1
|
Girelli A. A quasilinear hyperbolic one-dimensional model of the lymph flow through a lymphangion with valve dynamics and a contractile wall. Comput Methods Biomech Biomed Engin 2024:1-16. [PMID: 39262168 DOI: 10.1080/10255842.2024.2399769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
This paper presents a one-dimensional model that describes fluid flow in lymphangions, the segments of lymphatic vessels between valves, using quasilinear hyperbolic systems. The model incorporates a phenomenological pressure-cross-sectional area relationship based on existing literature. Numerical solutions of the differential equations align with known results, offering insights into lymphatic flow dynamics. This model enhances the understanding of lymph movement through the lymphatic system, driven by lymphangion contractions.
Collapse
Affiliation(s)
- Alberto Girelli
- Dipartimento di Matematica e Fisica "N. Tartaglia", Università Cattolica del Sacro Cuore, Brescia, Italy
| |
Collapse
|
2
|
Girelli A, Giantesio G, Musesti A, Penta R. Multiscale homogenization for dual porosity time-dependent Darcy-Brinkman/Darcy coupling and its application to the lymph node. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231983. [PMID: 39021765 PMCID: PMC11253036 DOI: 10.1098/rsos.231983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/17/2024] [Indexed: 07/20/2024]
Abstract
We study the coupling between time-dependent Darcy-Brinkman and the Darcy equations at the microscale subjected to inhomogeneous body forces and initial conditions to describe a double porosity problem. We derive the homogenized governing equations for this problem using the asymptotic homogenization technique, and as macroscopic results, we obtain a coupling between two Darcy equations, one of which with memory effects, with mass exchange between phases. The memory effects are a consequence of considering the time dependence in the Darcy-Brinkman equation, and they allow us to study in more detail the role of time in the problem under consideration. After the formulation of the model, we solve it in a simplified setting and we use it to describe the movement of fluid within a vascularized lymph node.
Collapse
Affiliation(s)
- A. Girelli
- Dipartimento di Matematica e Fisica ‘N. Tartaglia’, Università Cattolica del Sacro Cuore, Brescia, Italy
| | - G. Giantesio
- Dipartimento di Matematica e Fisica ‘N. Tartaglia’, Università Cattolica del Sacro Cuore, Brescia, Italy
- ‘Mathematics for Technology, Medicine and Biosciences’, Università degli Studi di Ferrara, Ferrara, Italy
| | - A. Musesti
- Dipartimento di Matematica e Fisica ‘N. Tartaglia’, Università Cattolica del Sacro Cuore, Brescia, Italy
| | - R. Penta
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
White SE, Kiley JX, Visniauskas B, Lindsey SH, Miller KS. Biaxial Murine Vaginal Remodeling With Reproductive Aging. J Biomech Eng 2022; 144:061010. [PMID: 35425969 PMCID: PMC10782864 DOI: 10.1115/1.4054362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/27/2022] [Indexed: 01/13/2024]
Abstract
Higher reproductive age is associated with an increased risk of gestational diabetes, pre-eclampsia, and severe vaginal tearing during delivery. Further, menopause is associated with vaginal stiffening. However, the mechanical properties of the vagina during reproductive aging before the onset of menopause are unknown. Therefore, the first objective of this study was to quantify the biaxial mechanical properties of the nulliparous murine vagina with reproductive aging. Menopause is further associated with a decrease in elastic fiber content, which may contribute to vaginal stiffening. Hence, our second objective was to determine the effect of elastic fiber disruption on the biaxial vaginal mechanical properties. To accomplish this, vaginal samples from CD-1 mice aged 2-14 months underwent extension-inflation testing protocols (n = 64 total; n = 16/age group). Then, half of the samples were randomly allocated to undergo elastic fiber fragmentation via elastase digestion (n = 32 total; 8/age group) to evaluate the role of elastic fibers. The material stiffness increased with reproductive age in both the circumferential and axial directions within the control and elastase-treated vaginas. The vagina demonstrated anisotropic mechanical behavior, and anisotropy increased with age. In summary, vaginal remodeling with reproductive age included increased direction-dependent material stiffness, which further increased following elastic fiber disruption. Further work is needed to quantify vaginal remodeling during pregnancy and postpartum with reproductive aging to better understand how age-related vaginal remodeling may contribute to an increased risk of vaginal tearing.
