1
|
Alicea-Serrano AM, Htut KZ, Coonfield AJ, Karkosiak K, Dhinojwala A, Blackledge TA. Viscid silk in spider orb webs adheres strongly across surfaces with different roughnesses and surface energies. Biol Open 2025; 14:bio061802. [PMID: 40326396 PMCID: PMC12079571 DOI: 10.1242/bio.061802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 05/07/2025] Open
Abstract
Orb spiders use glue-coated viscid silk in their webs that maximizes adhesive forces by optimizing spreading across insect surfaces while maintaining strong bulk cohesion. While glue adhesion on smooth hydrophilic glass is well understood, insect cuticles vary in wettability and wax coatings that resist glue spreading, potentially allowing insects to escape webs. Here, we tested the adhesiveness of viscid silk on the superhydrophobic lotus leaf, an extreme case of a hydrophobic surface, to explore whether hydrophobic cuticles can help insects evade webs. We compared adhesion of viscid silk on three substrates: natural lotus leaves (superhydrophobic due to waxes and microtopography), lotus leaves treated with oxygen plasma (hydrophilic but maintaining microtopography), and smooth hydrophilic glass. We found that viscid silk adheres better to the superhydrophobic lotus leaves than to other surfaces, but that adhesion was always higher on the lotus leaves, regardless of surface energy. These findings demonstrate that viscid silk is resilient to a wide range of surface hydrophobicity and leverages microtopography to increase adhesion, both of which are vital for generalist predators like orb-weaving spiders and may inspire the development of tunable adhesives with multifunctional applications in biomedical, industrial, and robotic fields.
Collapse
Affiliation(s)
- Angela M. Alicea-Serrano
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
- Department of Biological Sciences, University of Massachusetts Lowell, MA, 01854, USA
| | - K. Zin Htut
- Division of Biology, Chemistry, and Material Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, MD, 20993, USA
| | - Alix J. Coonfield
- Department of Biology and Integrated Bioscience, The University of Akron, Akron, OH, 44325, USA
| | - Katherine Karkosiak
- Department of Biology and Integrated Bioscience, The University of Akron, Akron, OH, 44325, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Todd A. Blackledge
- Department of Biology and Integrated Bioscience, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
2
|
Zhao Y, Fuji T, Sakamoto T. Revealing the Hidden Natural Ionic Liquids in Spider Glue: Insights from the Adhesion Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6247-6256. [PMID: 39996589 DOI: 10.1021/acs.langmuir.4c05288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The adhesive properties of aggregate glue droplets in spider orb webs are conferred by a complex composition of highly glycosylated and phosphorylated proteins, which dissolve in low molecular mass compounds. Although aggregate glue droplets exhibit heterogeneous structural distributions upon attachment to substrates, limited knowledge exists regarding alterations in the distribution of their chemical components before and after attachment. Understanding the spatial distribution of chemical components within these droplets before and after attachment is crucial to unraveling the underlying adhesion mechanisms. In this study, we employed in situ measurement methods to investigate the distribution of low molecular mass compounds and proteins within aggregate glue droplets from Neoscona nautica, thereby visualizing the role of specific low molecular mass compounds in facilitating glycoprotein modification within the aggregate glue. Our findings indicate that the constituents of aggregate glue droplets include at least one ionic liquid: hydrated choline dihydrogen phosphate, and the extent of glycoprotein modification within the aggregate glue is contingent upon the concentration of this ionic liquid.
