1
|
Ali O, Szabó A. Review of Eukaryote Cellular Membrane Lipid Composition, with Special Attention to the Fatty Acids. Int J Mol Sci 2023; 24:15693. [PMID: 37958678 PMCID: PMC10649022 DOI: 10.3390/ijms242115693] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Biological membranes, primarily composed of lipids, envelop each living cell. The intricate composition and organization of membrane lipids, including the variety of fatty acids they encompass, serve a dynamic role in sustaining cellular structural integrity and functionality. Typically, modifications in lipid composition coincide with consequential alterations in universally significant signaling pathways. Exploring the various fatty acids, which serve as the foundational building blocks of membrane lipids, provides crucial insights into the underlying mechanisms governing a myriad of cellular processes, such as membrane fluidity, protein trafficking, signal transduction, intercellular communication, and the etiology of certain metabolic disorders. Furthermore, comprehending how alterations in the lipid composition, especially concerning the fatty acid profile, either contribute to or prevent the onset of pathological conditions stands as a compelling area of research. Hence, this review aims to meticulously introduce the intricacies of membrane lipids and their constituent fatty acids in a healthy organism, thereby illuminating their remarkable diversity and profound influence on cellular function. Furthermore, this review aspires to highlight some potential therapeutic targets for various pathological conditions that may be ameliorated through dietary fatty acid supplements. The initial section of this review expounds on the eukaryotic biomembranes and their complex lipids. Subsequent sections provide insights into the synthesis, membrane incorporation, and distribution of fatty acids across various fractions of membrane lipids. The last section highlights the functional significance of membrane-associated fatty acids and their innate capacity to shape the various cellular physiological responses.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
| | - András Szabó
- Agrobiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary;
- HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
| |
Collapse
|
2
|
Dymond MK. A Membrane Biophysics Perspective on the Mechanism of Alcohol Toxicity. Chem Res Toxicol 2023. [PMID: 37186813 DOI: 10.1021/acs.chemrestox.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Motivations for understanding the underlying mechanisms of alcohol toxicity range from economical to toxicological and clinical. On the one hand, acute alcohol toxicity limits biofuel yields, and on the other hand, acute alcohol toxicity provides a vital defense mechanism to prevent the spread of disease. Herein the role that stored curvature elastic energy (SCE) in biological membranes might play in alcohol toxicity is discussed, for both short and long-chain alcohols. Structure-toxicity relationships for alcohols ranging from methanol to hexadecanol are collated, and estimates of alcohol toxicity per alcohol molecule in the cell membrane are made. The latter reveal a minimum toxicity value per molecule around butanol before alcohol toxicity per molecule increases to a maximum around decanol and subsequently decreases again. The impact of alcohol molecules on the lamellar to inverse hexagonal phase transition temperature (TH) is then presented and used as a metric to assess the impact of alcohol molecules on SCE. This approach suggests the nonmonotonic relationship between alcohol toxicity and chain length is consistent with SCE being a target of alcohol toxicity. Finally, in vivo evidence for SCE-driven adaptations to alcohol toxicity in the literature are discussed.
Collapse
Affiliation(s)
- Marcus K Dymond
- Chemistry Research and Enterprise Group, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
3
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
4
|
Bahja J, Dymond MK. Does membrane curvature elastic energy play a role in mediating oxidative stress in lipid membranes? Free Radic Biol Med 2021; 171:191-202. [PMID: 34000382 DOI: 10.1016/j.freeradbiomed.2021.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
The effects of oxidative stress on cells are associated with a wide range of pathologies. Oxidative stress is predominantly initiated by the action of reactive oxygen species and/or lipoxygenases on polyunsaturated fatty acid containing lipids. The downstream products are oxidised phospholipids, bioactive aldehydes and a range of Schiff base by-products between aldehydes and lipids, or other biomacromolecules. In this review we assess the impact of oxidative stress on lipid membranes, focusing on the changes that occur to the curvature preference (lipid spontaneous curvature) and elastic properties of membranes, since these biophysical properties modulate phospholipid homeostasis. Studies show that the lipid products of oxidative stress reduce stored curvature elastic energy in membranes. Based upon this observation, we hypothesize that the effects of oxidative stress on lipid membranes will be reduced by compounds that increase stored curvature elastic energy. We find a strong correlation appears across literature studies that we have reviewed, such that many compounds like vitamin E, Curcumin, Coenzyme Q10 and vitamin A show behaviour consistent with this hypothesis. Finally, we consider whether age-related changes in lipid composition represent the homeostatic response of cells to compensate for the accumulation of in vivo lipid oxidation products.