Collapse
Affiliation(s)
- Shelby E. White
- Department of Biomedical Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118
| | - Jasmine X. Kiley
- Department of Biology, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118
| | - Bruna Visniauskas
- Department of Pharmacology, Tulane University, 1430 Tulane Ave, New Orleans, LA 70118
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, 1430 Tulane Ave, New Orleans, LA 70118
| | - Kristin S. Miller
- Department of Biomedical Engineering, Tulane University, 6823 St Charles Ave, New Orleans, LA 70118
| |
Collapse
|
4
|
Clark-Patterson G, Domingo M, Miller KS. Biomechanics of Pregnancy and Vaginal Delivery. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
Morris CJ, Zawieja DC, Moore JE. A multiscale sliding filament model of lymphatic muscle pumping. Biomech Model Mechanobiol 2021; 20:2179-2202. [PMID: 34476656 PMCID: PMC8595193 DOI: 10.1007/s10237-021-01501-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 08/01/2021] [Indexed: 11/30/2022]
Abstract
The lymphatics maintain fluid balance by returning interstitial fluid to veins via contraction/compression of vessel segments with check valves. Disruption of lymphatic pumping can result in a condition called lymphedema with interstitial fluid accumulation. Lymphedema treatments are often ineffective, which is partially attributable to insufficient understanding of specialized lymphatic muscle lining the vessels. This muscle exhibits cardiac-like phasic contractions and smooth muscle-like tonic contractions to generate and regulate flow. To understand the relationship between this sub-cellular contractile machinery and organ-level pumping, we have developed a multiscale computational model of phasic and tonic contractions in lymphatic muscle and coupled it to a lymphangion pumping model. Our model uses the sliding filament model (Huxley in Prog Biophys Biophys Chem 7:255-318, 1957) and its adaptation for smooth muscle (Mijailovich in Biophys J 79(5):2667-2681, 2000). Multiple structural arrangements of contractile components and viscoelastic elements were trialed but only one provided physiologic results. We then coupled this model with our previous lumped parameter model of the lymphangion to relate results to experiments. We show that the model produces similar pressure, diameter, and flow tracings to experiments on rat mesenteric lymphatics. This model provides the first estimates of lymphatic muscle contraction energetics and the ability to assess the potential effects of sub-cellular level phenomena such as calcium oscillations on lymphangion outflow. The maximum efficiency value predicted (40%) is at the upper end of estimates for other muscle types. Spontaneous calcium oscillations during diastole were found to increase outflow up to approximately 50% in the range of frequencies and amplitudes tested.
Collapse
Affiliation(s)
- Christopher J Morris
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - David C Zawieja
- College of Medicine Faculty, Texas A&M University, Texas, USA
| | - James E Moore
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Investigating lymphangiogenesis in vitro and in vivo using engineered human lymphatic vessel networks. Proc Natl Acad Sci U S A 2021; 118:2101931118. [PMID: 34326257 PMCID: PMC8346860 DOI: 10.1073/pnas.2101931118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lymphatic vessel networks are important for various biological processes; thus, incorporating them into engineered constructs can have both research and clinical implications. Engineered lymphatic vessels can improve biomimicry and functionality of in vitro tissue assays and serve as a treatment for various diseases associated with impaired lymphatic function. In this work, we created functional engineered lymphatic vessels that anastomosed to the host lymphatic system postimplantation. We investigated the effect of supporting cells, cell-secreted extracellular matrix, and mechanical forces on lymphatic vessel formation within engineered constructs. Interestingly, lymphatic vasculature responded differently to cyclic stretch compared to blood vasculature. This phenomenon opens up an avenue for investigating the variability of cellular responses to mechanical stimulation. The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-β signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct's potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.
Collapse
|
7
|
Razavi MS, Dixon JB, Gleason RL. Characterization of rat tail lymphatic contractility and biomechanics: incorporating nitric oxide-mediated vasoregulation. J R Soc Interface 2020; 17:20200598. [PMID: 32993429 DOI: 10.1098/rsif.2020.0598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The lymphatic system transports lymph from the interstitial space back to the great veins via a series of orchestrated contractions of chains of lymphangions. Biomechanical models of lymph transport, validated with ex vivo or in vivo experimental results, have proved useful in revealing novel insight into lymphatic pumping; however, a need remains to characterize the contributions of vasoregulatory compounds in these modelling tools. Nitric oxide (NO) is a key mediator of lymphatic pumping. We quantified the active contractile and passive biaxial biomechanical response of rat tail collecting lymphatics and changes in the contractile response to the exogenous NO administration and integrated these findings into a biomechanical model. The passive mechanical response was characterized with a three-fibre family model. Nonlinear regression and non-parametric bootstrapping were used to identify best-fit material parameters to passive cylindrical biaxial mechanical data, assessing uniqueness and parameter confidence intervals; this model yielded a good fit (R2 = 0.90). Exogenous delivery of NO via sodium nitroprusside (SNP) elicited a dose-dependent suppression of contractions; the amplitude of contractions decreased by 30% and the contraction frequency decreased by 70%. Contractile function was characterized with a modified Rachev-Hayashi model, introducing a parameter that is related to SNP concentration; the model provided a good fit (R2 = 0.89) to changes in contractile responses to varying concentrations of SNP. These results demonstrated the significant role of NO in lymphatic pumping and provide a predictive biomechanical model to integrate the combined effect of mechanical loading and NO on lymphatic contractility and mechanical response.
Collapse
Affiliation(s)
- Mohammad S Razavi
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30313, USA
| | - J Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30313, USA.,Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Drive, Atanta, GA 30332, USA.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| | - Rudolph L Gleason
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA 30313, USA.,Wallace H. Coulter Department of Biomedical Engineering, 313 Ferst Drive, Atanta, GA 30332, USA.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Razavi MS, Leonard-Duke J, Hardie B, Dixon JB, Gleason RL. Axial stretch regulates rat tail collecting lymphatic vessel contractions. Sci Rep 2020; 10:5918. [PMID: 32246026 PMCID: PMC7125298 DOI: 10.1038/s41598-020-62799-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 03/19/2020] [Indexed: 01/07/2023] Open
Abstract
Lymphatic contractions play a fundamental role in maintaining tissue and organ homeostasis. The lymphatic system relies on orchestrated contraction of collecting lymphatic vessels, via lymphatic muscle cells and one-way valves, to transport lymph from the interstitial space back to the great veins, against an adverse pressure gradient. Circumferential stretch is known to regulate contractile function in collecting lymphatic vessels; however, less is known about the role of axial stretch in regulating contraction. It is likely that collecting lymphatic vessels are under axial strain in vivo and that the opening and closing of lymphatic valves leads to significant changes in axial strain throughout the pumping cycle. The purpose of this paper is to quantify the responsiveness of lympatic pumping to altered axial stretch. In situ measurements suggest that rat tail collecting lymphatic vessels are under an axial stretch of ~1.24 under normal physiological loads. Ex vivo experiments on isolated rat tail collecting lymphatics showed that the contractile metrics such as contractile amplitude, frequency, ejection fraction, and fractional pump flow are sensitive to axial stretch. Multiphoton microscopy showed that the predominant orientation of collagen fibers is in the axial direction, while lymphatic muscle cell nuclei and actin fibers are oriented in both circumferential and longitudinal directions, suggesting an axial component to contraction. Taken together, these results demonstrate the significance of axial stretch in lymphatic contractile function, suggest that axial stretch may play an important role in regulating lymph transport, and demonstrate that changes in axial strains could be an important factor in disease progression.
