1
|
Zhong X, Jia G, Yin Z, Cheng K, Rzhetsky A, Li B, Cox NJ. Longitudinal Analysis of Electronic Health Records Reveals Medical Conditions Associated with Subsequent Alzheimer's Disease Development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.22.25324197. [PMID: 40196258 PMCID: PMC11974777 DOI: 10.1101/2025.03.22.25324197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Several health conditions are known to increase the risk of Alzheimer's disease (AD). We aim to systematically identify medical conditions that are associated with subsequent development of AD by leveraging the growing resources of electronic health records (EHRs). Methods This retrospective cohort study used de-identified EHRs from two independent databases (MarketScan and VUMC) with 153 million individuals to identify AD cases and age- and gender-matched controls. By tracking their EHRs over a 10-year window before AD diagnosis and comparing the EHRs between AD cases and controls, we identified medical conditions that occur more likely in those who later develop AD. We further assessed the genetic underpinnings of these conditions in relation to AD genetics using data from two large-scale biobanks (BioVU and UK Biobank, total N=450,000). Results We identified 43,508 AD cases and 419,455 matched controls in MarketScan, and 1,320 AD cases and 12,720 matched controls in VUMC. We detected 406 and 102 medical phenotypes that are significantly enriched among the future AD cases in MarketScan and VUMC databases, respectively. In both EHR databases, mental disorders and neurological disorders emerged as the top two most enriched clinical categories. More than 70 medical phenotypes are replicated in both EHR databases, which are dominated by mental disorders (e.g., depression), neurological disorders (e.g., sleep orders), circulatory system disorders (e.g. cerebral atherosclerosis) and endocrine/metabolic disorders (e.g., type 2 diabetes). We identified 19 phenotypes that are either associated with individual risk variants of AD or a polygenic risk score of AD. Conclusions In this study, analysis of longitudinal EHRs from independent large-scale databases enables robust identification of health conditions associated with subsequent development of AD, highlighting potential opportunities of therapeutics and interventions to reduce AD risk.
Collapse
Affiliation(s)
- Xue Zhong
- Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Gengjie Jia
- Department of Medicine, Institute of Genomics and Systems Biology, University of Chicago, Chicago, IL
| | - Zhijun Yin
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Kerou Cheng
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Andrey Rzhetsky
- Department of Human Genetics, Department of Medicine, University of Chicago, Chicago, IL
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN
| | - Nancy J. Cox
- Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
2
|
Fan Q, Xiao K, A R, Gao LP, Wu YZ, Chen DD, Hu C, Jia XX, Liu CM, Liu X, Chen C, Shi Q, Dong XP. Accumulation of Prion Triggers the Enhanced Glycolysis via Activation of AMKP Pathway in Prion-Infected Rodent and Cell Models. Mol Neurobiol 2024; 61:9810-9834. [PMID: 37726499 DOI: 10.1007/s12035-023-03621-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023]
Abstract
Mitochondrial dysfunction is one of the hallmarks in the pathophysiology of prion disease and other neurodegenerative diseases. Various metabolic dysfunctions are identified and considered to contribute to the progression of some types of neurodegenerative diseases. In this study, we evaluated the status of glycolysis pathway in prion-infected rodent and cell models. The levels of the key enzymes, hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) were significantly increased, accompanying with markedly downregulated mitochondrial complexes. Double-stained IFAs revealed that the increased HK2 and PFK distributed widely in GFAP-, Iba1-, and NeuN-positive cells. We also identified increased levels of AMP-activated protein kinase (AMPK) and the downstream signaling. Changes of AMPK activity in prion-infected cells by the AMPK-specific inhibitor or activator induced the corresponding alterations not only in the downstream signaling, but also the expressions of three key kinases in glycolysis pathway and the mitochondrial complexes. Transient removal or complete clearance of prion propagation in the prion-infected cells partially but significantly reversed the increases of the key enzymes in glycolysis, the upregulation of AMPK signaling pathway, and the decreases of the mitochondrial complexes. Measurements of the cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) showed lower OCR and higher ECAR in prion-infected cell line, which were sufficiently reversed by clearance of prion propagation. Those data indicate a metabolic reprogramming from oxidative phosphorylation to glycolysis in the brains during the progression of prion disease. Accumulation of PrPSc is critical for the switch to glycolysis, largely via activating AMPK pathway.
