1
|
Little-Letsinger SE, Cook RW, Wilson D, Truitt K, Schmitt D. Gait compliance alters ground reaction forces in human walking: implications for the evolution of bipedalism. J Exp Biol 2025; 228:jeb250219. [PMID: 40279524 DOI: 10.1242/jeb.250219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/22/2025] [Indexed: 04/27/2025]
Abstract
Despite decades of inquiry, the evolution of bipedalism remains a mystery. Some have argued that a compliant walking gait, with deep hip and knee flexion to moderate ground reaction forces, was used by early human ancestors, marking our relatively stiff modern gait as a recently acquired feature of our genus. Building on previous compliant walking studies, we test the hypothesis that vertical ground reaction forces are attenuated in compliant walking through increases in contact time. Twenty-four adults walked on an instrumented runway using a normal and a compliant gait at a self-selected pace. Vertical, mediolateral and fore-aft ground reaction forces were assessed using both standard discrete and novel continuous methods. We report mixed evidence for the effect of contact time on peak vertical force in the first third of stance during compliant walking. Our data show greater vertical forces at midstance and reduced vertical forces in the last third of stance during compliant walking. Vertical impulse did not differ between gaits. Compliant walking minimized medial and fore-directed forces and increased lateral and aft-directed forces compared with stiff walking. We identified robust increases in lateral and aft impulses. In addition to discrete analysis of force trace peaks, we employed continuous waveform analysis of force traces that confirmed and further illuminated these patterns. Our data clearly demonstrate that compliant walking has lower vertical forces in late stance, with lower medial and fore forces and higher lateral and aft forces across the gait cycle. These results point toward key changes in leg and foot mechanics and advance our understanding of advantages and challenges associated with the evolution of bipedalism.
Collapse
Affiliation(s)
| | - Rebecca W Cook
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708 USA
| | - Demi Wilson
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Kennedy Truitt
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708 USA
| |
Collapse
|
2
|
Druelle F, Özçelebi J, Marchal F, Berillon G. Analyzing Instantaneous Energy in Bipedal Walking of Baboons: A Model for Exploring the Evolutionary Transition Toward Efficient Bipedalism in Hominins. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e70056. [PMID: 40269633 DOI: 10.1002/ajpa.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/05/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
OBJECTIVE Non-human primates exhibit bipedal walking with a typical "bent-hip, bent-knee" posture, incurring additional energy costs as shown by studies using electromyography and mechanical analysis. During the evolution of habitual bipedalism in hominins, this mode underwent a gradual refinement, culminating in the genus Homo. To explore energy conservation mechanisms and the influence of kinematics during occasional bipedal walking, we investigated energy dynamics within different body segments in an ontogenetic sample of baboons. MATERIALS AND METHODS Kinematic and morphometric data from 17 baboons, including mature and immature individuals, were initially collected at the CNRS Primatology station (France). We calculated the potential and kinetic (rotational and translational) energies of various body segments over 40 strides, followed by a comparison with human data. RESULTS Age-related kinematic differences influence energy recovery percentages in baboons, particularly in the shank and trunk segments. While significant differences can be observed between baboons and humans, such as in the trunk, arm, and foot segments, similarities exist in the thigh and shank segments, with the thigh being the primary segment for substantial energy transfer. Unlike humans, baboons lack an optimal speed range for energy recovery. DISCUSSION We present a model for energy recovery in flexed bipedal walking. While baboon bipedalism is inefficient in energy recovery, minor trunk motion adjustments could greatly enhance efficiency. These subtle refinements have the potential to increase energy recovery rates, making bipedalism more practical for regular use. From an evolutionary perspective, such improvements would be particularly noteworthy considering other challenging activities like climbing and arboreal quadrupedalism.