Collapse
Affiliation(s)
- Mohammad S Razavi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA
| | - Julie Leonard-Duke
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr., Atlanta, GA, 30332, USA
| | - Becky Hardie
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr., Atlanta, GA, 30332, USA
| | - J Brandon Dixon
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr., Atlanta, GA, 30332, USA.,The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Rudolph L Gleason
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr., Atlanta, GA, 30332, USA. .,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr., Atlanta, GA, 30332, USA. .,The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, 30332, USA.
| |
Collapse
|
9
|
Nelson TS, Nepiyushchikh Z, Hooks JST, Razavi MS, Lewis T, Clement CC, Thoresen M, Cribb MT, Ross MK, Gleason RL, Santambrogio L, Peroni JF, Dixon JB. Lymphatic remodelling in response to lymphatic injury in the hind limbs of sheep. Nat Biomed Eng 2019; 4:649-661. [PMID: 31873209 DOI: 10.1038/s41551-019-0493-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 11/15/2019] [Indexed: 02/06/2023]
Abstract
Contractile activity in the lymphatic vasculature is essential for maintaining fluid balance within organs and tissues. However, the mechanisms by which collecting lymphatics adapt to changes in fluid load and how these adaptations influence lymphatic contractile activity are unknown. Here we report a model of lymphatic injury based on the ligation of one of two parallel lymphatic vessels in the hind limb of sheep and the evaluation of structural and functional changes in the intact, remodelling lymphatic vessel over a 42-day period. We show that the remodelled lymphatic vessel displayed increasing intrinsic contractile frequency, force generation and vessel compliance, as well as decreasing flow-mediated contractile inhibition via the enzyme endothelial nitric oxide synthase. A computational model of a chain of lymphatic contractile segments incorporating these adaptations predicted increases in the flow-generation capacity of the remodelled vessel at the expense of normal mitochondrial function and elevated oxidative stress within the lymphatic muscle. Our findings may inform interventions for mitigating lymphatic muscle fatigue in patients with dysfunctional lymphatics.
Collapse
Affiliation(s)
- Tyler S Nelson
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Zhanna Nepiyushchikh
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S T Hooks
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mohammad S Razavi
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tristan Lewis
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Merrilee Thoresen
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Matthew T Cribb
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mindy K Ross
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rudolph L Gleason
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John F Peroni
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA. .,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
10
|
Clark GL, Pokutta-Paskaleva AP, Lawrence DJ, Lindsey SH, Desrosiers L, Knoepp LR, Bayer CL, Gleason RL, Miller KS. Smooth muscle regional contribution to vaginal wall function. Interface Focus 2019; 9:20190025. [PMID: 31263538 PMCID: PMC6597518 DOI: 10.1098/rsfs.2019.0025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
Pelvic organ prolapse is characterized as the descent of the pelvic organs into the vaginal canal. In the USA, there is a 12% lifetime risk for requiring surgical intervention. Although vaginal childbirth is a well-established risk factor for prolapse, the underlying mechanisms are not fully understood. Decreased smooth muscle organization, composition and maximum muscle tone are characteristics of prolapsed vaginal tissue. Maximum muscle tone of the vaginal wall was previously investigated in the circumferential or axial direction under uniaxial loading; however, the vaginal wall is subjected to multiaxial loads. Further, the contribution of vaginal smooth muscle basal (resting) tone to mechanical function remains undetermined. The objectives of this study were to determine the contribution of smooth muscle basal and maximum tone to the regional biaxial mechanical behaviour of the murine vagina. Vaginal tissue from C57BL/6 mice was subjected to extension-inflation protocols (n = 10) with and without basal smooth muscle tone. Maximum tone was induced with KCl under various circumferential (n = 5) and axial (n = 5) loading conditions. The microstructure was visualized with multiphoton microscopy (n = 1), multiaxial histology (n = 4) and multiaxial immunohistochemistry (n = 4). Smooth muscle basal tone decreased material stiffness and increased anisotropy. In addition, maximum vaginal tone was decreased with increasing intraluminal pressures. This study demonstrated that vaginal muscle tone contributed to the biaxial mechanical response of murine vaginal tissue. This may be important in further elucidating the underlying mechanisms of prolapse, in order to improve current preventative and treatment strategies.