Collapse
Affiliation(s)
- Qin Fan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ruhan A
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li-Ping Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue-Zhang Wu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dong-Dong Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chao Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao-Xi Jia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chu-Mou Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cao Chen
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Qi Shi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiao-Ping Dong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
- China Academy of Chinese Medical Sciences, Beijing, China.
- Shanghai Institute of Infectious Disease and Biosafety, Shanghai, China.
| |
Collapse
|
3
|
Beard E, Lengacher S, Dias S, Magistretti PJ, Finsterwald C. Astrocytes as Key Regulators of Brain Energy Metabolism: New Therapeutic Perspectives. Front Physiol 2022; 12:825816. [PMID: 35087428 PMCID: PMC8787066 DOI: 10.3389/fphys.2021.825816] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes play key roles in the regulation of brain energy metabolism, which has a major impact on brain functions, including memory, neuroprotection, resistance to oxidative stress and homeostatic tone. Energy demands of the brain are very large, as they continuously account for 20–25% of the whole body’s energy consumption. Energy supply of the brain is tightly linked to neuronal activity, providing the origin of the signals detected by the widely used functional brain imaging techniques such as functional magnetic resonance imaging and positron emission tomography. In particular, neuroenergetic coupling is regulated by astrocytes through glutamate uptake that triggers astrocytic aerobic glycolysis and leads to glucose uptake and lactate release, a mechanism known as the Astrocyte Neuron Lactate Shuttle. Other neurotransmitters such as noradrenaline and Vasoactive Intestinal Peptide mobilize glycogen, the reserve for glucose exclusively localized in astrocytes, also resulting in lactate release. Lactate is then transferred to neurons where it is used, after conversion to pyruvate, as a rapid energy substrate, and also as a signal that modulates neuronal excitability, homeostasis, and the expression of survival and plasticity genes. Importantly, glycolysis in astrocytes and more generally cerebral glucose metabolism progressively deteriorate in aging and age-associated neurodegenerative diseases such as Alzheimer’s disease. This decreased glycolysis actually represents a common feature of several neurological pathologies. Here, we review the critical role of astrocytes in the regulation of brain energy metabolism, and how dysregulation of astrocyte-mediated metabolic pathways is involved in brain hypometabolism. Further, we summarize recent efforts at preclinical and clinical stages to target brain hypometabolism for the development of new therapeutic interventions in age-related neurodegenerative diseases.
Collapse
|
4
|
Sukhorukov VS, Mudzhiri NM, Voronkova AS, Baranich TI, Glinkina VV, Illarioshkin SN. Mitochondrial Disorders in Alzheimer's Disease. BIOCHEMISTRY (MOSCOW) 2021; 86:667-679. [PMID: 34225590 DOI: 10.1134/s0006297921060055] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alzheimer's disease is the most common age-related neurodegenerative disease. Understanding of its etiology and pathogenesis is constantly expanding. Thus, the increasing attention of researchers is directed to the study of the role of mitochondrial disorders. In addition, in recent years, the concept of Alzheimer's disease as a stress-induced disease has begun to form more and more actively. The stress-induced damage to the neuronal system can trigger a vicious circle of pathological processes, among which mitochondrial dysfunctions have a significant place, since mitochondria represent a substantial component in the anti-stress activity of the cell. The study of mitochondrial disorders in Alzheimer's disease is relevant for at least two reasons: first, as important pathogenetic component in this disease; second, due to vital role of mitochondria in formation of the body resistance to various conditions, including stressful ones, throughout the life. This literature review analyzes the results of a number of recent studies assessing potential significance of the mitochondrial disorders in Alzheimer's disease. The probable mechanisms of mitochondrial disorders associated with the development of this disease are considered: bioenergetic dysfunctions, changes in mitochondrial DNA (including assessment of the significance of its haplogroup features), disorders in the dynamics of these organelles, oxidative damage to calcium channels, damage to MAM complexes (membranes associated with mitochondria; mitochondria-associated membranes), disruptions of the mitochondrial quality control system, mitochondrial permeability, etc. The issues of the "primary" or "secondary" mitochondrial damage in Alzheimer's disease are discussed. Potentials for the development of new methods for diagnosis and therapy of mitochondrial disorders in Alzheimer's disease are considered.