Collapse
Affiliation(s)
- François Druelle
- UMR 7194, Histoire Naturelle Des Humanités Préhistoriques, CNRS-MNHN-UPVD, Paris, France
- UMR 7268, Anthropologie Bio-Culturelle, Droit, Ethique et Santé, AMU-CNRS-EFS, Marseille, France
- Functional Morphology Laboratory, University of Antwerp, Antwerp, Belgium
- UAR 846, Primatology Station, CNRS, Rousset, France
| | - Jonathan Özçelebi
- UMR 7194, Histoire Naturelle Des Humanités Préhistoriques, CNRS-MNHN-UPVD, Paris, France
- UMR 7268, Anthropologie Bio-Culturelle, Droit, Ethique et Santé, AMU-CNRS-EFS, Marseille, France
| | - François Marchal
- UMR 7268, Anthropologie Bio-Culturelle, Droit, Ethique et Santé, AMU-CNRS-EFS, Marseille, France
| | - Gilles Berillon
- UMR 7194, Histoire Naturelle Des Humanités Préhistoriques, CNRS-MNHN-UPVD, Paris, France
- UAR 846, Primatology Station, CNRS, Rousset, France
| |
Collapse
|
3
|
Lawrence AB, Hammond AS, Ward CV. Acetabular orientation, pelvic shape, and the evolution of hominin bipedality. J Hum Evol 2025; 200:103633. [PMID: 39765141 DOI: 10.1016/j.jhevol.2024.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 03/09/2025]
Abstract
Hominin pelvic form differs dramatically from that of other primates by having more laterally facing iliac blades, a wider sacrum, and a larger, transversely broad pelvic inlet. The orientation of the acetabulum may also differ, plausibly related to differences in load transmission during upright posture and habitual bipedal locomotion, which may, in turn, affect overall pelvic geometry. We compared acetabular orientation in humans, a phylogenetically broad sample of extant anthropoid primates, and fossil hominins including Australopithecus afarensis (A.L. 288-1, KSD-VP-1/1), Australopithecus africanus (Sts 14), Australopithecus sediba (MH2), and Homo neanderthalensis (Kebara 2). We measured the three-dimensional orientation of the acetabulum on in silico models of individual hipbones aligned to the median plane by registering models to landmark coordinates on articulated pelves. Humans and fossil hominins both possess significantly more ventrally opening acetabula than other extant anthropoids, which exhibit laterally facing acetabula. The orientation of the hominin acetabulum was essentially humanlike by at least 3.6 Ma, well before the appearance of other unique features in the pelvis of Homo that may be associated with long-distance walking or running, thermoregulation, parturition, and larger body size in this genus. These results suggest that the ventral orientation of the acetabulum is a key component in the suite of pelvic characteristics related to habitual bipedality in hominins and should be considered in future analyses of hominin pelvic morphology.
Collapse
Affiliation(s)
- Austin B Lawrence
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL 60637, USA.
| | - Ashley S Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA; New York Consortium in Evolutionary Primatology, New York, NY 10024, USA
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Druelle F, Ghislieri M, Molina-Vila P, Rimbaud B, Agostini V, Berillon G. A comparative study of muscle activity and synergies during walking in baboons and humans. J Hum Evol 2024; 189:103513. [PMID: 38401300 DOI: 10.1016/j.jhevol.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Bipedal locomotion was a major functional change during hominin evolution, yet, our understanding of this gradual and complex process remains strongly debated. Based on fossil discoveries, it is possible to address functional hypotheses related to bipedal anatomy, however, motor control remains intangible with this approach. Using comparative models which occasionally walk bipedally has proved to be relevant to shed light on the evolutionary transition toward habitual bipedalism. Here, we explored the organization of the neuromuscular control using surface electromyography (sEMG) for six extrinsic muscles in two baboon individuals when they walk quadrupedally and bipedally on the ground. We compared their muscular coordination to five human subjects walking bipedally. We extracted muscle synergies from the sEMG envelopes using the non-negative matrix factorization algorithm which allows decomposing the sEMG data in the linear combination of two non-negative matrixes (muscle weight vectors and activation coefficients). We calculated different parameters to estimate the complexity of the sEMG signals, the duration of the activation of the synergies, and the generalizability of the muscle synergy model across species and walking conditions. We found that the motor control strategy is less complex in baboons when they walk bipedally, with an increased muscular activity and muscle coactivation. When comparing the baboon bipedal and quadrupedal pattern of walking to human bipedalism, we observed that the baboon bipedal pattern of walking is closer to human bipedalism for both baboons, although substantial differences remain. Overall, our findings show that the muscle activity of a non-adapted biped effectively fulfills the basic mechanical requirements (propulsion and balance) for walking bipedally, but substantial refinements are possible to optimize the efficiency of bipedal locomotion. In the evolutionary context of an expanding reliance on bipedal behaviors, even minor morphological alterations, reducing muscle coactivation, could have faced strong selection pressure, ultimately driving bipedal evolution in hominins.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France; Functional Morphology Laboratory, University of Antwerp, Campus Drie Eiken (Building D), Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Pablo Molina-Vila