Collapse
Affiliation(s)
- Julia Bahja
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK
| | - Marcus K Dymond
- Centre for Stress and Age-Related Disease, University of Brighton, Lewes Rd, Brighton, BN2 4GL, UK.
| |
Collapse
|
5
|
Dymond MK. Lipid monolayer spontaneous curvatures: A collection of published values. Chem Phys Lipids 2021; 239:105117. [PMID: 34265278 DOI: 10.1016/j.chemphyslip.2021.105117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022]
Abstract
Lipid monolayer spontaneous curvatures (or lipid intrinsic curvatures) are one of several material properties of lipids that enable the stored curvature elastic energy in a lipid aggregate to be determined. Stored curvature elastic energy is important since it can modulate the function of membrane proteins and plays a role in the regulatory pathways of phospholipid homeostasis. Due to the large number of different lipid molecules that might theoretically exist in nature, very few lipid spontaneous curvatures have been determined. Herein the values of lipid spontaneous curvatures that exist in the literature are collected, alongside key experimental details. Where possible, trends in the data are discussed and finally, obvious gaps in the knowledge are signposted.
Collapse
Affiliation(s)
- Marcus K Dymond
- Chemistry Research and Enterprise Group, School of Pharmacy and Biomolecular Sciences, Huxley Building, University of Brighton, BN2 4GL, United Kingdom.
| |
Collapse
|
6
|
Thaller DJ, Tong D, Marklew CJ, Ader NR, Mannino PJ, Borah S, King MC, Ciani B, Lusk CP. Direct binding of ESCRT protein Chm7 to phosphatidic acid-rich membranes at nuclear envelope herniations. J Cell Biol 2021; 220:e202004222. [PMID: 33464310 PMCID: PMC7816628 DOI: 10.1083/jcb.202004222] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/04/2020] [Accepted: 12/11/2020] [Indexed: 12/03/2022] Open
Abstract
Mechanisms that control nuclear membrane remodeling are essential to maintain the integrity of the nucleus but remain to be fully defined. Here, we identify a phosphatidic acid (PA)-binding capacity in the nuclear envelope (NE)-specific ESCRT, Chm7, in budding yeast. Chm7's interaction with PA-rich membranes is mediated through a conserved hydrophobic stretch of amino acids, which confers recruitment to the NE in a manner that is independent of but required for Chm7's interaction with the LAP2-emerin-MAN1 (LEM) domain protein Heh1 (LEM2). Consistent with the functional importance of PA binding, mutation of this region abrogates recruitment of Chm7 to membranes and abolishes Chm7 function in the context of NE herniations that form during defective nuclear pore complex (NPC) biogenesis. In fact, we show that a PA sensor specifically accumulates within these NE herniations. We suggest that local control of PA metabolism is important for ensuring productive NE remodeling and that its dysregulation may contribute to pathologies associated with defective NPC assembly.
Collapse
Affiliation(s)
- David J. Thaller
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Danqing Tong
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Christopher J. Marklew
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield, UK
| | - Nicholas R. Ader
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | | | - Sapan Borah
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Megan C. King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| | - Barbara Ciani
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Brook Hill, Sheffield, UK
| | - C. Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
7
|
Zulueta Díaz YDLM, Ambroggio EE, Fanani ML. Miltefosine inhibits the membrane remodeling caused by phospholipase action by changing membrane physical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183407. [DOI: 10.1016/j.bbamem.2020.183407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
|
8
|
Cornell RB. Membrane Lipids Assist Catalysis by CTP: Phosphocholine Cytidylyltransferase. J Mol Biol 2020; 432:5023-5042. [PMID: 32234309 DOI: 10.1016/j.jmb.2020.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
While most of the articles in this issue review the workings of integral membrane enzymes, in this review, we describe the catalytic mechanism of an enzyme that contains a soluble catalytic domain but appears to catalyze its reaction on the membrane surface, anchored and assisted by a separate regulatory amphipathic helical domain and inter-domain linker. Membrane partitioning of CTP: phosphocholine cytidylyltransferase (CCT), a key regulatory enzyme of phosphatidylcholine metabolism, is regulated chiefly by changes in membrane phospholipid composition, and boosts the enzyme's catalytic efficiency >200-fold. Catalytic enhancement by membrane binding involves the displacement of an auto-inhibitory helix from the active site entrance-way and promotion of a new conformational ensemble for the inter-domain, allosteric linker that has an active role in the catalytic cycle. We describe the evidence for close contact between membrane lipid, a compact allosteric linker, and the CCT active site, and discuss potential ways that this interaction enhances catalysis.