Collapse
Affiliation(s)
| | | | | | - Tatiana I Baranich
- Research Center of Neurology, Moscow, 125367, Russia.,Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | - Valeria V Glinkina
- Pirogov Russian National Research Medical University (Pirogov Medical University), Moscow, 117997, Russia
| | | |
Collapse
|
5
|
Pera M, Montesinos J, Larrea D, Agrawal RR, Velasco KR, Stavrovskaya IG, Yun TD, Area-Gomez E. MAM and C99, key players in the pathogenesis of Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:235-278. [PMID: 32739006 DOI: 10.1016/bs.irn.2020.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inter-organelle communication is a rapidly-expanding field that has transformed our understanding of cell biology and pathology. Organelle-organelle contact sites can generate transient functional domains that act as enzymatic hubs involved in the regulation of cellular metabolism and intracellular signaling. One of these hubs is located in areas of the endoplasmic reticulum (ER) connected to mitochondria, called mitochondria-associated ER membranes (MAM). These MAM are transient lipid rafts intimately involved in cholesterol and phospholipid metabolism, calcium homeostasis, and mitochondrial function and dynamics. In addition, γ-secretase-mediated proteolysis of the amyloid precursor protein 99-aa C-terminal fragment (C99) to form amyloid β also occurs at the MAM. Our most recent data indicates that in Alzheimer's disease, increases in uncleaved C99 levels at the MAM provoke the upregulation of MAM-resident functions, resulting in the loss of lipid homeostasis, and mitochondrial dysfunction. Here, we discuss the relevance of these findings in the field, and the contribution of C99 and MAM dysfunction to Alzheimer's disease neuropathology.
Collapse
Affiliation(s)
- Marta Pera
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallés, Barcelona, Spain.
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Rishi R Agrawal
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States
| | - Kevin R Velasco
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Irina G Stavrovskaya
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Taekyung D Yun
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States; Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY, United States.
| |
Collapse
|
6
|
de Bari L, Atlante A, Armeni T, Kalapos MP. Synthesis and metabolism of methylglyoxal, S-D-lactoylglutathione and D-lactate in cancer and Alzheimer's disease. Exploring the crossroad of eternal youth and premature aging. Ageing Res Rev 2019; 53:100915. [PMID: 31173890 DOI: 10.1016/j.arr.2019.100915] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Both cancer and Alzheimer's disease (AD) are emerging as metabolic diseases in which aberrant/dysregulated glucose metabolism and bioenergetics occur, and play a key role in disease progression. Interestingly, an enhancement of glucose uptake, glycolysis and pentose phosphate pathway occurs in both cancer cells and amyloid-β-resistant neurons in the early phase of AD. However, this metabolic shift has its adverse effects. One of them is the increase in methylglyoxal production, a physiological cytotoxic by-product of glucose catabolism. Methylglyoxal is mainly detoxified via cytosolic glyoxalase route comprising glyoxalase 1 and glyoxalase 2 with the production of S-D-lactoylglutathione and D-lactate as intermediate and end-product, respectively. Due to the existence of mitochondrial carriers and intramitochondrial glyoxalase 2 and D-lactate dehydrogenase, the transport and metabolism of both S-D-lactoylglutathione and D-lactate in mitochondria can contribute to methylglyoxal elimination, cellular antioxidant power and energy production. In this review, it is supposed that the different ability of cancer cells and AD neurons to metabolize methylglyoxal, S-D-lactoylglutathione and D-lactate scores cell fate, therefore being at the very crossroad of the "eternal youth" of cancer and the "premature death" of AD neurons. Understanding of these processes would help to elaborate novel metabolism-based therapies for cancer and AD treatment.