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Brigitte Rimbaud
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Gilles Berillon
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| |
Collapse
|
5
|
Xv XW, Chen WB, Xiong CH, Huang B, Cheng LF, Sun BY. Exploring the effects of skeletal architecture and muscle properties on bipedal standing in the common chimpanzee ( Pan troglodytes) from the perspective of biomechanics. Front Bioeng Biotechnol 2023; 11:1140262. [PMID: 37214291 PMCID: PMC10196953 DOI: 10.3389/fbioe.2023.1140262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: It is well known that the common chimpanzee, as both the closest living relative to humans and a facultative bipedal, has the capability of bipedal standing but cannot do so fully upright. Accordingly, they have been of exceeding significance in elucidating the evolution of human bipedalism. There are many reasons why the common chimpanzee can only stand with its hips-knees bent, such as the distally oriented long ischial tubercle and the almost absent lumbar lordosis. However, it is unknown how the relative positions of their shoulder-hip-knee-ankle joints are coordinated. Similarly, the distribution of the biomechanical characteristics of the lower-limb muscles and the factors that affect the erectness of standing as well as the muscle fatigue of the lower limbs remain a mystery. The answers are bound to light up the evolutional mechanism of hominin bipedality, but these conundrums have not been shed much light upon, because few studies have comprehensively explored the effects of skeletal architecture and muscle properties on bipedal standing in common chimpanzees. Methods: Thus, we first built a musculoskeletal model comprising the head-arms-trunk (HAT), thighs, shanks, and feet segments of the common chimpanzee, and then, the mechanical relationships of the Hill-type muscle-tendon units (MTUs) in bipedal standing were deduced. Thereafter, the equilibrium constraints were established, and a constrained optimization problem was formulated where the optimization objective was defined. Finally, thousands of simulations of bipedal standing experiments were performed to determine the optimal posture and its corresponding MTU parameters including muscle lengths, muscle activation, and muscle forces. Moreover, to quantify the relationship between each pair of the parameters from all the experimental simulation outcomes, the Pearson correlation analysis was employed. Results: Our results demonstrate that in the pursuit of the optimal bipedal standing posture, the common chimpanzee cannot simultaneously achieve maximum erectness and minimum muscle fatigue of the lower limbs. For uni-articular MTUs, the relationship between muscle activation, relative muscle lengths, together with relative muscle forces, and the corresponding joint angle is generally negatively correlated for extensors and positively correlated for flexors. For bi-articular MTUs, the relationship between muscle activation, coupled with relative muscle forces, and the corresponding joint angles does not show the same pattern as in the uni-articular MTUs. Discussion: The results of this study bridge the gap between skeletal architecture, along with muscle properties, and biomechanical performance of the common chimpanzee during bipedal standing, which enhances existing biomechanical theories and advances the comprehension of bipedal evolution in humans.
Collapse
|
6
|
Liang F, Yu S, Pang S, Wang X, Jie J, Gao F, Song Z, Li B, Liao WH, Yin M. Non-human primate models and systems for gait and neurophysiological analysis. Front Neurosci 2023; 17:1141567. [PMID: 37188006 PMCID: PMC10175625 DOI: 10.3389/fnins.2023.1141567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Brain-computer interfaces (BCIs) have garnered extensive interest and become a groundbreaking technology to restore movement, tactile sense, and communication in patients. Prior to their use in human subjects, clinical BCIs require rigorous validation and verification (V&V). Non-human primates (NHPs) are often considered the ultimate and widely used animal model for neuroscience studies, including BCIs V&V, due to their proximity to humans. This literature review summarizes 94 NHP gait analysis studies until 1 June, 2022, including seven BCI-oriented studies. Due to technological limitations, most of these studies used wired neural recordings to access electrophysiological data. However, wireless neural recording systems for NHPs enabled neuroscience research in humans, and many on NHP locomotion, while posing numerous technical challenges, such as signal quality, data throughout, working distance, size, and power constraint, that have yet to be overcome. Besides neurological data, motion capture (MoCap) systems are usually required in BCI and gait studies to capture locomotion kinematics. However, current studies have exclusively relied on image processing-based MoCap systems, which have insufficient accuracy (error: ≥4° and 9 mm). While the role of the motor cortex during locomotion is still unclear and worth further exploration, future BCI and gait studies require simultaneous, high-speed, accurate neurophysiological, and movement measures. Therefore, the infrared MoCap system which has high accuracy and speed, together with a high spatiotemporal resolution neural recording system, may expand the scope and improve the quality of the motor and neurophysiological analysis in NHPs.