Collapse
Affiliation(s)
- Gabrielle L. Clark
- Department of Biomedical Engineering, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| | - Anastassia P. Pokutta-Paskaleva
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Dylan J. Lawrence
- Department of Biomedical Engineering, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121, USA
| | - Leise R. Knoepp
- Department of Female Pelvic Medicine and Reconstructive Surgery, University of Queensland Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121, USA
| | - Carolyn L. Bayer
- Department of Biomedical Engineering, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| | - Rudolph L. Gleason
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 801 Ferst Drive NW, Atlanta, GA 30332, USA
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Kristin S. Miller
- Department of Biomedical Engineering, Tulane University, 6823 St Charles Avenue, New Orleans, LA 70118, USA
| |
Collapse
|
11
|
Bertram CD, Macaskill C, Moore JE. Inhibition of contraction strength and frequency by wall shear stress in a single-lymphangion model. J Biomech Eng 2019; 141:2733771. [PMID: 31074761 DOI: 10.1115/1.4043724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/29/2022]
Abstract
The phasic contractions of collecting lymphatic vessels are reduced in strength and occur at diminished frequency when the favourable pressure difference and the resulting antegrade flow create large fluid shear stresses at the luminal surface. This paper describes a minimal phenomenological model of this mechanism, that is applied to a previously validated numerical model of a phasically contracting lymphangion. The parameters of the inhibition model are quantitatively matched to observations in isolated segments of rat lymphatic vessel, first for mesenteric lymphatics then for thoracic duct, and outcomes from the numerical model are then qualitatively compared with recent observations in isolated segments of rat thoracic duct.
Collapse
Affiliation(s)
- C D Bertram
- School of Mathematics & Statistics, University of Sydney, New South Wales, Australia 2006
| | - Charles Macaskill
- School of Mathematics & Statistics, University of Sydney, New South Wales, Australia 2006
| | - James E Moore
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Abstract
An important issue in tissue biomechanics is to decipher the relationship between the mechanical behavior at macroscopic scale and the organization of the collagen fiber network at microscopic scale. Here, we present a protocol to combine traction assays with multiphoton microscopy in ex vivo murine skin. This multiscale approach provides simultaneously the stress/stretch response of a skin biopsy and the collagen reorganization in the dermis by use of second harmonic generation (SHG) signals and appropriate image processing.
Collapse
|
13
|
Breslin JW, Yang Y, Scallan JP, Sweat RS, Adderley SP, Murfee WL. Lymphatic Vessel Network Structure and Physiology. Compr Physiol 2018; 9:207-299. [PMID: 30549020 PMCID: PMC6459625 DOI: 10.1002/cphy.c180015] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The lymphatic system is comprised of a network of vessels interrelated with lymphoid tissue, which has the holistic function to maintain the local physiologic environment for every cell in all tissues of the body. The lymphatic system maintains extracellular fluid homeostasis favorable for optimal tissue function, removing substances that arise due to metabolism or cell death, and optimizing immunity against bacteria, viruses, parasites, and other antigens. This article provides a comprehensive review of important findings over the past century along with recent advances in the understanding of the anatomy and physiology of lymphatic vessels, including tissue/organ specificity, development, mechanisms of lymph formation and transport, lymphangiogenesis, and the roles of lymphatics in disease. © 2019 American Physiological Society. Compr Physiol 9:207-299, 2019.
Collapse
Affiliation(s)
- Jerome W. Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Richard S. Sweat
- Department of Biomedical Engineering, Tulane University, New Orleans, LA
| | - Shaquria P. Adderley
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - W. Lee Murfee
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| |
Collapse
|
14
|
Contarino C, Toro EF. A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics. Biomech Model Mechanobiol 2018; 17:1687-1714. [PMID: 30006745 DOI: 10.1007/s10237-018-1050-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
We propose a one-dimensional model for collecting lymphatics coupled with a novel Electro-Fluid-Mechanical Contraction (EFMC) model for dynamical contractions, based on a modified FitzHugh-Nagumo model for action potentials. The one-dimensional model for a deformable lymphatic vessel is a nonlinear system of hyperbolic Partial Differential Equations (PDEs). The EFMC model combines the electrical activity of lymphangions (action potentials) with fluid-mechanical feedback (circumferential stretch of the lymphatic wall and wall shear stress) and lymphatic vessel wall contractions. The EFMC model is governed by four Ordinary Differential Equations (ODEs) and phenomenologically relies on: (1) environmental calcium influx, (2) stretch-activated calcium influx, and (3) contraction inhibitions induced by wall shear stresses. We carried out a stability analysis of the stationary state of the EFMC model. Contractions turn out to be triggered by the instability of the stationary state. Overall, the EFMC model allows emulating the influence of pressure and wall shear stress on the frequency of contractions observed experimentally. Lymphatic valves are modelled by extending an existing lumped-parameter model for blood vessels. Modern numerical methods are employed for the one-dimensional model (PDEs), for the EFMC model and valve dynamics (ODEs). Adopting the geometrical structure of collecting lymphatics from rat mesentery, we apply the full mathematical model to a carefully selected suite of test problems inspired by experiments. We analysed several indices of a single lymphangion for a wide range of upstream and downstream pressure combinations which included both favourable and adverse pressure gradients. The most influential model parameters were identified by performing two sensitivity analyses for favourable and adverse pressure gradients.