Collapse
|
7
|
Affiliation(s)
- Olivia I Okereke
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Mary-Ellen Meadows
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
8
|
Carvalho C, Cardoso SM, Correia SC, Moreira PI. Tortuous Paths of Insulin Signaling and Mitochondria in Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:161-183. [PMID: 31062330 DOI: 10.1007/978-981-13-3540-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Due to the exponential growth of aging population worldwide, neurodegenerative diseases became a major public health concern. Among them, Alzheimer's disease (AD) prevails as the most common in the elderly, rendering it a research priority. After several decades considering the brain as an insulin-insensitive organ, recent advances proved a central role for this hormone in learning and memory processes and showed that AD shares a high number of features with systemic conditions characterized by insulin resistance. Mitochondrial dysfunction has also been widely demonstrated to play a major role in AD development supporting the idea that this neurodegenerative disease is characterized by a pronounced metabolic dysregulation. This chapter is intended to discuss evidence demonstrating the key role of insulin signaling and mitochondrial anomalies in AD.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Susana M Cardoso
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Sónia C Correia
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
9
|
Halikas A, Gibas KJ. AMPK induced memory improvements in the diabetic population: A case study. Diabetes Metab Syndr 2018; 12:1141-1146. [PMID: 29748034 DOI: 10.1016/j.dsx.2018.04.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Diabetics in mid-life carry a 1.5 times higher risk of developing Alzheimer's disease than those diagnosed with diabetes (T2D) later in life [1]. Recent research points to accelerated cognitive decline within a range of 20%-50% for middle-aged diabetics as compared to non-diabetic populations [2,3]. Metabolic syndrome (MetS), a type 2 diabetes (T2D) precursor, is also linked to MCI and AD pathologies via hypo-metabolic brain circuitry that inhibits glucose metabolism and attenuates cognitive function [4]. Dysregulation of intracellular and extracellular signaling as mediated by the mTOR and AMPK pathways is the result. These critical nutrient sensing pathways modulate epigenetic shifts in the genome by channeling fuel substrates either towards mitochondrial fatty acid oxidation (AMPK) or cytosolic glycolysis and substrate level phosphorylation (mTOR) [5]. This case study was designed to examine the link between peripheral insulin resistance and early stage memory loss in a type 2 diabetic male. Reactivating the AMPK pathway via induced and controlled nutritional ketosis combined with high intensity interval training (HIIT) (in order to inhibit mTOR signaling) were primary features of the 10 week intervention. Post intervention results revealed statistically significant reductions in HgA1c, fasting insulin and HOMA-IR (homeostatic model assessment of insulin resistance). Restoring peripheral and hypothalamic insulin sensitivity by way of AMPK activation may restore memory function, improve neuroplasticity, and normalize MetS biomarkers (Demetrius and Driver, 2014; [4,6]).
Collapse
Affiliation(s)
- Alicia Halikas
- Human Bioenergetics & Applied Health Science, Bethel University, Minnesota, USA.
| | - Kelly J Gibas
- Doctorate of Behavioral Health Sciences, Human Bioenergetics & Applied Health Science, Bethel University, Minnesota, USA.
| |
Collapse
|
10
|
Dahlgren K, Gibas KJ. Ketogenic diet, high intensity interval training (HIIT) and memory training in the treatment of mild cognitive impairment: A case study. Diabetes Metab Syndr 2018; 12:819-822. [PMID: 29678606 DOI: 10.1016/j.dsx.2018.04.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/10/2018] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) deaths have increased by 89% since 2000. This alarming trajectory of neurological disease highlights the failure of current best practice. Deteriorating brain fuel supply is the nemesis of intact neurological health. Cerebral hypo-metabolism associated with AD occurs years before onset. Both the ketogenic diet and calorie restriction (fasting) lead to a compensatory rise in ketones to improve energy deficits in the brain derived from cerebral insulin resistance. Two forms of ketone bodies, β-hydroxybutyrate and acetoacetate, fuel the brain during starvation, fasting and strenuous exercise. Ketones are neuroprotective agents that shelter the aging brain from memory loss and neurodegeneration. Induced ketone production has been shown to ameliorate mitochondrial function, reduce the expression of apoptotic and inflammatory mediators and provide neuroprotection to cells (Lange et al., 2017). This case study highlights an innovative research design aimed at attenuating memory decline in a 57 year old female previously diagnosed with comorbid mild cognitive impairment (MCI) and metabolic syndrome (MetS). Mild cognitive impairment is a predementia syndrome known to precede AD (Michaud et al, 2017). The 12-week intervention included ketogenic nutrition protocol, high intensity interval training (HIIT) and memory training using the PEAK brain training app. Memory function was assessed via the MoCA (Montreal Cognitive Assessment) pre/post intervention. Physiological biomarkers for MetS including HOMA-IR(homeostatic model assessment of insulin resistance), triglyceride/HDL ratio, HgA1c, fasting triglycerides and HDL were measured pre/post intervention. MoCA baseline score was 22/30 (MCI); post intervention score: 30/30 (normal). MetS biomarker improvements also reflected statistical significance.