Collapse
Affiliation(s)
- Rosemary B Cornell
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada V5A-1S6.
| |
Collapse
|
9
|
Girard M, Bereau T. Regulating Lipid Composition Rationalizes Acyl Tail Saturation Homeostasis in Ectotherms. Biophys J 2020; 119:892-899. [PMID: 32814063 DOI: 10.1016/j.bpj.2020.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cell membranes mainly consist of lipid bilayers with an actively regulated composition. The underlying processes are still poorly understood, in particular, how the hundreds of components are controlled. Cholesterol has been found to correlate with phospholipid saturation for reasons that remain unclear. To better understand the link between cell membrane regulation and chemical composition, we establish a computational framework based on chemical reaction networks, resulting in multiple semigrand canonical ensembles. By running computer simulations, we show that regulating the chemical potential of lipid species is sufficient to reproduce the experimentally observed increase in acyl tail saturation with added cholesterol. Our model proposes a different picture of lipid regulation in which components can be regulated passively instead of actively. In this picture, phospholipid acyl tail composition naturally adapts to added molecules such as cholesterol or proteins. A comparison between regulated membranes with commonly studied ternary model membranes shows stark differences: for instance, correlation lengths and viscosities observed are independent of lipid chemical affinity.
Collapse
Affiliation(s)
- Martin Girard
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Tristan Bereau
- Max Planck Institute for Polymer Research, Mainz, Germany; Van 't Hoff Institute for Molecular Sciences and Informatics Institute, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Keurhorst D, Liashkovich I, Frontzek F, Nitzlaff S, Hofschröer V, Dreier R, Stock C. MMP3 activity rather than cortical stiffness determines NHE1-dependent invasiveness of melanoma cells. Cancer Cell Int 2019; 19:285. [PMID: 31728131 PMCID: PMC6842528 DOI: 10.1186/s12935-019-1015-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/01/2019] [Indexed: 12/31/2022] Open
Abstract
Background Both cell adhesion and matrix metalloproteinase (MMP) activity depend on pH at the cell surface. By regulating extracellular juxtamembrane pH, the Na+/H+ exchanger NHE1 plays a significant part in human melanoma (MV3) cell migration and invasion. Because NHE1, besides its pH-regulatory transport function, also serves as a structural element tying the cortical actin cytoskeleton to the plasma membrane, we investigated whether NHE1 affects cortical stiffness of MV3 cells, and how this makes an impact on their invasiveness. Methods NHE1 overexpressing MV3 cells were compared to the corresponding mock-transfected control cells. NHE1 expression was verified by Western blotting, cariporide (HOE642) was used to inhibit NHE1 activity, cell stiffness was determined by atomic force microscopy, and F-actin was visualized by phalloidin-staining. Migration on, and invasion of, native and glutaraldehyde-fixed collagen I substrates were analyzed using time-lapse video microscopy and Boyden-chamber assays, respectively. MMP secretion and activity were detected by Western blot and zymography, respectively. MMP activity was inhibited with NNGH. Results The cortical, but not the bulk stiffness, was significantly higher in NHE1 overexpressing cells. This increase in cortical stiffness was accompanied by a reorganization of the cortical cytoskeleton, i.e. a condensation of F-actin underneath and along the plasma membrane. However, it was not affected by NHE1 inhibition. Nevertheless, actin dynamics is required for cell invasion as demonstrated with the application of cytochalasin D. NHE1 overexpression was associated with an elevated MMP3 secretion and an increase in the invasion of a native matrix. This increase in invasiveness could be antagonized by the MMP inhibitor NNGH. Transmigration through a glutaraldehyde-fixed, indigestible substrate was not affected by NHE1 overexpression. Conclusion NHE1, as a structural element and independently of its transport activity, contributes to the organization of the cortical F-actin meshwork and thus impacts cortical stiffness. Since NHE1 overexpression stimulates MMP3 secretion but does not change transmigration through a fixed substrate, MV3 cell invasion of a native substrate depends on MMP activity rather than on a modifiable cortical stiffness.