Collapse
Affiliation(s)
| | - Eleuterio F Toro
- Laboratory of Applied Mathematics, DICAM, University of Trento, Trento, Italy
| |
Collapse
|
15
|
Probing the effect of morphology on lymphatic valve dynamic function. Biomech Model Mechanobiol 2018; 17:1343-1356. [DOI: 10.1007/s10237-018-1030-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
|
16
|
Robison KM, Conway CK, Desrosiers L, Knoepp LR, Miller KS. Biaxial Mechanical Assessment of the Murine Vaginal Wall Using Extension-Inflation Testing. J Biomech Eng 2018; 139:2648715. [PMID: 28787477 DOI: 10.1115/1.4037559] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Indexed: 12/31/2022]
Abstract
Progress toward understanding the underlying mechanisms of pelvic organ prolapse (POP) is limited, in part, due to a lack of information on the biomechanical properties and microstructural composition of the vaginal wall. Compromised vaginal wall integrity is thought to contribute to pelvic floor disorders; however, normal structure-function relationships within the vaginal wall are not fully understood. In addition to the information produced from uniaxial testing, biaxial extension-inflation tests performed over a range of physiological values could provide additional insights into vaginal wall mechanical behavior (i.e., axial coupling and anisotropy), while preserving in vivo tissue geometry. Thus, we present experimental methods of assessing murine vaginal wall biaxial mechanical properties using extension-inflation protocols. Geometrically intact vaginal samples taken from 16 female C57BL/6 mice underwent pressure-diameter and force-length preconditioning and testing within a pressure-myograph device. A bilinear curve fit was applied to the local stress-stretch data to quantify the transition stress and stretch as well as the toe- and linear-region moduli. The murine vaginal wall demonstrated a nonlinear response resembling that of other soft tissues, and evaluation of bilinear curve fits suggests that the vagina exhibits pseudoelasticity, axial coupling, and anisotropy. The protocols developed herein permit quantification of biaxial tissue properties. These methods can be utilized in future studies in order to assess evolving structure-function relationships with respect to aging, the onset of prolapse, and response to potential clinical interventions.
Collapse
Affiliation(s)
- Kathryn M Robison
- Mem. ASME Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118 e-mail:
| | - Cassandra K Conway
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118 e-mail:
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine & Reconstructive Surgery, Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121 e-mail:
| | - Leise R Knoepp
- Department of Female Pelvic Medicine & Reconstructive Surgery, Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121 e-mail:
| | - Kristin S Miller
- Mem. ASME Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118 e-mail:
| |
Collapse
|
17
|
Abstract
The supply of oxygen and nutrients to tissues is performed by the blood system, and involves a net leakage of fluid outward at the capillary level. One of the principal functions of the lymphatic system is to gather this fluid and return it to the blood system to maintain overall fluid balance. Fluid in the interstitial spaces is often at subatmospheric pressure, and the return points into the venous system are at pressures of approximately 20 cmH2O. This adverse pressure difference is overcome by the active pumping of collecting lymphatic vessels, which feature closely spaced one-way valves and contractile muscle cells in their walls. Passive vessel squeezing causes further pumping. The dynamics of lymphatic pumping have been investigated experimentally and mathematically, revealing complex behaviours indicating that the system performance is robust against minor perturbations in pressure and flow. More serious disruptions can lead to incurable swelling of tissues called lymphœdema.
Collapse
Affiliation(s)
- James E Moore
- Department of Bioengineering, Imperial College London
| | | |
Collapse
|
18
|
Abstract
The supply of oxygen and nutrients to tissues is performed by the blood system, and involves a net leakage of fluid outward at the capillary level. One of the principal functions of the lymphatic system is to gather this fluid and return it to the blood system to maintain overall fluid balance. Fluid in the interstitial spaces is often at subatmospheric pressure, and the return points into the venous system are at pressures of approximately 20 cmH2O. This adverse pressure difference is overcome by the active pumping of collecting lymphatic vessels, which feature closely spaced one-way valves and contractile muscle cells in their walls. Passive vessel squeezing causes further pumping. The dynamics of lymphatic pumping have been investigated experimentally and mathematically, revealing complex behaviours indicating that the system performance is robust against minor perturbations in pressure and flow. More serious disruptions can lead to incurable swelling of tissues called lymphœdema.
Collapse
Affiliation(s)
- James E Moore
- Department of Bioengineering, Imperial College London
| | | |
Collapse
|
19
|
Watson DJ, Sazonov I, Zawieja DC, Moore JE, van Loon R. Integrated geometric and mechanical analysis of an image-based lymphatic valve. J Biomech 2017; 64:172-179. [PMID: 29061390 DOI: 10.1016/j.jbiomech.2017.09.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
Lymphatic valves facilitate the lymphatic system's role in maintaining fluid homeostasis. Malformed valves are found in several forms of primary lymphœdema, resulting in incurable swelling of the tissues and immune dysfunction. Their experimental study is complicated by their small size and operation in low pressure and low Reynolds number environments. Mathematical models of these structures can give insight and complement experimentation. In this work, we present the first valve geometry reconstructed from confocal imagery and used in the construction of a subject-specific model in a closing mode. A framework is proposed whereby an image is converted into a valve model. An FEA study was performed to identify the significance of the shear modulus, the consequences of smoothing the leaflet surface and the effect of wall motion on valve behaviour. Smoothing is inherent to any analysis from imagery. The nature of the image, segmentation and meshing all cause attenuation of high-frequency features. Smoothing not only causes loss of surface area but also the loss of high-frequency geometric features which may reduce stiffness. This work aimed to consider these effects and inform studies by taking a manual reconstruction and through manifold harmonic analysis, attenuating higher frequency features to replicate lower resolution images or lower degree-of-freedom reconstructions. In conclusion, two metrics were considered: trans-valvular pressure required to close the valve, ΔPc, and the retrograde volume displacement after closure. The higher ΔPc, the greater the volume of lymph that will pass through the valve during closure. Retrograde volume displacement after closure gives a metric of compliance of the valve and for the quality of the valve seal. In the case of the image-specific reconstructed valve, removing features with a wavelength longer than four μm caused changes in ΔPc. Varying the shear modulus from 10 kPa to 60 kPa caused a 3.85-fold increase in the retrograde volume displaced. The inclusion of a non-rigid wall caused ΔPc to increase from 1.56 to 2.52 cmH2O.