Collapse
Affiliation(s)
- Kaitlyn Dahlgren
- Human Bioenergetics & Applied Health Science, Bethel University, MN, USA.
| | - Kelly J Gibas
- Human Bioenergetics & Applied Health Science, Bethel University, MN, USA.
| |
Collapse
|
11
|
Sen A, Hongpaisan J. Hippocampal microvasculature changes in association with oxidative stress in Alzheimer's disease. Free Radic Biol Med 2018; 120:192-203. [PMID: 29572097 DOI: 10.1016/j.freeradbiomed.2018.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/14/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial dysfunction is a primary phenotype of aging, and microvascular (MV) lesion is mainly associated with Alzheimer's disease (AD). Here we have studied the correlation of MV wall thickness and CA1 pyramidal neuronal pathology in autopsy-confirmed AD brains. Both hyaline (h-MV) and increased cell number (c-MV) associated MV wall thickening was found in age-matched control (AC) hippocampus without significant change in Aβ level (Braak stages 0-III). AC neurons neighboring the h-MV showed lower levels of oxidative DNA/RNA damage and Aβ precursor protein (APP), while the neurons around c-MV showed higher oxidative DNA/RNA damage with increased APP expression. Neurons in AC hippocampus without MV wall thickening (thin wall) showed increased DNA/RNA damage and APP levels compared to AC cases with h-MV and c-MV walls. In the AD hippocampus neurons neighboring h-MV walls showed increased levels of Aβ and decreased number of dendritic spines (at Braak stages IV-VI). C-MV neighboring neurons in the AD cases showed higher levels of DNA/RNA damage with increased APP at stages II - III, followed by lower levels of oxidative DNA/RNA damage, decreased APP and increased Aβ levels with loss of dendritic spines at stages IV-VI. Prolonged treatment of primary human fetal hippocampal neurons with tert-butyl hydroperoxide (TBHP) induced oxidative DNA damage with a sustained increase in APP. Aβ increased rapidly and then decreased overtime. Short-term TBHP treated neurons showed lower levels of superoxide (O2• -) without significant DNA damage. Short-term TBHP treatment induced a gradual decrease in APP but an increase in Aβ levels over time. In conclusion this study indicates that AD hippocampus at Braak stages II-III are characterized by strong oxidative DNA/RNA damage with increased APP in neurons associated with c-MV, while stages IV-VI are characterized by a slow increase in Aβ in neurons neighboring both h-MV and c-MV.
Collapse
Affiliation(s)
- Abhik Sen
- Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, 26505, USA
| | - Jarin Hongpaisan
- Center for Neurodegenerative Diseases, Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
12
|
A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease. Cell Death Dis 2018; 9:335. [PMID: 29491396 PMCID: PMC5832428 DOI: 10.1038/s41419-017-0215-0] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
In the last few years, increased emphasis has been devoted to understanding the contribution of mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) to human pathology in general, and neurodegenerative diseases in particular. A major reason for this is the central role that this subdomain of the ER plays in metabolic regulation and in mitochondrial biology. As such, aberrant MAM function may help explain the seemingly unrelated metabolic abnormalities often seen in neurodegeneration. In the specific case of Alzheimer disease (AD), besides perturbations in calcium and lipid homeostasis, there are numerous documented alterations in mitochondrial behavior and function, including reduced respiratory chain activity and oxidative phosphorylation, increased free radical production, and altered organellar morphology, dynamics, and positioning (especially perinuclear mitochondria). However, whether these alterations are primary events causative of the disease, or are secondary downstream events that are the result of some other, more fundamental problem, is still unclear. In support of the former possibility, we recently reported that C99, the C-terminal processing product of the amyloid precursor protein (APP) derived from its cleavage by β-secretase, is present in MAM, that its level is increased in AD, and that this increase reduces mitochondrial respiration, likely via a C99-induced alteration in cellular sphingolipid homeostasis. Thus, the metabolic disturbances seen in AD likely arise from increased ER-mitochondrial communication that is driven by an increase in the levels of C99 at the MAM.
