. RhlR is also a key quorum-sensing transcriptional regulator that, when interacting with the autoinducer butanoyl homoserine lactone (C4-HSL) that is produced by the synthase RhlI, activates the genes involved in the synthesis of some virulence-associated traits, as rhamnolipids and pyocyanin. We describe that in P. aeruginosa 148, the LasR/3O-C12-HSL-independent rhlR transcriptional activation is due to the release of the negative effect of Vfr (a CRP-ortholog) caused by the insertion of an IS element in vfr, and that rhlI transcription is driven from the rhlR promoter, forming the rhlR-I operon.
Collapse
Affiliation(s)
- Estefanía Morales
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D. F. México
| | - Abigail González-Valdez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D. F. México
| | - Luis Servín-González
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D. F. México
| | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México, D. F. México
| |
Collapse
|
46
|
Toward plasmonic monitoring of surface effects on bacterial quorum-sensing. Curr Opin Colloid Interface Sci 2017. [DOI: 10.1016/j.cocis.2017.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Dellus-Gur E, Ram Y, Hadany L. Errors in mutagenesis and the benefit of cell-to-cell signalling in the evolution of stress-induced mutagenesis. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170529. [PMID: 29291054 PMCID: PMC5717628 DOI: 10.1098/rsos.170529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Stress-induced mutagenesis is a widely observed phenomenon. Theoretical models have shown that stress-induced mutagenesis can be favoured by natural selection due to the beneficial mutations it generates. These models, however, assumed an error-free regulation of mutation rate in response to stress. Here, we explore the effects of errors in the regulation of mutagenesis on the evolution of stress-induced mutagenesis, and consider the role of cell-to-cell signalling. Using theoretical models, we show (i) that stress-induced mutagenesis can be disadvantageous if errors are common; and (ii) that cell-to-cell signalling can allow stress-induced mutagenesis to be favoured by selection even when error rates are high. We conclude that cell-to-cell signalling can facilitate the evolution of stress-induced mutagenesis in microbes through second-order selection.
Collapse
|
48
|
Granato ET, Kümmerli R. The path to re-evolve cooperation is constrained in Pseudomonas aeruginosa. BMC Evol Biol 2017; 17:214. [PMID: 28893176 PMCID: PMC5594463 DOI: 10.1186/s12862-017-1060-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/01/2017] [Indexed: 01/26/2023] Open
Abstract
Background A common form of cooperation in bacteria is based on the secretion of beneficial metabolites, shareable as public good among cells within a group. Because cooperation can be exploited by “cheating” mutants, which contribute less or nothing to the public good, there has been great interest in understanding the conditions required for cooperation to remain evolutionarily stable. In contrast, much less is known about whether cheats, once fixed in the population, are able to revert back to cooperation when conditions change. Here, we tackle this question by subjecting experimentally evolved cheats of Pseudomonas aeruginosa, partly deficient for the production of the iron-scavenging public good pyoverdine, to conditions previously shown to favor cooperation. Results Following approximately 200 generations of experimental evolution, we screened 720 evolved clones for changes in their pyoverdine production levels. We found no evidence for the re-evolution of full cooperation, even in environments with increased spatial structure, and reduced costs of public good production – two conditions that have previously been shown to maintain cooperation. In contrast, we observed selection for complete abolishment of pyoverdine production. The patterns of complete trait degradation were likely driven by “cheating on cheats” in unstructured, iron-limited environments where pyoverdine is important for growth, and selection against a maladaptive trait in iron-rich environments where pyoverdine is superfluous. Conclusions Our study shows that the path to re-evolve public-goods cooperation can be constrained. While a limitation of the number of mutational targets potentially leading to reversion might be one reason for the observed pattern, an alternative explanation is that the selective conditions required for revertants to spread from rarity are much more stringent than those needed to maintain cooperation. Electronic supplementary material The online version of this article (10.1186/s12862-017-1060-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa T Granato
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Fan G, Bressloff PC. Population Model of Quorum Sensing with Multiple Parallel Pathways. Bull Math Biol 2017; 79:2599-2626. [PMID: 28887768 DOI: 10.1007/s11538-017-0343-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
Quorum sensing (QS) is a bacterial communication mechanism that uses signal-receptor binding to regulate gene expression based on cell density, resulting in group behaviors such as biofilm formation, bioluminescence and stress response. In certain bacterial species such as Vibrio harveyi, several parallel QS signaling pathways drive a single phosphorylation-dephosphorylation cycle, which in turn regulates QS target genes. In this paper, we investigate the possible role of parallel signaling pathways by developing a mathematical model of QS in V. harveyi at both the single-cell and population levels. First we explore how signal integration may be achieved at the single-cell level, and how different model parameters influence the process. We then consider two examples of signal integration at the population level: a one-population model responding to two environmental cues (cell density and mass transfer), and a two-population model with distinct cell densities. In each case, we use contraction analysis to reduce the population model to an effective single-cell model.
Collapse
Affiliation(s)
- Gaoyang Fan
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Paul C Bressloff
- Department of Mathematics, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
50
|
Saucedo-Mora MA, Castañeda-Tamez P, Cazares A, Pérez-Velázquez J, Hense BA, Cazares D, Figueroa W, Carballo M, Guarneros G, Pérez-Eretza B, Cruz N, Nishiyama Y, Maeda T, Belmont-Díaz JA, Wood TK, García-Contreras R. Selection of Functional Quorum Sensing Systems by Lysogenic Bacteriophages in Pseudomonas aeruginosa. Front Microbiol 2017; 8:1669. [PMID: 28912771 PMCID: PMC5583629 DOI: 10.3389/fmicb.2017.01669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 01/08/2023] Open
Abstract
Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist. Evidence that demonstrates a tight relationship between QS and the susceptibility of bacteria against the attack of lytic phages is increasing; nevertheless, the relationship between temperate phages and QS has been much less explored. Therefore, in this work, we studied the effects of having a functional QS system on the susceptibility to temperate bacteriophages and how this affects the bacterial and phage dynamics. We find that both experimentally and using mathematical models, that the lysogenic bacteriophages D3112 and JBD30 select QS-proficient P. aeruginosa phenotypes as compared to the QS-deficient mutants during competition experiments with mixed strain populations in vitro and in vivo in Galleria mellonella, in spite of the fact that both phages replicate better in the wild-type background. We show that this phenomenon restricts social cheating, and we propose that temperate phages may constitute an important selective pressure toward the conservation of bacterial QS.
Collapse
Affiliation(s)
- Miguel A Saucedo-Mora
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| | - Paulina Castañeda-Tamez
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| | - Adrián Cazares
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Judith Pérez-Velázquez
- Institute of Computational Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)Neuherberg, Germany.,Mathematical Modeling of Biological Systems, Zentrum Mathematik, Technical University of MunichGarching, Germany
| | - Burkhard A Hense
- Institute of Computational Biology, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)Neuherberg, Germany
| | - Daniel Cazares
- Centro de Ciencias Genomicas, National Autonomous University of MexicoCuernavaca, Mexico
| | - Wendy Figueroa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Marco Carballo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Berenice Pérez-Eretza
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| | - Nelby Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexico City, Mexico
| | - Yoshito Nishiyama
- Department of Biological Functions Engineering, Kyushu Institute of TechnologyKitakyushu, Japan
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Kyushu Institute of TechnologyKitakyushu, Japan
| | | | - Thomas K Wood
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkPA, United States
| | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of MexicoMexico City, Mexico
| |
Collapse
|