Collapse
Affiliation(s)
- Daniel J Watson
- ZCCE, College of Engineering, Swansea University, United Kingdom
| | - Igor Sazonov
- ZCCE, College of Engineering, Swansea University, United Kingdom
| | - David C Zawieja
- College of Medicine, Texas A&M Health Sciences Center, United States
| | - James E Moore
- Department of Bioengineering, Imperial College London, United Kingdom
| | - Raoul van Loon
- ZCCE, College of Engineering, Swansea University, United Kingdom.
| |
Collapse
|
20
|
Athanasiou D, Edgar LT, Jafarnejad M, Nixon K, Duarte D, Hawkins ED, Jamalian S, Cunnea P, Lo Celso C, Kobayashi S, Fotopoulou C, Moore JE. The passive biomechanics of human pelvic collecting lymphatic vessels. PLoS One 2017; 12:e0183222. [PMID: 28827843 PMCID: PMC5565099 DOI: 10.1371/journal.pone.0183222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/01/2017] [Indexed: 11/19/2022] Open
Abstract
The lymphatic system has a major significance in the metastatic pathways in women's cancers. Lymphatic pumping depends on both extrinsic and intrinsic mechanisms, and the mechanical behavior of lymphatic vessels regulates the function of the system. However, data on the mechanical properties and function of human lymphatics are lacking. Our aim is to characterize, for the first time, the passive biomechanical behavior of human collecting lymphatic vessels removed at pelvic lymph node dissection during primary debulking surgeries for epithelial ovarian cancer. Isolated vessels were cannulated and then pressurized at varying levels of applied axial stretch in a calcium-free Krebs buffer. Pressurized vessels were then imaged using multi-photon microscopy for collagen-elastin structural composition and fiber orientation. Both pressure-diameter and force-elongation responses were highly nonlinear, and axial stretching of the vessel served to decrease diameter at constant pressure. Pressure-diameter behavior for the human vessels is very similar to data from rat mesenteric vessels, though the human vessels were approximately 10× larger than those from rats. Multiphoton microscopy revealed the vessels to be composed of an inner layer of elastin with an outer layer of aligned collagen fibers. This is the first study that successfully described the passive biomechanical response and composition of human lymphatic vessels in patients with ovarian cancer. Future work should expand on this knowledge base with investigations of vessels from other anatomical locations, contractile behavior, and the implications on metastatic cell transport.
Collapse
Affiliation(s)
- Dimitrios Athanasiou
- Department of Bioengineering, Imperial College, London, South Kensington Campus, London, United Kingdom
| | - Lowell T. Edgar
- Department of Bioengineering, Imperial College, London, South Kensington Campus, London, United Kingdom
- * E-mail:
| | - Mohammad Jafarnejad
- Department of Bioengineering, Imperial College, London, South Kensington Campus, London, United Kingdom
| | - Katherine Nixon
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Delfim Duarte
- Department of Life Sciences and the Francis Crick Institute, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Edwin D. Hawkins
- Immunology Division at the Walter and Eliza Hall, Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Samira Jamalian
- Department of Bioengineering, Imperial College, London, South Kensington Campus, London, United Kingdom
| | - Paula Cunnea
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Cristina Lo Celso
- Department of Life Sciences and the Francis Crick Institute, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Shunichi Kobayashi
- Department of Mechanical Engineering and Robotics, Shinshu University, Ueda, Nagano, Japan
| | - Christina Fotopoulou
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - James E. Moore
- Department of Bioengineering, Imperial College, London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
21
|
Razavi MS, Nelson TS, Nepiyushchikh Z, Gleason RL, Dixon JB. The relationship between lymphangion chain length and maximum pressure generation established through in vivo imaging and computational modeling. Am J Physiol Heart Circ Physiol 2017; 313:H1249-H1260. [PMID: 28778909 DOI: 10.1152/ajpheart.00003.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intrinsic contraction of collecting lymphatic vessels serves as a pumping system to propel lymph against hydrostatic pressure gradients as it returns interstitial fluid to the venous circulation. In the present study, we proposed and validated that the maximum opposing outflow pressure along a chain of lymphangions at which flow can be achieved increases with the length of chain. Using minimally invasive near-infrared imaging to measure the effective pumping pressure at various locations in the rat tail, we demonstrated increases in pumping pressure along the length of the tail. Computational simulations based on a microstructurally motivated model of a chain of lymphangions informed from biaxial testing of isolated vessels was used to provide insights into the pumping mechanisms responsible for the pressure increases observed in vivo. These models suggest that the number of lymphangions in the chain and smooth muscle cell force generation play a significant role in determining the maximum outflow pressure, whereas the frequency of contraction has no effect. In vivo administration of nitric oxide attenuated lymphatic contraction, subsequently lowering the effective pumping pressure. Computational simulations suggest that the reduction in contractile strength of smooth muscle cells in the presence of nitric oxide can account for the reductions in outflow pressure observed along the lymphangion chain in vivo. Thus, combining modeling with multiple measurements of lymphatic pumping pressure provides a method for approximating intrinsic lymphatic muscle activity noninvasively in vivo while also providing insights into factors that determine the extent that a lymphangion chain can transport fluid against an adverse pressure gradient. NEW & NOTEWORTHY Here, we report the first minimally invasive in vivo measurements of the relationship between lymphangion chain length and lymphatic pumping pressure. We also provide the first in vivo validation of lumped parameter models of lymphangion chains previously developed through data obtained from isolated vessel testing.
