1
|
Nuytten M, Leprince A, Goulet A, Mahillon J. Deciphering the adsorption machinery of Deep-Blue and Vp4, two myophages targeting members of the Bacillus cereus group. J Virol 2024; 98:e0074524. [PMID: 39177355 PMCID: PMC11406892 DOI: 10.1128/jvi.00745-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
In tailed phages, the baseplate is the macromolecular structure located at the tail distal part, which is directly implicated in host recognition and cell wall penetration. In myophages (i.e., with contractile tails), the baseplate is complex and comprises a central puncturing device and baseplate wedges connecting the hub to the receptor-binding proteins (RBPs). In this work, we investigated the structures and functions of adsorption-associated tail proteins of Deep-Blue and Vp4, two Herelleviridae phages infecting members of the Bacillus cereus group. Their interest resides in their different host spectrum despite a high degree of similarity. Analysis of their tail module revealed that the gene order is similar to that of the Listeria phage A511. Among their tail proteins, Gp185 (Deep-Blue) and Gp112 (Vp4) had no structural homolog, but the C-terminal variable parts of these proteins were able to bind B. cereus strains, confirming their implication in the phage adsorption. Interestingly, Vp4 and Deep-Blue adsorption to their hosts was also shown to require polysaccharides, which are likely to be bound by the arsenal of carbohydrate-binding modules (CBMs) of these phages' baseplates, suggesting that the adsorption does not rely solely on the RBPs. In particular, the BW Gp119 (Vp4), harboring a CBM fold, was shown to effectively bind to bacterial cells. Finally, we also showed that the putative baseplate hub proteins (i.e., Deep-Blue Gp189 and Vp4 Gp110) have a bacteriolytic activity against B. cereus strains, which supports their role as ectolysins locally degrading the peptidoglycan to facilitate genome injection. IMPORTANCE The Bacillus cereus group comprises closely related species, including some with pathogenic potential (e.g., Bacillus anthracis and Bacillus cytotoxicus). Their toxins represent the most frequently reported cause of food poisoning outbreaks at the European level. Bacteriophage research is undergoing a remarkable renaissance for its potential in the biocontrol and detection of such pathogens. As the primary site of phage-bacteria interactions and a prerequisite for successful phage infection, adsorption is a crucial process that needs further investigation. The current knowledge about B. cereus phage adsorption is currently limited to siphoviruses and tectiviruses. Here, we present the first insights into the adsorption process of Herelleviridae Vp4 and Deep-Blue myophages preying on B. cereus hosts, highlighting the importance of polysaccharide moieties in this process and confirming the binding to the host surface of Deep-Blue Gp185 and Vp4 Gp112 receptor-binding proteins and Gp119 baseplate wedge.
Collapse
Affiliation(s)
- Manon Nuytten
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Audrey Leprince
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Adeline Goulet
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), CNRS and Aix-Marseille Université UMR7255, Marseille, France
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Carter L, Huang MCJ, Han K, Gangiredla J, Yee J, Chase HR, Negrete F, Tall BD. Characterization and Genetic Diversity of Bacillus cereus Strains Isolated from Baby Wipes. Microorganisms 2022; 10:microorganisms10091779. [PMID: 36144383 PMCID: PMC9502454 DOI: 10.3390/microorganisms10091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
Bacillus cereus, a ubiquitous environmental microorganism known to cause foodborne illness, was isolated from samples taken from imported baby wipes from two different countries. These strains were characterized using a comprehensive molecular approach involving endpoint PCR, whole genome sequencing (WGS), comparative genomics, and biochemical analyses. A multiplex endpoint PCR assay was used to identify the enterotoxins: hemolysin BL, nonhemolytic enterotoxin, cytotoxin K, and enterotoxin FM toxin genes. Phylogenetically, the strains clustered into two major groups according to sequence type (ST) and singleton. We used the Center for Food Safety and Applied Nutrition (CFSAN) GalaxyTrakr BTyper computational tool to characterize the strains further. As an additional means of characterization, we investigated the possible role of carbohydrate transport systems and their role in nutrient uptake by performing a BLAST analysis of the 40 B. cereus genomes recovered from baby wipes. This study outlines a multifaceted workflow that uses the analysis of enterotoxigenic potential, bioinformatics, genomic diversity, genotype, phenotype, and carbohydrate utilization as a comprehensive strategy to characterize these B. cereus strains isolated from baby wipes and further our understanding of the phylogenetic relatedness of strains associated with baby wipe production facilities that could potentially pose an infection risk to a vulnerable infant population.