Collapse
Affiliation(s)
- Dennis Keurhorst
- 1Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Ivan Liashkovich
- 1Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Fabian Frontzek
- 2Department of Oncology and Hematology, University Hospital of Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Svenja Nitzlaff
- 3Institute of Animal Physiology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Verena Hofschröer
- 1Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany
| | - Rita Dreier
- 4Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyer-Str. 15, 48149 Münster, Germany
| | - Christian Stock
- 1Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany.,5Department of Gastroenterology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
11
|
Startek JB, Boonen B, Talavera K, Meseguer V. TRP Channels as Sensors of Chemically-Induced Changes in Cell Membrane Mechanical Properties. Int J Mol Sci 2019; 20:E371. [PMID: 30654572 PMCID: PMC6359677 DOI: 10.3390/ijms20020371] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/19/2022] Open
Abstract
Transient Receptor Potential ion channels (TRPs) have been described as polymodal sensors, being responsible for transducing a wide variety of stimuli, and being involved in sensory functions such as chemosensation, thermosensation, mechanosensation, and photosensation. Mechanical and chemical stresses exerted on the membrane can be transduced by specialized proteins into meaningful intracellular biochemical signaling, resulting in physiological changes. Of particular interest are compounds that can change the local physical properties of the membrane, thereby affecting nearby proteins, such as TRP channels, which are highly sensitive to the membrane environment. In this review, we provide an overview of the current knowledge of TRP channel activation as a result of changes in the membrane properties induced by amphipathic structural lipidic components such as cholesterol and diacylglycerol, and by exogenous amphipathic bacterial endotoxins.
Collapse
Affiliation(s)
- Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain & Disease Research, Herestraat 49, Campus Gasthuisberg O&N1 bus 802, 3000 Leuven, Belgium.
| | - Victor Meseguer
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández y CSIC, E-03550 Alicante , Spain.
| |
Collapse
|
12
|
Macromolecular crowding and membrane binding proteins: The case of phospholipase A1. Chem Phys Lipids 2019; 218:91-102. [DOI: 10.1016/j.chemphyslip.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/10/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022]
|
13
|
Haider A, Wei YC, Lim K, Barbosa AD, Liu CH, Weber U, Mlodzik M, Oras K, Collier S, Hussain MM, Dong L, Patel S, Alvarez-Guaita A, Saudek V, Jenkins BJ, Koulman A, Dymond MK, Hardie RC, Siniossoglou S, Savage DB. PCYT1A Regulates Phosphatidylcholine Homeostasis from the Inner Nuclear Membrane in Response to Membrane Stored Curvature Elastic Stress. Dev Cell 2018; 45:481-495.e8. [PMID: 29754800 PMCID: PMC5971203 DOI: 10.1016/j.devcel.2018.04.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/27/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Cell and organelle membranes consist of a complex mixture of phospholipids (PLs) that determine their size, shape, and function. Phosphatidylcholine (PC) is the most abundant phospholipid in eukaryotic membranes, yet how cells sense and regulate its levels in vivo remains unclear. Here we show that PCYT1A, the rate-limiting enzyme of PC synthesis, is intranuclear and re-locates to the nuclear membrane in response to the need for membrane PL synthesis in yeast, fly, and mammalian cells. By aligning imaging with lipidomic analysis and data-driven modeling, we demonstrate that yeast PCYT1A membrane association correlates with membrane stored curvature elastic stress estimates. Furthermore, this process occurs inside the nucleus, although nuclear localization signal mutants can compensate for the loss of endogenous PCYT1A in yeast and in fly photoreceptors. These data suggest an ancient mechanism by which nucleoplasmic PCYT1A senses surface PL packing defects on the inner nuclear membrane to control PC homeostasis.