Collapse
Affiliation(s)
- Yue Zhao
- Graduate School of Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
- Collaborative Open Research Center, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 Japan
| | - Takao Fuji
- Laser Science Laboratory, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan
| | - Tetsuo Sakamoto
- Department of Applied Physics, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 Japan
| |
Collapse
|
3
|
Liu Y, Peng X, Zhu L, Jiang R, Liu J, Chen C. Liquid-Assisted Bionic Conical Needle for In-Air and In-Oil-Water Droplet Ultrafast Unidirectional Transportation and Efficient Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59920-59930. [PMID: 38100412 DOI: 10.1021/acsami.3c14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Learning from nature, many bionic materials and surfaces have been developed for the directional transportation of water and fog collection. However, current research mainly focuses on the self-transportation behavior of droplets in air-phase environments, rarely concerning underoil environments. Herein, in this work, a liquid-assisted bionic copper needle was fabricated for the rapid self-transportation of water droplets in air and oil environments. The water droplet can be spontaneously transported on the as-prepared bionic copper needle from the tip to the base. More importantly, the water-prewetted bionic copper needle can achieve the ultrafast unidirectional transportation of a water droplet in an oil environment, showing a maximum transport velocity of 76.2 mm/s and a transport distance over 33 mm, which were ten times higher than those reported in the previous research. Additionally, the droplet transport mechanism was revealed. The effects of the apex angle and tilt angle of the as-prepared bionic needle and droplet volume on the self-transportation behavior of water droplets were systematically investigated. The results indicated that the transport velocity of the water droplet decreased with the increase of the apex angle of the conical needle, while it increased with the increase of the droplet volume and needle tilt angle. Furthermore, the as-prepared bionic copper needle exhibited excellent fog collection performance with a single copper needle fog collecting efficiency of up to 2220 mg/h, which was 9.7 times that of the original copper needle. In summary, this work provides a simple and novel method to fabricate bionic copper needles for the directional self-transportation of water droplets in air-phase and oil-phase environments as well as efficient fog collection. It shows great application potential in the fields of microfluidics, desalination, and freshwater collection.
Collapse
Affiliation(s)
- Yangkai Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuqiao Peng
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Linfeng Zhu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ruisong Jiang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Chaolang Chen
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
4
|
Opell BD, Elmore HM, Hendricks ML. Adhesive contact and protein elastic modulus tune orb weaving spider glue droplet biomechanics to habitat humidity. Acta Biomater 2022; 151:468-479. [PMID: 35970480 DOI: 10.1016/j.actbio.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022]
Abstract
Tiny glue droplets along the viscous capture threads of spider orb webs prevent insects from escaping. Each droplet is formed of a protein core surrounded by a hygroscopic aqueous layer, which cause the droplet's adhesion to change with humidity. As an insect struggles to escape the web, a thread's viscoelastic core proteins extend, transferring adhesive forces to the thread's support fibers. Maximum adhesive force is achieved when absorbed atmospheric moisture allows a flattened droplet to establish sufficient adhesive contact while maintaining the core protein cohesion necessary for force transfer. We examined the relationship between these droplet properties and adhesive force and the work of extending droplets at five relative humidities in twelve species that occupy habitats which have different humidities. A regression analysis that included both flattened droplet area and core protein elastic modulus described droplet adhesion, but the model was degraded when core protein area was substituted for droplet. Species from low humidity habitats expressed greater adhesion at lower humidities, whereas species from high humidity habitats expressed greater adhesion at high humidities. Our results suggest a general model of droplet adhesion with two adhesion peaks, one for low humidity species, which occurs when increasing droplet area and decreasing protein cohesion intersect, and another for high humidity species, which occurs when area and cohesion have diverged maximally. These dual peaks in adhesive force explain why some species from intermediate and high humidity habitats express high adhesion at several humidities. STATEMENT OF SIGNIFICANCE: We characterized the effect of humidity on the adhesion of twelve orb weaving spider species' glue droplets and showed how humidity-mediated changes in the contact area of a droplet's outer, hygroscopic aqueous layer and the stiffness of its protein core affect droplet performance. This revealed how droplet adhesion has been tuned to the humidity of a species' habitat and allowed us to revise a model that describes the environmental determinants of droplet biomechanics.
Collapse
Affiliation(s)
- Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Hannah Mae Elmore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mary L Hendricks
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
5
|
Amarpuri G, Dhopatkar N, Blackledge TA, Dhinojwala A. Molecular Changes in Spider Viscid Glue As a Function of Relative Humidity Revealed Using Infrared Spectroscopy. ACS Biomater Sci Eng 2022; 8:3354-3360. [PMID: 35894694 DOI: 10.1021/acsbiomaterials.2c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spider aggregate glue can absorb moisture from the atmosphere to reduce its viscosity and become tacky. The viscosity at which glue adhesion is maximized is remarkably similar across spider species, even though that viscosity is achieved at very different relative humidity (RH) values matching their diverse habitats. However, the molecular changes in the protein structure and the bonding state of water (both referred to here as molecular structure) with respect to the changes in RH are not known. We use attenuated total reflectance-infrared (ATR-IR) spectroscopy to probe the changes in the molecular structure of glue as a function of RH for three spider species from different habitats. We find that the glue retains bound water at lower RH and absorbs liquid-like water at higher RH. The absorption of liquid-like water at high RH plasticizes the glue and explains the decrease in glue viscosity. The changes to protein conformations as a function RH are either subtle or not detectable by IR spectroscopy. Importantly, the molecular changes are reversible over multiple cycles of RH change. Further, separation of glue constituents results in a different humidity response as compared to pristine glue, supporting the standing hypothesis that the glue constituents have a synergistic association that makes spider glue a functional adhesive. The results presented in this study provide further insights into the mechanism of the humidity-responsive adhesion of spider glue.