Collapse
Affiliation(s)
- Laurenda Carter
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
- Correspondence:
| | - Mei-Chiung J. Huang
- Office of Cosmetics and Color, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Kyuyoung Han
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jayanthi Gangiredla
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jenny Yee
- Office of Regulatory Affairs, San Francisco Laboratory, U.S. Food and Drug Administration, Alameda, CA 94502, USA
| | - Hannah R. Chase
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Flavia Negrete
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Ben D. Tall
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
3
|
Andryukov BG, Karpenko AA, Lyapun IN. Learning from Nature: Bacterial Spores as a Target for Current Technologies in Medicine (Review). Sovrem Tekhnologii Med 2021; 12:105-122. [PMID: 34795986 PMCID: PMC8596247 DOI: 10.17691/stm2020.12.3.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Indexed: 01/05/2023] Open
Abstract
The capability of some representatives of Clostridium spp. and Bacillus spp. genera to form spores in extreme external conditions long ago became a subject of medico-biological investigations. Bacterial spores represent dormant cellular forms of gram-positive bacteria possessing a high potential of stability and the capability to endure extreme conditions of their habitat. Owing to these properties, bacterial spores are recognized as the most stable systems on the planet, and spore-forming microorganisms became widely spread in various ecosystems. Spore-forming bacteria have been attracted increased interest for years due to their epidemiological danger. Bacterial spores may be in the quiescent state for dozens or hundreds of years but after they appear in the favorable conditions of a human or animal organism, they turn into vegetative forms causing an infectious process. The greatest threat among the pathogenic spore-forming bacteria is posed by the causative agents of anthrax (B. anthracis), food toxicoinfection (B. cereus), pseudomembranous colitis (C. difficile), botulism (C. botulinum), gas gangrene (C. perfringens). For the effective prevention of severe infectious diseases first of all it is necessary to study the molecular structure of bacterial spores and the biochemical mechanisms of sporulation and to develop innovative methods of detection and disinfection of dormant cells. There is another side of the problem: the necessity to investigate exo- and endospores from the standpoint of obtaining similar artificially synthesized models in order to use them in the latest medical technologies for the development of thermostable vaccines, delivery of biologically active substances to the tissues and intracellular structures. In recent years, bacterial spores have become an interesting object for the exploration from the point of view of a new paradigm of unicellular microbiology in order to study microbial heterogeneity by means of the modern analytical tools.
Collapse
Affiliation(s)
- B G Andryukov
- Leading Researcher, Laboratory of Molecular Microbiology; G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia; Professor, Department of Fundamental Sciences; Far Eastern Federal University, 10 Village Ayaks, Island Russkiy, Vladivostok, 690922, Russia
| | - A A Karpenko
- Senior Researcher, Laboratory of Cell Biophysics; A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevskogo St., Vladivostok, 690041, Russia
| | - I N Lyapun
- Researcher, Laboratory of Molecular Microbiology G.P. Somov Institute of Epidemiology and Microbiology, 1 Selskaya St., Vladivostok, 690087, Russia
| |
Collapse
|
4
|
Laskowski D, Strzelecki J, Dahm H, Balter A. Adhesion heterogeneity of individual bacterial cells in an axenic culture studied by atomic force microscopy. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:668-674. [PMID: 34060237 DOI: 10.1111/1758-2229.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The evaluation of bacterial adhesive properties at a single-cell level is critical for under standing the role of phenotypic heterogeneity in bacterial attachment and community formation. Bacterial population exhibits a wide variety of adhesive properties at the single-cell level, suggesting that bacterial adhesion is a rather complex process and some bacteria are prone to phenotypic heterogeneity. This heterogeneity was more pronounced for Escherichia coli, where two subpopulations were detected. Subpopulations exhibiting higher adhesion forces may be better adapted to colonize a new surface, especially during sudden changes in environmental conditions. Escherichia coli was characterized by a higher adhesion force, a stronger ability to form biofilm and larger heterogeneity index calculated in comparison with Bacillus subtilis. Higher adhesion forces are associated with a more efficient attachment of bacteria observed in an adhesion assay and might provide a basis for successful colonization, survival and multiplications in changing environment. The atomic force microscopy provides a platform for investigation of the adhesion heterogeneity of individual cells within a population, which may be expected to underpin further elucidation of the adaptive significance of phenotypic heterogeneity in a natural environment.