Collapse
|
13
|
Ettcheto M, Petrov D, Pedrós I, Alva N, Carbonell T, Beas-Zarate C, Pallas M, Auladell C, Folch J, Camins A. Evaluation of Neuropathological Effects of a High-Fat Diet in a Presymptomatic Alzheimer's Disease Stage in APP/PS1 Mice. J Alzheimers Dis 2018; 54:233-51. [PMID: 27567882 DOI: 10.3233/jad-160150] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is currently an incurable aging-related neurodegenerative disorder. Recent studies give support to the hypotheses that AD should be considered as a metabolic disease. The present study aimed to explore the relationship between hippocampal neuropathological amyloid-β (Aβ) plaque formation and obesity at an early presymptomatic disease stage (3 months of age). For this purpose, we used APPswe/PS1dE9 (APP/PS1) transgenic mice, fed with a high-fat diet (HFD) in order to investigate the potential molecular mechanisms involved in both disorders. The results showed that the hippocampus from APP/PS1 mice fed with a HFD had an early significant decrease in Aβ signaling pathway specifically in the insulin degrading enzyme protein levels, an enzyme involved in (Aβ) metabolism, and α-secretase. These changes were accompanied by a significant increase in the occurrence of plaques in the hippocampus of these mice. Furthermore, APP/PS1 mice showed a significant hippocampal decrease in PGC-1α levels, a cofactor involved in mitochondrial biogenesis. However, HFD does not provoke changes in neither insulin receptors gene expression nor enzymes involved in the signaling pathway. Moreover, there are no changes in any enzymes (kinases) involved in tau phosphorylation, such as CDK5, and neither in brain oxidative stress production. These results suggest that early changes in brains of APP/PS1 mice fed with a HFD are mediated by an increase in Aβ1 ‒ 42, which induces a decrease in PKA levels and alterations in the p-CREB/ NMDA2B /PGC1-α pathway, favoring early AD neuropathology in mice.
Collapse
Affiliation(s)
- Miren Ettcheto
- Unitat de Farmacologia i Farmacognòsia, Institut de Neurociencias, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Dmitry Petrov
- Unitat de Farmacologia i Farmacognòsia, Institut de Neurociencias, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ignacio Pedrós
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus (Tarragona), Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Norma Alva
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Teresa Carbonell
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Laboratorio de Neurobiología Celular y Molecular, División de Neurociencias, CIBO, IMSS, México.,Laboratorio de Regeneración y Desarrollo Neural, Instituto de Neurobiología, Departamento de Biología Celular y Molecular, CUCBA, México
| | - Merce Pallas
- Unitat de Farmacologia i Farmacognòsia, Institut de Neurociencias, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carme Auladell
- Departament de Biologia Cellular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Folch
- Unitats de Bioquímica i Farmacologia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Reus (Tarragona), Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Antoni Camins
- Unitat de Farmacologia i Farmacognòsia, Institut de Neurociencias, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain.,Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
14
|
Houck AL, Seddighi S, Driver JA. At the Crossroads Between Neurodegeneration and Cancer: A Review of Overlapping Biology and Its Implications. Curr Aging Sci 2018; 11:77-89. [PMID: 29552989 PMCID: PMC6519136 DOI: 10.2174/1874609811666180223154436] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND A growing body of epidemiologic evidence suggests that neurodegenerative diseases occur less frequently in cancer survivors, and vice versa. While unusual, this inverse comorbidity is biologically plausible and could be explained, in part, by the evolutionary tradeoffs made by neurons and cycling cells to optimize the performance of their very different functions. The two cell types utilize the same proteins and pathways in different, and sometimes opposite, ways. However, cancer and neurodegeneration also share many pathophysiological features. OBJECTIVE In this review, we compare three overlapping aspects of neurodegeneration and cancer. METHOD First, we contrast the priorities and tradeoffs of dividing cells and neurons and how these manifest in disease. Second, we consider the hallmarks of biological aging that underlie both neurodegeneration and cancer. Finally, we utilize information from genetic databases to outline specific genes and pathways common to both diseases. CONCLUSION We argue that a detailed understanding of the biologic and genetic relationships between cancer and neurodegeneration can guide future efforts in designing disease-modifying therapeutic interventions. Lastly, strategies that target aging may prevent or delay both conditions.
Collapse
Affiliation(s)
- Alexander L. Houck
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sahba Seddighi
- Clinical and Translational Neuroscience Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA
| | - Jane A. Driver
- Geriatric Research Education and Clinical Center, VA Boston Healthcare System and the Division of Aging, Department of Medicine, Brigham and Women ‘s Hospital, Harvard Medical School (J.A.D.), Boston, MA, USA
| |
Collapse
|
15
|
Li M, Dong Y, Yu X, Li Y, Zou Y, Zheng Y, He Z, Liu Z, Quan J, Bu X, Wu H. Synthesis and Evaluation of Diphenyl Conjugated Imidazole Derivatives as Potential Glutaminyl Cyclase Inhibitors for Treatment of Alzheimer's Disease. J Med Chem 2017; 60:6664-6677. [PMID: 28700245 DOI: 10.1021/acs.jmedchem.7b00648] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High expression of glutaminyl cyclase (QC) contributes to the initiation of Alzheimer's disease (AD) by catalyzing the generation of neurotoxic pyroglutamate (pE)-modified β-amyloid (Aβ) peptides. Preventing the generation of pE-Aβs by QC inhibition has been suggested as a novel approach to a disease-modifying therapy for AD. In this work, a series of diphenyl conjugated imidazole derivatives (DPCIs) was rationally designed and synthesized. Analogues with this scaffold exhibited potent inhibitory activity against human QC (hQC) and good in vitro blood-brain barrier (BBB) permeability. Further assessments corroborated that the selected hQC inhibitor 28 inhibits the activity of hQC, dramatically reduces the generation of pE-Aβs in cultured cells and in vivo, and improves the behavior of AD mice.