Collapse
Affiliation(s)
- Gaurav Amarpuri
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nishad Dhopatkar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Todd A Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
6
|
Kelly SD, Opell BD, Correa‐Garwhal SM. Correlated evolution between orb weaver glue droplets and supporting fibres maintains their distinct biomechanical roles in adhesion. J Evol Biol 2022; 35:879-890. [PMID: 35694995 PMCID: PMC9327512 DOI: 10.1111/jeb.14025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022]
Abstract
Orb weaving spiders employ a 'silken toolkit' to accomplish a range of tasks, including retaining prey that strike their webs. This is accomplished by a viscous capture spiral thread that features tiny glue droplets, supported by a pair of elastic flagelliform fibres. Each droplet contains a glycoprotein core responsible for adhesion. However, prey retention relies on the integrated performance of multiple glue droplets and their supporting fibres, with previous studies demonstrating that a suspension bridge forms, whose biomechanics sum the adhesive forces of multiple droplets while dissipating the energy of the struggling insect. While the interdependence of the droplet's glycoprotein and flagelliform fibres for functional adhesion is acknowledged, there has been no direct test of this hypothesized linkage between the material properties of each component. Spider mass, which differs greatly across orb weaving species, also has the potential to affect flagelliform fibre and glycoprotein material properties. Previous studies have linked spider mass to capture thread performance but have not examined the relationship between spider mass and thread material properties. We extend earlier studies to examine these relationships in 16 orb weaving species using phylogenetic generalized least squares. This analysis revealed that glycoprotein stiffness (elastic modulus) was correlated with flagelliform fibre stiffness, and that spider mass was related to the glycoprotein volume, flagelliform fibre cross-sectional area and droplets per unit thread length. By shaping the elastic moduli of glycoprotein adhesive and flagelliform fibres, natural selection has maintained the biomechanical integration of this adhesive system.
Collapse
Affiliation(s)
- Sean D. Kelly
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
- Evolution, Ecology, and Organismal Biology DepartmentUniversity of California RiversideRiversideCaliforniaUSA
| | - Brent D. Opell
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | | |
Collapse
|
7
|
Opell BD, Elmore HM, Hendricks ML. Humidity mediated performance and material properties of orb weaving spider adhesive droplets. Acta Biomater 2021; 131:440-451. [PMID: 34144212 DOI: 10.1016/j.actbio.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 12/01/2022]
Abstract
Capture thread glue droplets retain insects that strike an orb web and are key to the success of over 4,600 described spider species. Each droplet is a self-assembling adhesive system whose emergent biomechanical properties are centered on its viscoelastic, protein core. This bioadhesive is dependent on its surrounding hygroscopic aqueous layer for hydration and chemical conditioning. Consequently, a droplet's water content and adhesive performance track environmental humidity. We tested the hypothesis that natural selection has tuned a droplet's adhesive performance and material properties to a species' foraging humidity. At 55% relative humidity (RH) the adhesive properties of 12 species ranged from that of PEG-based hydrogels to that of silicone rubber, exhibiting a 1088-fold inter-specific difference in stiffness (0.02-21.76 MPa) and a 147-fold difference in toughness (0.14-20.51 MJ/m3). When tested over a 70% RH range, droplet extension lengths per protein core volume peaked at lower humidities in species from exposed, low humidity habitats, and at higher humidities in nocturnal species and those found in humid habitats. However, at the RH's where these species' maximum extension per protein volume indices were observed, the stiffness of most species' adhesive did not differ, documenting that selection has tuned elastic modulus by adjusting droplet hygroscopicity. This inverse relationship between droplet hygroscopicity and a species' foraging humidity ensures optimal adhesive stiffness. By characterizing the humidity responsiveness and properties of orb spider glue droplets, our study also profiles the range of its biomimetic potential. STATEMENT OF SIGNIFICANCE: Over 4,600 described species of orb weaving spider rely on tiny glue droplets in their webs to retain insect that the web intercepts. The aqueous layer that covers each droplet's core allows this adhesive to remain pliable and to stretch as an insect struggles to escape. The aqueous solution also attracts water from the air, causing the glue droplet's performance to change with humidity. By characterizing the droplet extensions and adhesive material properties of twelve species at relative humidities between of 20 and 90%, this study examined how this unique adhesive system responds to its environment and how it is tuned to the humidity of a species' habitat.