Collapse
Affiliation(s)
- Dariusz Laskowski
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | - Janusz Strzelecki
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudzia˛dzka 5, Toruń, 87-100, Poland
| | - Hanna Dahm
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, Toruń, 87-100, Poland
| | - Aleksander Balter
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudzia˛dzka 5, Toruń, 87-100, Poland
| |
Collapse
|
5
|
Guyomarc'h F, Francius G, Parayre S, Madec MN, Deutsch SM. Surface properties associated with the production of polysaccharides in the food bacteria Propionibacterium freudenreichii. Food Microbiol 2020; 92:103579. [PMID: 32950163 DOI: 10.1016/j.fm.2020.103579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/20/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
This study explores the production of polysaccharides (PS) in the strain Pf2289 of the food species Propionibacterium freudenreichii. Pf2289 presents characteristics atypical of the species: a molar-shaped morphotype upon plating, and cells strongly aggregative in liquid medium. When plating Pf2289, another morphotype was observed with a 4% frequency of appearance: round-shaped colonies, typical of the species. A clone was isolated, designated Pf456. No reversibility of Pf456 towards the molar-shaped morphotype was observed. Pf2289 was shown to produce a surface polysaccharide (PS) bound to the cell wall, mainly during the stationary growth phase. Meanwhile, Pf456 had lost the ability to produce the PS. AFM images of Pf2289 showed that entangled filaments spread over the whole surface of the bacteria, whereas Pf456 exhibited a smooth surface. Adhesion force maps, performed with concanavalin-A grafted probes, revealed twice as much adhesion of Pf2289 to concanavalin-A compared to Pf456. Furthermore, the length of PS molecules surrounding Pf2289 measured at least 7 μm, whereas it only reached 1 μm in Pf456. Finally, the presence of PS had a strong impact on adhesion properties: Pf2289 did not adhere to hydrophobic surfaces, whereas Pf456 showed strong adhesion.
Collapse
Affiliation(s)
| | - Grégory Francius
- Université de Lorraine, LCPME, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564, 54600, Villers-lès-Nancy, France
| | | | | | | |
Collapse
|
6
|
Wilson L, Iqbal KM, Simmons-Ehrhardt T, Bertino MF, Shah MR, Yadavalli VK, Ehrhardt CJ. Customizable 3D printed diffusion chambers for studies of bacterial pathogen phenotypes in complex environments. J Microbiol Methods 2019; 162:8-15. [PMID: 31085208 DOI: 10.1016/j.mimet.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 11/17/2022]
Abstract
Gaps in our understanding of the natural ecology and survival mechanisms of pathogenic bacteria in complex microenvironments such as soil typically occur due to the difficulty in characterizing biochemical profiles and morphological characteristics as they exist in environmental samples. Conversely, accurate simulation of the abiotic and biotic chemistries of soil habitats within the laboratory is often a significant challenge. Herein, we present the fabrication of customizable and precisely engineered 3D printed diffusion chambers that can be used to incubate bacterial cultures directly in soil matrices within a controlled laboratory experiment, and study the dynamics between bacterial cells and soil components. As part of the design process, different types of 3D printing materials were evaluated for ease of sterilization, structural integrity throughout the experiment, as well as cost/ease of production. To demonstrate potential applications for environmental studies, the diffusion chamber was used to incubate cultures of Bacillus cereus T-strain and Escherichia coli strain O157 directly in soil matrices. We show that the chamber facilitates diffusion of abiotic/biotic components of the soil with target cells without contamination from in situ microbial communities, while allowing for single cell and ensemble level phenotypic analyses of bacteria cultured with and without soil matrices.
Collapse
Affiliation(s)
- Lyddia Wilson
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | | | - Terrie Simmons-Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | - Massimo F Bertino
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | | | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States of America
| | - Christopher J Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, United States of America.
| |
Collapse
|
7
|
Formosa-Dague C, Castelain M, Martin-Yken H, Dunker K, Dague E, Sletmoen M. The Role of Glycans in Bacterial Adhesion to Mucosal Surfaces: How Can Single-Molecule Techniques Advance Our Understanding? Microorganisms 2018; 6:E39. [PMID: 29734645 PMCID: PMC6027152 DOI: 10.3390/microorganisms6020039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
Bacterial adhesion is currently the subject of increased interest from the research community, leading to fast progress in our understanding of this complex phenomenon. Resent research within this field has documented the important roles played by glycans for bacterial surface adhesion, either through interaction with lectins or with other glycans. In parallel with this increased interest for and understanding of bacterial adhesion, there has been a growth in the sophistication and use of sensitive force probes for single-molecule and single cell studies. In this review, we highlight how the sensitive force probes atomic force microscopy (AFM) and optical tweezers (OT) have contributed to clarifying the mechanisms underlying bacterial adhesion to glycosylated surfaces in general and mucosal surfaces in particular. We also describe research areas where these techniques have not yet been applied, but where their capabilities appear appropriate to advance our understanding.