Collapse
Affiliation(s)
- Fengyan Liang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- Department of Rehabilitation Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shanshan Yu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Siqi Pang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Xiao Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Jing Jie
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
| | - Fei Gao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenhua Song
- Department of Rehabilitation Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Binbin Li
- Department of Rehabilitation Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Wei-Hsin Liao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, China
| | - Ming Yin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, China
- *Correspondence: Ming Yin,
| |
Collapse
|
7
|
Aguilar LK, Collins CE, Ward CV, Hammond AS. Pathways to primate hip function. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211762. [PMID: 35845850 PMCID: PMC9277236 DOI: 10.1098/rsos.211762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding how diverse locomotor repertoires evolved in anthropoid primates is key to reconstructing the clade's evolution. Locomotor behaviour is often inferred from proximal femur morphology, yet the relationship of femoral variation to locomotor diversity is poorly understood. Extant acrobatic primates have greater ranges of hip joint mobility-particularly abduction-than those using more stereotyped locomotion, but how bony morphologies of the femur and pelvis interact to produce different locomotor abilities is unknown. We conducted hypothesis-driven path analyses via regularized structural equation modelling (SEM) to determine which morphological traits are the strongest predictors of hip abduction in anthropoid primates. Seven femoral morphological traits and two hip abduction measures were obtained from 25 primate species, split into broad locomotor and taxonomic groups. Through variable selection and fit testing techniques, insignificant predictors were removed to create the most parsimonious final models. Some morphological predictors, such as femur shaft length and neck-shaft angle, were important across models. Different trait combinations best predicted hip abduction by locomotor or taxonomic group, demonstrating group-specific linkages among morphology, mobility and behaviour. Our study illustrates the strength of SEM for identifying biologically important relationships between morphology and performance, which will have future applications for palaeobiological and biomechanical studies.
Collapse
Affiliation(s)
- Lucrecia K. Aguilar
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
| | - Clint E. Collins
- Department of Biological Sciences, California State University – Sacramento, Sacramento, CA 95819, USA
| | - Carol V. Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA
| | - Ashley S. Hammond
- Division of Anthropology, American Museum of Natural History, New York, NY 10024, USA
- New York Consortium of Evolutionary Primatology (NYCEP), New York, NY 10024, USA
| |
Collapse
|
8
|
O'Neill MC, Demes B, Thompson NE, Larson SG, Stern JT, Umberger BR. Adaptations for bipedal walking: Musculoskeletal structure and three-dimensional joint mechanics of humans and bipedal chimpanzees (Pan troglodytes). J Hum Evol 2022; 168:103195. [PMID: 35596976 DOI: 10.1016/j.jhevol.2022.103195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 11/25/2022]
Abstract
Humans are unique among apes and other primates in the musculoskeletal design of their lower back, pelvis, and lower limbs. Here, we describe the three-dimensional ground reaction forces and lower/hindlimb joint mechanics of human and bipedal chimpanzees walking over a full stride and test whether: 1) the estimated limb joint work and power during the stance phase, especially the single-support period, is lower in humans than bipedal chimpanzees, 2) the limb joint work and power required for limb swing is lower in humans than in bipedal chimpanzees, and 3) the estimated total mechanical power during walking, accounting for the storage of passive elastic strain energy in humans, is lower in humans than in bipedal chimpanzees. Humans and bipedal chimpanzees were compared at matched dimensionless and dimensional velocities. Our results indicate that humans walk with significantly less work and power output in the first double-support period and the single-support period of stance, but markedly exceed chimpanzees in the second double-support period (i.e., push-off). Humans generate less work and power in limb swing, although the species difference in limb swing power was not statistically significant. We estimated that total mechanical positive 'muscle fiber' work and power were 46.9% and 35.8% lower, respectively, in humans than in bipedal chimpanzees at matched dimensionless speeds. This is due in part to mechanisms for the storage and release of elastic energy at the ankle and hip in humans. Furthermore, these results indicate distinct 'heel strike' and 'lateral balance' mechanics in humans and bipedal chimpanzees and suggest a greater dissipation of mechanical energy through soft tissue deformations in humans. Together, our results document important differences between human and bipedal chimpanzee walking mechanics over a full stride, permitting a more comprehensive understanding of the mechanics and energetics of chimpanzee bipedalism and the evolution of hominin walking.
Collapse
Affiliation(s)
- Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308, USA.