Collapse
Affiliation(s)
- Brent D Opell
- Department of Biological Sciences, Virginia Tech Blacksburg, VA 24061 United States.
| | - Hannah Mae Elmore
- Department of Biological Sciences, Virginia Tech Blacksburg, VA 24061 United States
| | - Mary L Hendricks
- Department of Biological Sciences, Virginia Tech Blacksburg, VA 24061 United States
| |
Collapse
|
8
|
Alicea-Serrano AM, Onyak A, Dhinojwala A, Blackledge TA. Robust performance of spider viscid silk on hairy and smooth insect substrates. Integr Comp Biol 2021; 61:1432-1439. [PMID: 33856489 DOI: 10.1093/icb/icab020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spider viscid silk adheres to insects in orb webs and is a "smart-adhesive" that quickly changes droplet size, viscosity, and adhesiveness in response to atmospheric humidity. Different species of spiders "tune" water uptake to match the humidity of their foraging environments, achieving a similar "universal" viscosity that optimizes tradeoffs in spreading versus cohesive bulk energy needed to enhance adhesion. Too much water lowers viscosity so that the glue spreads well, but cohesive failure occurs easily, generating poor adhesion. However, the optimal viscosity model of adhesion is based on experiments using smooth glass. Here we test the hypothesis that a less viscous, "over-lubricated" glue, which shows poor adhesion on smooth glass, will be stickier on hairy insects because of its greater ability to spread across three-dimensional rough surfaces. We ran adhesion tests of the furrow spider (Larinioides cornutus (Clerck, 1757)) viscid silk on honey bee (Apis mellifera) thorax, with and without hairs, in either high or medium humidity. Our results show that "over-lubricated" glue increases adhesion on hairy surfaces, performing equally as well as an optimally viscous glue.
Collapse
Affiliation(s)
| | - Ariel Onyak
- Department of Biology, The University of Akron, Ohio
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Ohio
| | - Todd A Blackledge
- Department of Biology and Integrated Bioscience, The University of Akron, Ohio
| |
Collapse
|
9
|
Zhao Y, Morita M, Sakamoto T. Analysis the water in aggregate glue droplets of spider orb web by TOF‐SIMS. SURF INTERFACE ANAL 2020. [DOI: 10.1002/sia.6924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Zhao
- Collaborative Open Research Center Kogakuin University Tokyo Japan
| | - Masato Morita
- Department of Applied Physics, School of Advanced Engineering Kogakuin University Tokyo Japan
| | - Tetsuo Sakamoto
- Department of Applied Physics, School of Advanced Engineering Kogakuin University Tokyo Japan
| |
Collapse
|
10
|
Diaz C, Maksuta D, Amarpuri G, Tanikawa A, Miyashita T, Dhinojwala A, Blackledge TA. The moth specialist spider Cyrtarachne akirai uses prey scales to increase adhesion. J R Soc Interface 2020; 17:20190792. [PMID: 31992163 PMCID: PMC7014792 DOI: 10.1098/rsif.2019.0792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 01/06/2020] [Indexed: 11/12/2022] Open
Abstract
Contaminants decrease adhesive strength by interfering with substrate contact. Spider webs adhering to moths present an ideal model to investigate how natural adhesives overcome contamination because moths' sacrificial layer of scales rubs off on sticky silk, facilitating escape. However, Cyrtarachninae spiders have evolved gluey capture threads that adhere well to moths. Cyrtarachne capture threads contain large glue droplets oversaturated with water, readily flowing but also prone to drying out. Here, we compare the spreading and adhesion of Cyrtarachne akirai glue on intact mothwings, denuded cuticle and glass to the glue of a common orb-weaving spider, Larinioides cornutus, to understand how C. akirai glue overcomes dirty surfaces. Videos show that C. akirai's glue spreading accelerates along the underlying moth cuticle after the glue seeps beneath the moth scales-not seen on denuded cuticle or hydrophilic glass. Larinioides cornutus glue droplets failed to penetrate the moth scales, their force of adhesion thus limited by the strength of attachment of scales to the cuticle. The large size and low viscosity of C. akirai glue droplets function together to use the three-dimensional topography of the moth's scales against itself via capillary forces. Infrared spectroscopy shows C. akirai glue droplets readily lose free-flowing water. We hypothesize that this loss of water leads to increased viscosity during spreading, increasing cohesive forces during pull-off. This glue's two-phase behaviour shows how natural selection can leverage a defensive specialization of prey against themselves and highlights a new design principle for synthetic adhesives for adhering to troublesome surfaces.