Collapse
Affiliation(s)
- Mohammad S Razavi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Tyler S Nelson
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Zhanna Nepiyushchikh
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia
| | - Rudolph L Gleason
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - J Brandon Dixon
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology , Atlanta, Georgia.,The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, Georgia.,The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| |
Collapse
|
22
|
Baish JW, Kunert C, Padera TP, Munn LL. Synchronization and Random Triggering of Lymphatic Vessel Contractions. PLoS Comput Biol 2016; 12:e1005231. [PMID: 27935958 PMCID: PMC5147819 DOI: 10.1371/journal.pcbi.1005231] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
The lymphatic system is responsible for transporting interstitial fluid back to the bloodstream, but unlike the cardiovascular system, lacks a centralized pump-the heart–to drive flow. Instead, each collecting lymphatic vessel can individually contract and dilate producing unidirectional flow enforced by intraluminal check valves. Due to the large number and spatial distribution of such pumps, high-level coordination would be unwieldy. This leads to the question of how each segment of lymphatic vessel responds to local signals that can contribute to the coordination of pumping on a network basis. Beginning with elementary fluid mechanics and known cellular behaviors, we show that two complementary oscillators emerge from i) mechanical stretch with calcium ion transport and ii) fluid shear stress induced nitric oxide production (NO). Using numerical simulation and linear stability analysis we show that the newly identified shear-NO oscillator shares similarities with the well-known Van der Pol oscillator, but has unique characteristics. Depending on the operating conditions, the shear-NO process may i) be inherently stable, ii) oscillate spontaneously in response to random disturbances or iii) synchronize with weak periodic stimuli. When the complementary shear-driven and stretch-driven oscillators interact, either may dominate, producing a rich family of behaviors similar to those observed in vivo. For decades, cardiovascular physiology has been an area of intense research, and we have a fundamental understanding of the mechanisms the heart uses to drive blood flow through the distributed network of vessels in the body. The lymphatic system is now receiving similar attention as more is learned about its functional role in disease processes. The importance of the lymphatic system in collecting excess fluid from tissues and returning it to the blood is well known, but how the lymph flow is regulated without a central pump is poorly understood. Each segment of collecting lymphatic vessel can independently contract yielding a network of distributed pump/conduits. This paper shows how the lymphatic muscle cells that squeeze fluid along the lymphatic vessels can be effectively regulated using only chemical and mechanical signals that they receive from their immediate microenvironment. Using stability theory and the tools of nonlinear dynamics we identify two complementary oscillators that respond to stretch of the vessel wall and shear of fluid flowing over the vessel wall. Numerical simulations of the combined oscillators show that they have characteristics well suited to the regulation of distributed systems in general and may have application in other biological and physical contexts.
Collapse
Affiliation(s)
- James W. Baish
- Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, United States of America
- * E-mail:
| | - Christian Kunert
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- AMGEN, Cambridge, Massachusetts, United States of America
| | - Timothy P. Padera
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lance L. Munn
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
23
|
Caulk AW, Dixon JB, Gleason RL. A lumped parameter model of mechanically mediated acute and long-term adaptations of contractility and geometry in lymphatics for characterization of lymphedema. Biomech Model Mechanobiol 2016; 15:1601-1618. [PMID: 27043026 PMCID: PMC5050061 DOI: 10.1007/s10237-016-0785-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 03/23/2016] [Indexed: 12/19/2022]
Abstract
A primary purpose of the lymphatic system is to transport fluid from peripheral tissues to the central venous system in order to maintain tissue-fluid balance. Failure to perform this task results in lymphedema marked by swelling of the affected limb as well as geometric remodeling and reduced contractility of the affected lymphatic vessels. The mechanical environment has been implicated in the regulation of lymphatic contractility, but it is unknown how changes in the mechanical environment are related to loss of contractile function and remodeling of the tissue. The purpose of this paper was to introduce a new theoretical framework for acute and long-term adaptations of lymphatic vessels to changes in mechanical loading. This theoretical framework combines a simplified version of a published lumped parameter model for lymphangion function and lymph transport, a published microstructurally motivated constitutive model for the active and passive mechanical behavior of isolated rat thoracic ducts, and novel models for acute mechanically mediated vasoreactive adaptations and long-term volumetric growth to simulate changes in muscle contractility and geometry of a single isolated rat thoracic duct in response to a sustained elevation in afterload. The illustrative examples highlight the potential role of the mechanical environment in the acute maintenance of contractility and long-term geometric remodeling, presumably aimed at meeting fluid flow demands while also maintaining mechanical homeostasis. Results demonstrate that contractility may adapt in response to shear stress to meet fluid flow demands and show that pressure-induced long-term geometric remodeling may attenuate these adaptations and reduce fluid flow. The modeling framework and illustrative simulations help suggest relevant experiments that are necessary to accurately quantify and predict the acute and long-term adaptations of lymphangions to altered mechanical loading.
Collapse
Affiliation(s)
- Alexander W Caulk
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA
| | - J Brandon Dixon
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Rudolph L Gleason
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, GA, 30332, USA.