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Nathan E Thompson
- Department of Anatomy, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Susan G Larson
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Jack T Stern
- Department of Anatomical Sciences, Stony Brook University School of Medicine, Stony Brook, NY 11794, USA
| | - Brian R Umberger
- School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2013, USA
| |
Collapse
|
9
|
Holowka NB, Kraft TS, Wallace IJ, Gurven M, Venkataraman VV. Forest terrains influence walking kinematics among indigenous Tsimane of the Bolivian Amazon. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e19. [PMID: 37588935 PMCID: PMC10426037 DOI: 10.1017/ehs.2022.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Laboratory-based studies indicate that a major evolutionary advantage of bipedalism is enabling humans to walk with relatively low energy expenditure. However, such studies typically record subjects walking on even surfaces or treadmills that do not represent the irregular terrains our species encounters in natural environments. To date, few studies have quantified walking kinematics on natural terrains. Here we used high-speed video to record marker-based kinematics of 21 individuals from a Tsimane forager-horticulturalist community in the Bolivian Amazon walking on three different terrains: a dirt field, a forest trail and an unbroken forest transect. Compared with the field, in the unbroken forest participants contacted the ground with more protracted legs and flatter foot postures, had more inclined trunks, more flexed hips and knees, and raised their feet higher during leg swing. In contrast, kinematics were generally similar between trail and field walking. These results provide preliminary support for the idea that irregular natural surfaces like those in forests cause humans to alter their walking kinematics, such that travel in these environments could be more energetically expensive than would be assumed from laboratory-based data. These findings have important implications for the evolutionary energetics of human foraging in environments with challenging terrains.
Collapse
Affiliation(s)
| | - Thomas S. Kraft
- Department of Anthropology, University of Utah, Salt Lake City, UT, USA
- Department of Anthropology, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Ian J. Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
| | - Michael Gurven
- Department of Anthropology, University of California-Santa Barbara, Santa Barbara, CA, USA
| | | |
Collapse
|
10
|
Johnson RT, O'Neill MC, Umberger BR. The effects of posture on the three-dimensional gait mechanics of human walking in comparison to bipedal chimpanzees. J Exp Biol 2022; 225:274182. [DOI: 10.1242/jeb.243272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/24/2022] [Indexed: 11/20/2022]
Abstract
Humans walk with an upright posture on extended limbs during stance and with a double-peaked vertical ground reaction force. Our closest living relatives, chimpanzees, are facultative bipeds that walk with a crouched posture on flexed, abducted hind limbs and with a single-peaked vertical ground reaction force. Differences in human and bipedal chimpanzee three-dimensional kinematics have been well quantified, yet it is unclear what the independent effects of using a crouched posture are on three-dimensional gait mechanics for humans, and how they compare with chimpanzees. Understanding the relationships between posture and gait mechanics, with known differences in morphology between species, can help researchers better interpret the effects of trait evolution on bipedal walking. We quantified pelvis and lower limb three-dimensional kinematics and ground reaction forces as humans adopted a series of upright and crouched postures and compared them with data from bipedal chimpanzee walking. Human crouched posture gait mechanics were more similar to bipedal chimpanzee gait than normal human walking, especially in sagittal plane hip and knee angles. However, there were persistent differences between species, as humans walked with less transverse plane pelvis rotation, less hip abduction, and greater peak horizontal ground reaction force in late stance than chimpanzees. Our results suggest that human crouched posture walking reproduces only a small subset of the characteristics of three-dimensional kinematics and ground reaction forces of chimpanzee walking, with the remaining differences likely due in large part to the distinct musculoskeletal morphologies of humans and chimpanzees.
Collapse
Affiliation(s)
- Russell T. Johnson
- Department of Kinesiology, University of Massachusetts Amherst, Amherst MA, USA
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles CA, USA
| | | | | |
Collapse
|
11
|
McNutt EJ, Hatala KG, Miller C, Adams J, Casana J, Deane AS, Dominy NJ, Fabian K, Fannin LD, Gaughan S, Gill SV, Gurtu J, Gustafson E, Hill AC, Johnson C, Kallindo S, Kilham B, Kilham P, Kim E, Liutkus-Pierce C, Maley B, Prabhat A, Reader J, Rubin S, Thompson NE, Thornburg R, Williams-Hatala EM, Zimmer B, Musiba CM, DeSilva JM. Footprint evidence of early hominin locomotor diversity at Laetoli, Tanzania. Nature 2021; 600:468-471. [PMID: 34853470 PMCID: PMC8674131 DOI: 10.1038/s41586-021-04187-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022]
Abstract
Bipedal trackways discovered in 1978 at Laetoli site G, Tanzania and dated to 3.66 million years ago are widely accepted as the oldest unequivocal evidence of obligate bipedalism in the human lineage1-3. Another trackway discovered two years earlier at nearby site A was partially excavated and attributed to a hominin, but curious affinities with bears (ursids) marginalized its importance to the paleoanthropological community, and the location of these footprints fell into obscurity3-5. In 2019, we located, excavated and cleaned the site A trackway, producing a digital archive using 3D photogrammetry and laser scanning. Here we compare the footprints at this site with those of American black bears, chimpanzees and humans, and we show that they resemble those of hominins more than ursids. In fact, the narrow step width corroborates the original interpretation of a small, cross-stepping bipedal hominin. However, the inferred foot proportions, gait parameters and 3D morphologies of footprints at site A are readily distinguished from those at site G, indicating that a minimum of two hominin taxa with different feet and gaits coexisted at Laetoli.