Collapse
Affiliation(s)
- Manman Li
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yao Dong
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Xi Yu
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yue Li
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Yongdong Zou
- College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Yizhi Zheng
- College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China
| | - Zhendan He
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Zhigang Liu
- School of Medicine, Shenzhen University , Shenzhen 518060, China
| | - Junmin Quan
- Key Laboratory of Structural Biology, School of Chemical Biology & Biotechnology, Peking University, Shenzhen Graduate School , Shenzhen 518055, China
| | - Xianzhang Bu
- School of Pharmaceutical Science, Sun Yat-sen University , Guangzhou, 510006, China
| | - Haiqiang Wu
- Department of Pharmacy, School of Medicine, Shenzhen University , Shenzhen 518060, China.,College of Life Sciences and Oceanography, Shenzhen University , Shenzhen 518060, China.,Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
16
|
Atlante A, de Bari L, Bobba A, Amadoro G. A disease with a sweet tooth: exploring the Warburg effect in Alzheimer's disease. Biogerontology 2017; 18:301-319. [PMID: 28314935 DOI: 10.1007/s10522-017-9692-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
After more than 80 years from the revolutionary discoveries of Otto Warburg, who observed high glucose dependency, with increased glycolysis and lactate production regardless of oxygen availability in most cancer cells, the 'Warburg effect' returns to the fore in neuronal cells affected by Alzheimer's disease (AD). Indeed, it seems that, in the mild phase of AD, neuronal cells "prefer" to use the energetically inefficient method of burning glucose by glycolysis, as in cancer, proving to become resistant to β-amyloid (Aβ)-dependent apoptosis. However, in the late phase, while most AD brain cells die in response to Aβ toxicity, only small populations of neurons, exhibiting increased glucose uptake and glycolytic flux, are able to survive as they are resistant to Aβ. Here we draw an overview on the metabolic shift for glucose utilization from oxidative phosphorylation to glycolysis, focusing on the hypothesis that, as extreme attempt to oppose the impending death, mitochondria-whose dysfunction and central role in Aβ toxicity is an AD hallmark-are sent into quiescence, this likely contributing to activate mechanisms of resistance to Aβ-dependent apoptosis. Finally, the attempt turns out fruitless since the loss of the adaptive advantage afforded by elevated aerobic glycolysis exacerbates the pathophysiological processes associated with AD, making the brain susceptible to Aβ-induced neurotoxicity and leading to cell death and dementia. The understanding of how certain nerve cells become resistant to Aβ toxicity, while the majority dies, is an attractive challenge toward the identification of novel possible targets for AD therapy.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via G. Amendola 165/A, 70126, Bari, Italy.
| | - Lidia de Bari
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via G. Amendola 165/A, 70126, Bari, Italy
| | - Antonella Bobba
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council (CNR), Via G. Amendola 165/A, 70126, Bari, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133, Rome, Italy
| |
Collapse
|
17
|
Bernardo TC, Marques-Aleixo I, Beleza J, Oliveira PJ, Ascensão A, Magalhães J. Physical Exercise and Brain Mitochondrial Fitness: The Possible Role Against Alzheimer's Disease. Brain Pathol 2016; 26:648-63. [PMID: 27328058 PMCID: PMC8029062 DOI: 10.1111/bpa.12403] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
Exercise is one of the most effective strategies to maintain a healthy body and mind, with particular beneficial effects of exercise on promoting brain plasticity, increasing cognition and reducing the risk of cognitive decline and dementia in later life. Moreover, the beneficial effects resulting from increased physical activity occur at different levels of cellular organization, mitochondria being preferential target organelles. The relevance of this review article relies on the need to integrate the current knowledge of proposed mechanisms, focus mitochondria, to explain the protective effects of exercise that might underlie neuroplasticity and seeks to synthesize these data in the context of exploring exercise as a feasible intervention to delay cognitive impairment associated with neurodegenerative conditions, particularly Alzheimer disease.