Collapse
Affiliation(s)
- Afreen Haider
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Yu-Chen Wei
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Koini Lim
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Antonio D Barbosa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
| | - Che-Hsiung Liu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ursula Weber
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Marek Mlodzik
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Kadri Oras
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Simon Collier
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - M Mahmood Hussain
- Departments of Cell Biology and Pediatrics, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Liang Dong
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Satish Patel
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Anna Alvarez-Guaita
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Vladimir Saudek
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Benjamin J Jenkins
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Albert Koulman
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK
| | - Roger C Hardie
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Symeon Siniossoglou
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
| | - David B Savage
- Metabolic Research Laboratories, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
14
|
Burrell J, Dymond MK, Gillams RJ, Parker DJ, Langley GJ, Labrador A, Nylander T, Attard GS. Using Curvature Power To Map the Domain of Inverse Micellar Cubic Phases: The Case of Aliphatic Aldehydes in 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12804-12813. [PMID: 28981289 DOI: 10.1021/acs.langmuir.7b02998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oxylipins, or fatty aldehydes, are a class of molecules produced from membrane lipids as a result of oxidative stress or enzyme-mediated peroxidation. Here we report the effects of two biologically important fatty aldehydes, trans,trans-2,4-decanedienal (DD) and cis-11-hexadecenal (HD), on the phase behavior of the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in water. We compare the phase behavior of DD/DOPE and HD/DOPE mixtures to the phase behavior of oleic acid/DOPE mixtures and show that DD, HD, and oleic acid have similar effects on the phase diagrams of DOPE. Notably, both DD and HD, like oleic acid, induce the formation of Fd3m inverse micellar cubic phases in DOPE/water mixtures. This is the first time that Fd3m phases in fatty aldehyde-containing mixtures have been reported. We assess the effects of DD, HD, and oleic acid on DOPE in terms of lipid spontaneous curvatures and propose a method to predict the formation of Fd3m phases from the curvature power of amphiphiles. This methodology predicts that Fd3m phases will become stable if the spontaneous curvature of a lipid mixture is -0.48 ± 0.05 nm-1 or less.
Collapse
Affiliation(s)
- Jamie Burrell
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton, BN2 4GJ, United Kingdom
| | - Richard J Gillams
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Duncan J Parker
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - G John Langley
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Ana Labrador
- MAX IV Laboratory, Lund University , P.O. Box 118, SE-221 00, Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University , P.O. Box 124, SE-221 00, Lund, Sweden
| | - George S Attard
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
15
|
Gladyshev MI, Sushchik NN, Makhutova ON, Glushchenko LA, Rudchenko AE, Makhrov AA, Borovikova EA, Dgebuadze YY. Fatty Acid Composition and Contents of Seven Commercial Fish Species of Genus Coregonus
from Russian Subarctic Water Bodies. Lipids 2017; 52:1033-1044. [PMID: 28965211 DOI: 10.1007/s11745-017-4304-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 09/19/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Michail I. Gladyshev
- Institute of Biophysics of Siberian Branch of Federal Research Center “Krasnoyarsk Science Center” of Russian Academy of Sciences; Akademgorodok, 50/50 Krasnoyarsk 660036 Russia
- ; Siberian Federal University; Svobodny av. 79 Krasnoyarsk 660041 Russia
| | - Nadezhda N. Sushchik
- Institute of Biophysics of Siberian Branch of Federal Research Center “Krasnoyarsk Science Center” of Russian Academy of Sciences; Akademgorodok, 50/50 Krasnoyarsk 660036 Russia
- ; Siberian Federal University; Svobodny av. 79 Krasnoyarsk 660041 Russia
| | - Olesia N. Makhutova
- Institute of Biophysics of Siberian Branch of Federal Research Center “Krasnoyarsk Science Center” of Russian Academy of Sciences; Akademgorodok, 50/50 Krasnoyarsk 660036 Russia
- ; Siberian Federal University; Svobodny av. 79 Krasnoyarsk 660041 Russia
| | | | | | - Alexander A. Makhrov
- ; A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences; Leninsky prospect, 33 Moscow 119071 Russia
| | - Elena A. Borovikova
- Institute for Biology of Inland Waters of Russian Academy of Sciences; Borok Yaroslavl Region 152742 Russia
| | - Yury Y. Dgebuadze