Collapse
Affiliation(s)
- Ellison J McNutt
- Department of Biomedical Sciences, Ohio University Heritage College of Medicine, Athens, OH, USA.
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, PA, USA
| | - Catherine Miller
- Ecology, Evolution, Environment and Society Graduate Program, Dartmouth College, Hanover, NH, USA
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
| | - James Adams
- Dartmouth Library, Dartmout College, Hanover, NH, USA
- Information, Technology, and Consulting, Dartmouth College, Hanover, NH, USA
| | - Jesse Casana
- Ecology, Evolution, Environment and Society Graduate Program, Dartmouth College, Hanover, NH, USA
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
| | - Andrew S Deane
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathaniel J Dominy
- Ecology, Evolution, Environment and Society Graduate Program, Dartmouth College, Hanover, NH, USA
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
| | - Kallisti Fabian
- Department of Cultural Heritage, Ngorongoro Conservation Area Authority, Arusha, Tanzania
| | - Luke D Fannin
- Ecology, Evolution, Environment and Society Graduate Program, Dartmouth College, Hanover, NH, USA
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
| | - Stephen Gaughan
- Information, Technology, and Consulting, Dartmouth College, Hanover, NH, USA
| | - Simone V Gill
- Department of Occupational Therapy, Boston University, Boston, MA, USA
| | - Josephat Gurtu
- Department of Cultural Heritage, Ngorongoro Conservation Area Authority, Arusha, Tanzania
| | - Ellie Gustafson
- Department of Anthropology, University of Colorado, Denver, CO, USA
| | - Austin C Hill
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | - Camille Johnson
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
| | - Said Kallindo
- Department of Cultural Heritage, Ngorongoro Conservation Area Authority, Arusha, Tanzania
| | | | | | - Elizabeth Kim
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Cynthia Liutkus-Pierce
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | - Blaine Maley
- Department of Anatomy, Idaho College of Osteopathic Medicine, Meridian, ID, USA
| | - Anjali Prabhat
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
| | - John Reader
- Department of Anthropology, University College London, London, UK
| | - Shirley Rubin
- Department of Anthropology, Napa Valley College, Napa, CA, USA
| | - Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Rebeca Thornburg
- Department of Anthropology, University of Colorado, Denver, CO, USA
| | | | - Brian Zimmer
- Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | - Charles M Musiba
- Department of Anthropology, University of Colorado, Denver, CO, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
- Instituto Superior Politécnico de Tecnologia e Ciências, Luanda Angola, Angola
| | - Jeremy M DeSilva
- Ecology, Evolution, Environment and Society Graduate Program, Dartmouth College, Hanover, NH, USA
- Department of Anthropology, Dartmouth College, Hanover, NH, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Sylvester AD, Lautzenheiser SG, Kramer PA. A review of musculoskeletal modelling of human locomotion. Interface Focus 2021; 11:20200060. [PMID: 34938430 DOI: 10.1098/rsfs.2020.0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 01/07/2023] Open
Abstract
Locomotion through the environment is important because movement provides access to key resources, including food, shelter and mates. Central to many locomotion-focused questions is the need to understand internal forces, particularly muscle forces and joint reactions. Musculoskeletal modelling, which typically harnesses the power of inverse dynamics, unites experimental data that are collected on living subjects with virtual models of their morphology. The inputs required for producing good musculoskeletal models include body geometry, muscle parameters, motion variables and ground reaction forces. This methodological approach is critically informed by both biological anthropology, with its focus on variation in human form and function, and mechanical engineering, with a focus on the application of Newtonian mechanics to current problems. Here, we demonstrate the application of a musculoskeletal modelling approach to human walking using the data of a single male subject. Furthermore, we discuss the decisions required to build the model, including how to customize the musculoskeletal model, and suggest cautions that both biological anthropologists and engineers who are interested in this topic should consider.