- The Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA.
- The Wallace H. Coulter Georgia Tech/Emory Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
24
|
Tamimi E, Ardila DC, Haskett DG, Doetschman T, Slepian MJ, Kellar RS, Vande Geest JP. Biomechanical Comparison of Glutaraldehyde-Crosslinked Gelatin Fibrinogen Electrospun Scaffolds to Porcine Coronary Arteries. J Biomech Eng 2016; 138:2466198. [PMID: 26501189 DOI: 10.1115/1.4031847] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Indexed: 12/17/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death for Americans. As coronary artery bypass graft surgery (CABG) remains a mainstay of therapy for CVD and native vein grafts are limited by issues of supply and lifespan, an effective readily available tissue-engineered vascular graft (TEVG) for use in CABG would provide drastic improvements in patient care. Biomechanical mismatch between vascular grafts and native vasculature has been shown to be the major cause of graft failure, and therefore, there is need for compliance-matched biocompatible TEVGs for clinical implantation. The current study investigates the biaxial mechanical characterization of acellular electrospun glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen cylindrical constructs, using a custom-made microbiaxial optomechanical device (MOD). Constructs crosslinked for 2, 8, and 24 hrs are compared to mechanically characterized porcine left anterior descending coronary (LADC) artery. The mechanical response data were used for constitutive modeling using a modified Fung strain energy equation. The results showed that constructs crosslinked for 2 and 8 hrs exhibited circumferential and axial tangential moduli (ATM) similar to that of the LADC. Furthermore, the 8-hrs experimental group was the only one to compliance-match the LADC, with compliance values of 0.0006±0.00018 mm Hg-1 and 0.00071±0.00027 mm Hg-1, respectively. The results of this study show the feasibility of meeting mechanical specifications expected of native arteries through manipulating GLUT vapor crosslinking time. The comprehensive mechanical characterization of cylindrical biopolymer constructs in this study is an important first step to successfully develop a biopolymer compliance-matched TEVG.
Collapse
|
25
|
Pump function curve shape for a model lymphatic vessel. Med Eng Phys 2016; 38:656-663. [PMID: 27185045 DOI: 10.1016/j.medengphy.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/08/2016] [Accepted: 04/08/2016] [Indexed: 11/23/2022]
Abstract
The transport capacity of a contractile segment of lymphatic vessel is defined by its pump function curve relating mean flow-rate and adverse pressure difference. Numerous system characteristics affect curve shape and the magnitude of the generated flow-rates and pressures. Some cannot be varied experimentally, but their separate and interacting effects can be systematically revealed numerically. This paper explores variations in the rate of change of active tension and the form of the relation between active tension and muscle length, factors not known from experiment to functional precision. Whether the pump function curve bends toward or away from the origin depends partly on the curvature of the passive pressure-diameter relation near zero transmural pressure, but rather more on the form of the relation between active tension and muscle length. A pump function curve bending away from the origin defines a well-performing pump by maximum steady output power. This behaviour is favoured by a length/active-tension relationship which sustains tension at smaller lengths. Such a relationship also favours high peak mechanical efficiency, defined as output power divided by the input power obtained from the lymphangion diameter changes and active-tension time-course. The results highlight the need to pin down experimentally the form of the length/active-tension relationship.
Collapse
|
26
|
Kornuta JA, Nepiyushchikh Z, Gasheva OY, Mukherjee A, Zawieja DC, Dixon JB. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1122-34. [PMID: 26333787 DOI: 10.1152/ajpregu.00342.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 08/25/2015] [Indexed: 01/13/2023]
Abstract
Given the known mechanosensitivity of the lymphatic vasculature, we sought to investigate the effects of dynamic wall shear stress (WSS) on collecting lymphatic vessels while controlling for transmural pressure. Using a previously developed ex vivo lymphatic perfusion system (ELPS) capable of independently controlling both transaxial pressure gradient and average transmural pressure on an isolated lymphatic vessel, we imposed a multitude of flow conditions on rat thoracic ducts, while controlling for transmural pressure and measuring diameter changes. By gradually increasing the imposed flow through a vessel, we determined the WSS at which the vessel first shows sign of contraction inhibition, defining this point as the shear stress sensitivity of the vessel. The shear stress threshold that triggered a contractile response was significantly greater at a transmural pressure of 5 cmH2O (0.97 dyne/cm(2)) than at 3 cmH2O (0.64 dyne/cm(2)). While contraction frequency was reduced when a steady WSS was applied, this inhibition was reversed when the applied WSS oscillated, even though the mean wall shear stresses between the conditions were not significantly different. When the applied oscillatory WSS was large enough, flow itself synchronized the lymphatic contractions to the exact frequency of the applied waveform. Both transmural pressure and the rate of change of WSS have significant impacts on the contractile response of lymphatic vessels to flow. Specifically, time-varying shear stress can alter the inhibition of phasic contraction frequency and even coordinate contractions, providing evidence that dynamic shear could play an important role in the contractile function of collecting lymphatic vessels.
Collapse
Affiliation(s)
- Jeffrey A Kornuta
- Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Zhanna Nepiyushchikh
- Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Olga Y Gasheva
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - Anish Mukherjee
- Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia; and
| | - David C Zawieja
- Department of Medical Physiology, Texas A&M Health Science Center College of Medicine, Temple, Texas
| | - J Brandon Dixon
- Parker H. Petite Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia; George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia;
| |
Collapse
|