- ; A. N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences; Leninsky prospect, 33 Moscow 119071 Russia
| |
Collapse
|
16
|
Seebacher F, Little AG. Plasticity of Performance Curves Can Buffer Reaction Rates from Body Temperature Variation in Active Endotherms. Front Physiol 2017; 8:575. [PMID: 28824463 PMCID: PMC5543086 DOI: 10.3389/fphys.2017.00575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/25/2017] [Indexed: 12/25/2022] Open
Abstract
Endotherms regulate their core body temperature by adjusting metabolic heat production and insulation. Endothermic body temperatures are therefore relatively stable compared to external temperatures. The thermal sensitivity of biochemical reaction rates is thought to have co-evolved with body temperature regulation so that optimal reaction rates occur at the regulated body temperature. However, recent data show that core body temperatures even of non-torpid endotherms fluctuate considerably. Additionally, peripheral temperatures can be considerably lower and more variable than core body temperatures. Here we discuss whether published data support the hypothesis that thermal performance curves of physiological reaction rates are plastic so that performance is maintained despite variable body temperatures within active (non-torpid) endotherms, and we explore mechanisms that confer plasticity. There is evidence that thermal performance curves in tissues that experience thermal fluctuations can be plastic, although this question remains relatively unexplored for endotherms. Mechanisms that alter thermal responses locally at the tissue level include transient potential receptor ion channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of processes that cause post-transcriptional RNA degradation can promote the relative expression of cold-responsive genes. Endotherms can respond to environmental fluctuations similarly to ectotherms, and thermal plasticity complements core body temperature regulation to increase whole-organism performance. Thermal plasticity is ancestral to endothermic thermoregulation, but it has not lost its selective advantage so that modern endotherms are a physiological composite of ancestral ectothermic and derived endothermic traits.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, University of SydneySydney, NSW, Australia
| | - Alexander G Little
- Rosenstiel School of Marine and Atmospheric Science, The University of MiamiMiami, FL, United States
| |
Collapse
|
17
|
Dymond MK, Gillams RJ, Parker DJ, Burrell J, Labrador A, Nylander T, Attard GS. Lipid Spontaneous Curvatures Estimated from Temperature-Dependent Changes in Inverse Hexagonal Phase Lattice Parameters: Effects of Metal Cations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10083-10092. [PMID: 27603198 DOI: 10.1021/acs.langmuir.6b03098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently we reported a method for estimating the spontaneous curvatures of lipids from temperature-dependent changes in the lattice parameter of inverse hexagonal liquid crystal phases of binary lipid mixtures. This method makes use of 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE) as a host lipid, which preferentially forms an inverse hexagonal phase to which a guest lipid of unknown spontaneous curvature is added. The lattice parameters of these binary lipid mixtures are determined by small-angle X-ray diffraction at a range of temperatures and the spontaneous curvature of the guest lipid is determined from these data. Here we report the use of this method on a wide range of lipids under different ionic conditions. We demonstrate that our method provides spontaneous curvature values for DOPE, cholesterol, and monoolein that are within the range of values reported in the literature. Anionic lipids 1,2-dioleoyl-sn-glycerol-3-phosphatidic acid (DOPA) and 1,2-dioleoyl-sn-glycerol-3-phosphoserine (DOPS) were found to exhibit spontaneous curvatures that depend on the concentration of divalent cations present in the mixtures. We show that the range of curvatures estimated experimentally for DOPA and DOPS can be explained by a series of equilibria arising from lipid-cation exchange reactions. Our data indicate a universal relationship between the spontaneous curvature of a lipid and the extent to which it affects the lattice parameter of the hexagonal phase of DOPE when it is part of a binary mixture. This universal relationship affords a rapid way of estimating the spontaneous curvatures of lipids that are expensive, only available in small amounts, or are of limited chemical stability.
Collapse
Affiliation(s)
- Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, U.K
| | - Richard J Gillams
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Duncan J Parker
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Jamie Burrell
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Ana Labrador
- MAX IV Laboratory, Lund University , PO Box 118, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University , PO Box 124, SE-221 00 Lund, Sweden
| | - George S Attard
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| |
Collapse
|