Collapse
Affiliation(s)
| | - Mickaël Castelain
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France.
| | - Hélène Martin-Yken
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31400 Toulouse, France.
| | - Karen Dunker
- Department of Biotechnology and Food Science, NTNU the Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400 Toulouse, France.
| | - Marit Sletmoen
- Department of Biotechnology and Food Science, NTNU the Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
8
|
Zorila FL, Ionescu C, Craciun LS, Zorila B. Atomic force microscopy study of morphological modifications induced by different decontamination treatments on Escherichia coli. Ultramicroscopy 2017; 182:226-232. [PMID: 28728044 DOI: 10.1016/j.ultramic.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/30/2017] [Indexed: 10/19/2022]
Abstract
In this paper we used atomic force microscopy (AFM) to investigate the surface morphology of Escherichia coli, after being subjected to decontamination treatments, at sub-MICs levels (minimal inhibitory concentrations), with different disinfectants used in hospitals, pharmaceutical, food industry and even in our home, as an essential means to prevent the spreading of microorganisms. This article focuses on different morphological modifications adopted by E. coli cells as responses to the different modes of action of these substances. For high-resolution AFM images bacterial cells were immobilized on mica (Muscovite) disks. Each kind of treatment induces its distinct morphological changes, due to different mechanisms of action.
Collapse
Affiliation(s)
- Florina Lucica Zorila
- "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului St., POB MG-6, 077125 Bucharest, Magurele, Romania; Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania.
| | - Cristina Ionescu
- "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului St., POB MG-6, 077125 Bucharest, Magurele, Romania
| | - Liviu Stefan Craciun
- "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului St., POB MG-6, 077125 Bucharest, Magurele, Romania
| | - Bogdan Zorila
- "Horia Hulubei" National Institute for Physics and Nuclear Engineering, 30 Reactorului St., POB MG-6, 077125 Bucharest, Magurele, Romania; Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Magurele, Romania
| |
Collapse
|
9
|
High-resolution imaging of the microbial cell surface. J Microbiol 2016; 54:703-708. [PMID: 27796933 DOI: 10.1007/s12275-016-6348-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
Abstract
Microorganisms, or microbes, can function as threatening pathogens that cause disease in humans, animals, and plants; however, they also act as litter decomposers in natural ecosystems. As the outermost barrier and interface with the environment, the microbial cell surface is crucial for cell-to-cell communication and is a potential target of chemotherapeutic agents. Surface ultrastructures of microbial cells have typically been observed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Owing to its characteristics of low-temperature specimen preparation and superb resolution (down to 1 nm), cryo-field emission SEM has revealed paired rodlets, referred to as hydrophobins, on the cell walls of bacteria and fungi. Recent technological advances in AFM have enabled high-speed live cell imaging in liquid at the nanoscale level, leading to clear visualization of cell-drug interactions. Platinum-carbon replicas from freeze-fractured fungal spores have been observed using transmission electron microscopy, revealing hydrophobins with varying dimensions. In addition, AFM has been used to resolve bacteriophages in their free state and during infection of bacterial cells. Various microscopy techniques with enhanced spatial resolution, imaging speed, and versatile specimen preparation are being used to document cellular structures and events, thus addressing unanswered biological questions.