Collapse
Affiliation(s)
- Adam D Sylvester
- Center for Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, 1830 E. Monument Street, Baltimore, MD 21205, USA
| | - Steven G Lautzenheiser
- Department of Anthropology, University of Washington, Denny Hall, Seattle, WA 98195, USA.,Department of Anthropology, The University of Tennessee, Strong Hall, Knoxville, TN 37996, USA
| | - Patricia Ann Kramer
- Department of Anthropology, University of Washington, Denny Hall, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Thompson NE, Rubinstein D, Parrella-O'Donnell W, Brett MA, Demes B, Larson SG, O'Neill MC. The loss of the 'pelvic step' in human evolution. J Exp Biol 2021; 224:271233. [PMID: 34412111 DOI: 10.1242/jeb.240440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Human bipedalism entails relatively short strides compared with facultatively bipedal primates. Unique non-sagittal-plane motions associated with bipedalism may account for part of this discrepancy. Pelvic rotation anteriorly translates the hip, contributing to bipedal stride length (i.e. the 'pelvic step'). Facultative bipedalism in non-human primates entails much larger pelvic rotation than in humans, suggesting that a larger pelvic step may contribute to their relatively longer strides. We collected data on the pelvic step in bipedal chimpanzees and over a wide speed range of human walking. At matched dimensionless speeds, humans have 26.7% shorter dimensionless strides, and a pelvic step 5.4 times smaller than bipedal chimpanzees. Differences in pelvic rotation explain 31.8% of the difference in dimensionless stride length between the two species. We suggest that relative stride lengths and the pelvic step have been significantly reduced throughout the course of hominin evolution.
Collapse
Affiliation(s)
- Nathan E Thompson
- Department of Anatomy, NYIT College of Osteopathic Medicine, Old Westbury, NY 11568,USA
| | | | | | - Matthew A Brett
- NYIT College of Osteopathic Medicine, Old Westbury, NY 11568,USA
| | - Brigitte Demes
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794,USA
| | - Susan G Larson
- Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794,USA
| | - Matthew C O'Neill
- Department of Anatomy, Midwestern University, Glendale, AZ 85308,USA
| |
Collapse
|
14
|
Raichlen DA, Pontzer H. Energetic and endurance constraints on great ape quadrupedalism and the benefits of hominin bipedalism. Evol Anthropol 2021; 30:253-261. [PMID: 34347329 DOI: 10.1002/evan.21911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 01/13/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022]
Abstract
Bipedal walking was one of the first key behavioral traits that defined the evolution of early hominins. While it is not possible to identify specific selection pressures underlying bipedal evolution, we can better understand how the adoption of bipedalism may have benefited our hominin ancestors. Here, we focus on how bipedalism relaxes constraints on nonhuman primate quadrupedal limb mechanics, providing key advantages during hominin evolution. Nonhuman primate quadrupedal kinematics, especially in our closest living relatives, the great apes, are dominated by highly flexed limb joints, often associated with high energy costs, and are constrained by the need to reduce loads on mobile, but less stable forelimb joints. Bipedal walking would have allowed greater hind limb joint extension, which is associated with reduced energy costs and increased endurance. We suggest that relaxing these constraints provided bipedal hominins important benefits associated with long distance foraging and mobility.
Collapse
Affiliation(s)
- David A Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| |
Collapse
|
15
|
Oku H, Ide N, Ogihara N. Forward dynamic simulation of Japanese macaque bipedal locomotion demonstrates better energetic economy in a virtualised plantigrade posture. Commun Biol 2021; 4:308. [PMID: 33686215 PMCID: PMC7940622 DOI: 10.1038/s42003-021-01831-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
A plantigrade foot with a large robust calcaneus is regarded as a distinctive morphological feature of the human foot; it is presumably the result of adaptation for habitual bipedal locomotion. The foot of the Japanese macaque, on the other hand, does not have such a feature, which hampers it from making foot-ground contact at the heel during bipedal locomotion. Understanding how this morphological difference functionally affects the generation of bipedal locomotion is crucial for elucidating the evolution of human bipedalism. In this study, we constructed a forward dynamic simulation of bipedal locomotion in the Japanese macaque based on a neuromusculoskeletal model to evaluate how virtual manipulation of the foot structure from digitigrade to plantigrade affects the kinematics, dynamics, and energetics of bipedal locomotion in a nonhuman primate whose musculoskeletal anatomy is not adapted to bipedalism. The normal bipedal locomotion generated was in good agreement with that of actual Japanese macaques. If, as in human walking, the foot morphology was altered to allow heel contact, the vertical ground reaction force profile became double-peaked and the cost of transport decreased. These results suggest that evolutionary changes in the foot structure were important for the acquisition of human-like efficient bipedal locomotion.