Collapse
Affiliation(s)
- Candido Diaz
- Department of Biology and Integrated Bioscience Program, The University of Akron, OH 44325, USA
| | - Daniel Maksuta
- Department of Biology and Integrated Bioscience Program, The University of Akron, OH 44325, USA
| | - Gaurav Amarpuri
- Department of Polymer Science, The University of Akron, OH 44325, USA
| | - Akio Tanikawa
- Faculty of Agriculture, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tadashi Miyashita
- Faculty of Agriculture, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, OH 44325, USA
| | - Todd A. Blackledge
- Department of Biology and Integrated Bioscience Program, The University of Akron, OH 44325, USA
| |
Collapse
|
11
|
Opell BD, Burba CM, Deva PD, Kin MHY, Rivas MX, Elmore HM, Hendricks ML. Linking properties of an orb-weaving spider's capture thread glycoprotein adhesive and flagelliform fiber components to prey retention time. Ecol Evol 2019; 9:9841-9854. [PMID: 31534698 PMCID: PMC6745672 DOI: 10.1002/ece3.5525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 11/07/2022] Open
Abstract
An orb web's adhesive capture spiral is responsible for prey retention. This thread is formed of regularly spaced glue droplets supported by two flagelliform axial lines. Each glue droplet features a glycoprotein adhesive core covered by a hygroscopic aqueous layer, which also covers axial lines between the droplets, making the entire thread responsive to environmental humidity.We characterized the effect of relative humidity (RH) on ability of Argiope aurantia and Argiope trifasciata thread arrays to retain houseflies and characterize the effect of humidity on their droplet properties. Using these data and those of Araneus marmoreus from a previous study, we then develop a regression model that correlated glycoprotein and flagelliform fiber properties with prey retention time. The model selection process included newly determined, humidity-specific Young's modulus and toughness values for the three species' glycoproteins.Argiope aurantia droplets are more hygroscopic than A. trifasciata droplets, causing the glycoprotein within A. aurantia droplets to become oversaturated at RH greater than 55% RH and their extension to decrease, whereas A. trifasciata droplet performance increases to 72% RH. This difference is reflected in species' prey retention times, with that of A. aurantia peaking at 55% RH and that of A. trifasciata at 72% RH.Fly retention time was explained by a regression model of five variables: glue droplet distribution, flagelliform fiber work of extension, glycoprotein volume, glycoprotein thickness, and glycoprotein Young's modulus.The material properties of both glycoprotein and flagelliform fibers appear to be phylogenetically constrained, whereas natural selection can more freely act on the amount of each material invested in a thread and on components of the thread's aqueous layer. Thus, it becomes easier to understand how natural selection can tune the performance of viscous capture threads by directing small changes in these components.