Collapse
|
10
|
Pfrunder S, Grossmann J, Hunziker P, Brunisholz R, Gekenidis MT, Drissner D. Bacillus cereus Group-Type Strain-Specific Diagnostic Peptides. J Proteome Res 2016; 15:3098-107. [DOI: 10.1021/acs.jproteome.6b00216] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefanie Pfrunder
- Agroscope, Institute
for Food Sciences, Schloss
1, 8820 Waedenswil, Switzerland
| | - Jonas Grossmann
- Functional
Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstraße
190, 8057 Zurich, Switzerland
| | - Peter Hunziker
- Functional
Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstraße
190, 8057 Zurich, Switzerland
| | - René Brunisholz
- Functional
Genomics Center Zurich, ETH Zurich and University of Zurich, Winterthurerstraße
190, 8057 Zurich, Switzerland
| | - Maria-Theresia Gekenidis
- Agroscope, Institute
for Food Sciences, Schloss
1, 8820 Waedenswil, Switzerland
- ETH Zurich, Institute of Food, Nutrition and
Health, Schmelzbergstraße
7, 8092 Zurich, Switzerland
| | - David Drissner
- Agroscope, Institute
for Food Sciences, Schloss
1, 8820 Waedenswil, Switzerland
| |
Collapse
|
11
|
Wang C, Ehrhardt CJ, Yadavalli VK. Nanoscale imaging and hydrophobicity mapping of the antimicrobial effect of copper on bacterial surfaces. Micron 2016; 88:16-23. [PMID: 27258941 DOI: 10.1016/j.micron.2016.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Abstract
Copper has a long historical role in the arena of materials with antimicrobial properties. Various forms of copper ranging from surfaces to impregnation in textiles and particles, have attracted considerable interest owing to their versatility, potency, chemical stability, and low cost. However, the effects and mechanisms of their antimicrobial action is still unclear. In this study, the effect of copper particles on Escherichia coli was studied at the nanoscale using atomic force microscopy (AFM). Time-lapse AFM images at the single cell level show the morphological changes on live E. coli during antimicrobial treatment, in which for the first time, this process was followed in situ on the same cell over time. AFM-based hydrophobicity mapping further showed that incubating cells with Cu decreased the surface hydrophobicity with an increase of incubation time. Specifically, we are able to visualize both morphology and physico-chemical nature of the bacterial cell surface change in response to copper treatment, leading to the membrane damage and cytoplasm leakage. Overall, the time-lapse AFM imaging combined with hydrophobicity mapping approach presented here provides spatio-temporal insight into the antimicrobial mechanisms of copper at the single cell level, and can be applied to design of better metallic antimicrobial materials as well as investigate different microorganisms.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
12
|
The effect of growth temperature on the nanoscale biochemical surface properties of Yersinia pestis. Anal Bioanal Chem 2016; 408:5585-91. [PMID: 27259520 DOI: 10.1007/s00216-016-9659-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
Abstract
Yersinia pestis, the causative agent of plague, has been responsible for several recurrent, lethal pandemics in history. Currently, it is an important pathogen to study owing to its virulence, adaptation to different environments during transmission, and potential use in bioterrorism. Here, we report on the changes to Y. pestis surfaces in different external microenvironments, specifically culture temperatures (6, 25, and 37 °C). Using nanoscale imaging coupled with functional mapping, we illustrate that changes in the surfaces of the bacterium from a morphological and biochemical standpoint can be analyzed simultaneously using atomic force microscopy. The results from functional mapping, obtained at a single cell level, show that the density of lipopolysaccharide (measured via terminal N-acetylglucosamine) on Y. pestis grown at 37 °C is only slightly higher than cells grown at 25 °C, but nearly three times higher than cells maintained at 6 °C for an extended period of time, thereby demonstrating that adaptations to different environments can be effectively captured using this technique. This nanoscale evaluation provides a new microscopic approach to study nanoscale properties of bacterial pathogens and investigate adaptations to different external environments.
Collapse
|
13
|
The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host. Microbiol Mol Biol Rev 2016; 79:437-57. [PMID: 26512126 DOI: 10.1128/mmbr.00050-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts.
Collapse
|
14
|
Wang C, Stanciu CE, Ehrhardt CJ, Yadavalli VK. Evaluation of whole cell fixation methods for the analysis of nanoscale surface features of Yersinia pestis KIM. J Microsc 2016; 263:260-7. [PMID: 27527609 DOI: 10.1111/jmi.12387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 01/14/2023]
Abstract
Manipulation of viable Yersinia pestis (etiologic agent of plague) in the laboratory usually necessitates elevated biosafety and biocontainment procedures, even with avirulent or vaccine strains. To facilitate downstream biochemical or physical analyses in a Biosafety Level 1 laboratory environment, effective inactivation without affecting its intrinsic properties is critical. Here, we report on the morphological and biochemical changes to Y. pestis surfaces following four different fixation methods that render the cells nonviable. The results, obtained at the single cell level, demonstrate that methanol inactivation is best able to preserve bacterial morphology and bioactivity, enabling subsequent analysis. This nanoscale evaluation of the effects of inactivation on cell morphology and surface bioactivity may provide a crucial preparatory approach to study virulent pathogens in the lab setting using high-resolution microscopic techniques such as atomic force microscopy.
Collapse
Affiliation(s)
- C Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, U.S.A
| | - C E Stanciu
- Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, U.S.A
| | - C J Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, U.S.A
| | - V K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, U.S.A
| |
Collapse
|