Collapse
Affiliation(s)
- Hideki Oku
- grid.26091.3c0000 0004 1936 9959Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Naohiko Ide
- grid.26091.3c0000 0004 1936 9959Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Naomichi Ogihara
- grid.26091.3c0000 0004 1936 9959Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Is step width decoupled from pelvic motion in human evolution? Sci Rep 2020; 10:7806. [PMID: 32385415 PMCID: PMC7210942 DOI: 10.1038/s41598-020-64799-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/17/2020] [Indexed: 11/09/2022] Open
Abstract
Humans are the only primate that walk bipedally with adducted hips, valgus knees, and swing-side pelvic drop. These characteristic frontal-plane aspects of bipedalism likely play a role in balance and energy minimization during walking. Understanding when and why these aspects of bipedalism evolved also requires an understanding of how each of these features are interrelated during walking. Here we investigated the relationship between step width, hip adduction, and pelvic list during bipedalism by altering step widths and pelvic motions in humans in ways that both mimic chimpanzee gait as well as an exaggerated human gait. Our results show that altering either step width or pelvic list to mimic those of chimpanzees affects hip adduction, but neither of these gait parameters dramatically affects the other in ways that lead to a chimpanzee-like gait. These results suggest that the evolution of valgus knees and narrow steps in humans may be decoupled from the evolution of the human-like pattern of pelvic list. While the origin of narrow steps in hominins may be linked to minimizing energetic cost of locomotion, the origin of the human-like pattern of pelvic list remains unresolved.
Collapse
|
17
|
Reitmaier S, Schmidt H. Review article on spine kinematics of quadrupeds and bipeds during walking. J Biomech 2020; 102:109631. [DOI: 10.1016/j.jbiomech.2020.109631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 12/23/2022]
|
18
|
Takeuchi S, Hirasaki E, Kumakura H. Muscle Spindle Density of Lateral Rotators of the Thigh in Japanese Macaques and a Gibbon. Cells Tissues Organs 2020; 208:1-12. [PMID: 31927538 PMCID: PMC7212700 DOI: 10.1159/000504958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 02/02/2020] [Accepted: 11/24/2019] [Indexed: 01/07/2023] Open
Abstract
We examined the six small lateral rotators of the hip joint, which is one of the most flexible joints and allows kinematically complex motions of the hindlimb, to elucidate the functional differentiation among these muscles and to test the hypothesis that species-specific characteristics in hindlimb use during locomotion are reflected in the muscle spindle density and in other parameters of the deep small hip joint rotators. For these purposes, we estimated the number of muscle spindles of the superior gemellus muscle (SG), inferior gemellus muscle, quadratus femoris muscle, obturator internus muscle (OI), obturator externus muscle, and piriformis muscle in three Japanese macaques and a gibbon, using 30-µm-thick serial sections throughout each muscle length after azan staining. The numbers of muscle spindles per 10,000 muscle fibers were determined to compare inter-muscle variation. The spindle density was highest in the SG and lowest in the OI in the Japanese macaques, suggesting that the SG, which is attached to the tendon of the OI, functions as a kinesiological monitor of the OI. On the other hand, SG the was missing in the gibbon, and the OI in the gibbon contained more spindles than that in the Japanese macaques. This suggests that the SG and the OI fused into one muscle in the gibbon. We postulate that the relative importance of the deep small hip rotator muscles differs between the Japanese macaques and gibbon and that the gibbon's muscles are less differentiated in terms of the spindle density, probably because this brachiating species uses its hindlimbs less frequently.
Collapse
Affiliation(s)
- Sawa Takeuchi
- Department of Biological Anthropology, Graduate School of Human Sciences, Osaka University, Suita, Japan
| | - Eishi Hirasaki
- Section of Evolutionary Morphology, Primate Research Institute, Kyoto University, Inuyama, Japan,
| | - Hiroo Kumakura
- Department of Biological Anthropology, Graduate School of Human Sciences, Osaka University, Suita, Japan
| |
Collapse
|
19
|
Thompson NE, O’Neill MC, Holowka NB, Demes B. Step width and frontal plane trunk motion in bipedal chimpanzee and human walking. J Hum Evol 2018; 125:27-37. [DOI: 10.1016/j.jhevol.2018.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 09/22/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|