Collapse
Affiliation(s)
- Brent D. Opell
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
| | | | - Pritesh D. Deva
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
| | | | - Malik X. Rivas
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
| | | | | |
Collapse
|
12
|
Guo Y, Chang Z, Guo HY, Fang W, Li Q, Zhao HP, Feng XQ, Gao H. Synergistic adhesion mechanisms of spider capture silk. J R Soc Interface 2019. [PMID: 29514984 DOI: 10.1098/rsif.2017.0894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is well known that capture silk, the main sticky component of the orb web of a spider, plays an important role in the spider's ability to capture prey via adhesion. However, the detailed mechanism with which the spider achieves its unparalleled high-adhesion performance remains elusive. In this work, we combine experiments and theoretical analysis to investigate the adhesion mechanisms of spider silk. In addition to the widely recognized adhesion effect of the sticky glue, we reveal a synergistic enhancement mechanism due to the elasticity of silk fibres. A balance between silk stiffness, strength and glue stickiness is crucial to endow the silk with superior adhesion, as well as outstanding energy absorption capacity and structural robustness. The revealed mechanisms deepen our understanding of the working principles of spider silk and suggest guidelines for biomimetic designs of spider-inspired adhesion and capture devices.
Collapse
Affiliation(s)
- Yang Guo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zheng Chang
- College of Science, China Agricultural University, Beijing 100083, People's Republic of China
| | - Hao-Yuan Guo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wei Fang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qunyang Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China.,State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hong-Ping Zhao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xi-Qiao Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China .,State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Huajian Gao
- School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
13
|
Hygroscopic compounds in spider aggregate glue remove interfacial water to maintain adhesion in humid conditions. Nat Commun 2018; 9:1890. [PMID: 29789602 PMCID: PMC5964112 DOI: 10.1038/s41467-018-04263-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/17/2018] [Indexed: 11/28/2022] Open
Abstract
Adhesion in humid environments is fundamentally challenging because of the presence of interfacial bound water. Spiders often hunt in wet habitats and overcome this challenge using sticky aggregate glue droplets whose adhesion is resistant to interfacial failure under humid conditions. The mechanism by which spider aggregate glue avoids interfacial failure in humid environments is still unknown. Here, we investigate the mechanism of aggregate glue adhesion by using interface-sensitive spectroscopy in conjunction with infrared spectroscopy. We demonstrate that glycoproteins act as primary binding agents at the interface. As humidity increases, we observe reversible changes in the interfacial secondary structure of glycoproteins. Surprisingly, we do not observe liquid-like water at the interface, even though liquid-like water increases inside the bulk with increasing humidity. We hypothesize that the hygroscopic compounds in aggregate glue sequester interfacial water. Using hygroscopic compounds to sequester interfacial water provides a novel design principle for developing water-resistant synthetic adhesives. Spider aggregate glue avoids failure in humid environments but the fundamental mechanism behind it is still unknown. Here, the authors demonstrate that humidity-dependent structural changes of glycoproteins and sequestering of liquid water by low molecular mass compounds prevents adhesion failure of the glue in humid environments.
Collapse
|
14
|
Blamires SJ, Martens PJ, Kasumovic MM. Fitness consequences of plasticity in an extended phenotype. ACTA ACUST UNITED AC 2018; 221:jeb.167288. [PMID: 29361580 DOI: 10.1242/jeb.167288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/13/2017] [Indexed: 01/15/2023]
Abstract
Like regular phenotypes, extended phenotypes have demonstrable fitness advantages and their properties may vary plastically across environments. However, the fitness advantages of plasticity are only known for a select few extended phenotypes. It is known that the form and functions of spider orb webs can be manipulated by laboratory experiments. For instance, the physical and chemical properties of the spiral and gluey silks vary in property as protein intake varies. Orb web spiders thus represent good models for extended phenotypic plasticity studies. We performed experiments manipulating the protein intake of two vertically aligned orb web building spiders to determine whether variations in the chemical and physical properties of their spiral and gluey silk affect prey retention in their webs. We found in both spider species that individuals deprived of protein had a greater gluey silk glycoprotein core volume, and this correlated strongly with spiral thread stickiness and increased prey retention by the webs. Moreover, we found strong positive correlations between glue droplet volume and glycoprotein core volume for spiders in the protein-deprived treatment, but weaker correlations for protein-fed spiders. We interpreted these findings as the spiders investing more in glycoprotein when nutrient deprived. We attribute the associated increase in prey retention capacity as a fitness consequence of plasticity in the spiral properties.
Collapse
Affiliation(s)
- Sean J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, University of New South Wales, Sydney 2052, Australia
| | - Penny J Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, University of New South Wales, Sydney 2052, Australia
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|