Collapse
Affiliation(s)
- T C Bernardo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal.
| | - I Marques-Aleixo
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Beleza
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - P J Oliveira
- CNC-Centre for Neuroscience and Cell Biology, UC-Biotech, Biocant Park, University of Coimbra, Coimbra, Portugal
| | - A Ascensão
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| | - J Magalhães
- CIAFEL-Research Centre in Physical Activity, , Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Grimm A, Friedland K, Eckert A. Mitochondrial dysfunction: the missing link between aging and sporadic Alzheimer's disease. Biogerontology 2015; 17:281-96. [PMID: 26468143 DOI: 10.1007/s10522-015-9618-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/09/2015] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that represents the most common form of dementia among the elderly. Despite the fact that AD was studied for decades, the underlying mechanisms that trigger this neuropathology remain unresolved. Since the onset of cognitive deficits occurs generally within the 6th decade of life, except in rare familial case, advancing age is the greatest known risk factor for AD. To unravel the pathogenesis of the disease, numerous studies use cellular and animal models based on genetic mutations found in rare early onset familial AD (FAD) cases that represent less than 1 % of AD patients. However, the underlying process that leads to FAD appears to be distinct from that which results in late-onset AD. As a genetic disorder, FAD clearly is a consequence of malfunctioning/mutated genes, while late-onset AD is more likely due to a gradual accumulation of age-related malfunction. Normal aging and AD are both marked by defects in brain metabolism and increased oxidative stress, albeit to varying degrees. Mitochondria are involved in these two phenomena by controlling cellular bioenergetics and redox homeostasis. In the present review, we compare the common features observed in both brain aging and AD, placing mitochondrial in the center of pathological events that separate normal and pathological aging. We emphasize a bioenergetic model for AD including the inverse Warburg hypothesis which postulates that AD is a consequence of mitochondrial deregulation leading to metabolic reprogramming as an initial attempt to maintain neuronal integrity. After the failure of this compensatory mechanism, bioenergetic deficits may lead to neuronal death and dementia. Thus, mitochondrial dysfunction may represent the missing link between aging and sporadic AD, and represent attractive targets against neurodegeneration.
Collapse
Affiliation(s)
- Amandine Grimm
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland
- Psychiatric University Clinics, University of Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland
| | - Kristina Friedland
- Department of Molecular and Clinical Pharmacy, University of Erlangen, Cauerstraße 4, 91058, Erlangen, Germany
| | - Anne Eckert
- Neurobiology Laboratory for Brain Aging and Mental Health, Transfaculty Research Platform, Molecular & Cognitive Neuroscience, University of Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland.
- Psychiatric University Clinics, University of Basel, Wilhelm Klein-Str. 27, 4012, Basel, Switzerland.
| |
Collapse
|
19
|
Crespi BJ, Go MC. Diametrical diseases reflect evolutionary-genetic tradeoffs: Evidence from psychiatry, neurology, rheumatology, oncology and immunology. Evol Med Public Health 2015; 2015:216-53. [PMID: 26354001 PMCID: PMC4600345 DOI: 10.1093/emph/eov021] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Tradeoffs centrally mediate the expression of human adaptations. We propose that tradeoffs also influence the prevalence and forms of human maladaptation manifest in disease. By this logic, increased risk for one set of diseases commonly engenders decreased risk for another, diametric, set of diseases. We describe evidence for such diametric sets of diseases from epidemiological, genetic and molecular studies in four clinical domains: (i) psychiatry (autism vs psychotic-affective conditions), (ii) rheumatology (osteoarthritis vs osteoporosis), (iii) oncology and neurology (cancer vs neurodegenerative disorders) and (iv) immunology (autoimmunity vs infectious disease). Diametric disorders are important to recognize because genotypes or environmental factors that increase risk for one set of disorders protect from opposite disorders, thereby providing novel and direct insights into disease causes, prevention and therapy. Ascertaining the mechanisms that underlie disease-related tradeoffs should also indicate means of circumventing or alleviating them, and thus reducing the incidence and impacts of human disease in a more general way.
Collapse
Affiliation(s)
| | - Matthew C Go
- Department of Biological Sciences; Department of Archaeology, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6 Present address: Department of Anthropology, University of Illinois at Urbana-Champaign, 109 Davenport Hall, 607 S Mathews Avenue, Urbana, IL 61801, USA
| |
Collapse
|