1
|
Dunning J, Sheard C, Endler JA. Viewing conditions predict evolutionary diversity in avian plumage colour. Proc Biol Sci 2025; 292:20241728. [PMID: 40199356 PMCID: PMC11978446 DOI: 10.1098/rspb.2024.1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/07/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Animals communicate using multiple sensory channels, including via vision. The colourful plumage of birds is a model system to study visual communication, having evolved through a complex interplay of processes, acting not only on the ability of a plumage patch to convey information, but also in response to physiological and environmental factors. Although much research on inter-specific variation in bird plumage has concentrated on sexual selection, much less has considered the role of non-sexual selection and how it is affected by the joint effects of avian viewing conditions and receiver vision. Here, we combined a taxonomically diverse database of avian plumage reflectance measurements with bird vision models, habitat and behavioural data to test the effect of three factors that affect viewing conditions-habitat openness, migratory preference and diel activity-on avian plumage contrast, accounting for shared evolutionary history and variation in avian visual systems. We find that habitat structure and migratory preference predicted plumage visual contrast, especially for females. Our study therefore demonstrates the important role of non-sexually selected traits, viewing conditions and bird vision, in shaping avian plumage contrast.
Collapse
Affiliation(s)
- Jamie Dunning
- Department of Life Sciences, Imperial College London, London, UK
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 3AA, UK
| | - Catherine Sheard
- Palaeobiology Research Group, University of Bristol, BristolBS8 1TQ, UK
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, UK
| | - John A. Endler
- Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC3216, Australia
- Department of Zoology and Ecology, James Cook University, Smithfield, Cairns, QLD4870, Australia
| |
Collapse
|
2
|
Eliason CM, Nicolaï MPJ, Bom C, Blom E, D'Alba L, Shawkey MD. Transitions between colour mechanisms affect speciation dynamics and range distributions of birds. Nat Ecol Evol 2024; 8:1723-1734. [PMID: 39060476 DOI: 10.1038/s41559-024-02487-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Several ecogeographical 'rules' have been proposed to explain colour variation at broad spatial and phylogenetic scales but these rarely consider whether colours are based on pigments or structural colours. However, mechanism can have profound effects on the function and evolution of colours. Here, we combine geographic information, climate data and colour mechanism at broad phylogenetic (9,409 species) and spatial scales (global) to determine how transitions between pigmentary and structural colours influence speciation dynamics and range distributions in birds. Among structurally coloured species, we find that rapid dispersal into tropical regions drove the accumulation of iridescent species, whereas the build-up of non-iridescent species in the tropics was driven by a combination of dispersal and faster in situ evolution in the tropics. These results could be explained by pleiotropic links between colouration and dispersal behaviour or ecological factors influencing colonization success. These data elucidate geographic patterns of colouration at a global scale and provide testable hypotheses for future work on birds and other animals with structural colours.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL, USA.
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA.
| | - Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
- Department of Recent Vertebrates, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Cynthia Bom
- Faculty of Science, Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Eline Blom
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
- Evolutionary Ecology Group, Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Nicolaï MPJ, Van Hecke B, Rogalla S, Debruyn G, Bowie RCK, Matzke NJ, Hackett SJ, D'Alba L, Shawkey MD. The Evolution of Multiple Color Mechanisms Is Correlated with Diversification in Sunbirds (Nectariniidae). Syst Biol 2024; 73:343-354. [PMID: 38289860 DOI: 10.1093/sysbio/syae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
How and why certain groups become speciose is a key question in evolutionary biology. Novel traits that enable diversification by opening new ecological niches are likely important mechanisms. However, ornamental traits can also promote diversification by opening up novel sensory niches and thereby creating novel inter-specific interactions. More specifically, ornamental colors may enable more precise and/or easier species recognition and may act as key innovations by increasing the number of species-specific patterns and promoting diversification. While the influence of coloration on diversification is well-studied, the influence of the mechanisms that produce those colors (e.g., pigmentary, nanostructural) is less so, even though the ontogeny and evolution of these mechanisms differ. We estimated a new phylogenetic tree for 121 sunbird species and combined color data of 106 species with a range of phylogenetic tools to test the hypothesis that the evolution of novel color mechanisms increases diversification in sunbirds, one of the most colorful bird clades. Results suggest that: (1) the evolution of novel color mechanisms expands the visual sensory niche, increasing the number of achievable colors, (2) structural coloration diverges more readily across the body than pigment-based coloration, enabling an increase in color complexity, (3) novel color mechanisms might minimize trade-offs between natural and sexual selection such that color can function both as camouflage and conspicuous signal, and (4) despite structural colors being more colorful and mobile, only melanin-based coloration is positively correlated with net diversification. Together, these findings explain why color distances increase with an increasing number of sympatric species, even though packing of color space predicts otherwise.
Collapse
Affiliation(s)
- Michaël P J Nicolaï
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Bert Van Hecke
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Svana Rogalla
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Instituto Biofisika (UPV/EHU, CSIC), Barrio Sarriena, 48940 Leioa, Spain
| | - Gerben Debruyn
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Liliana D'Alba
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Matthew D Shawkey
- Biology Department, Evolution and Optics of Nanostructures Group, Ghent University, Ledeganckstraat 35, 9000, Ghent, Belgium
| |
Collapse
|
4
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
5
|
Rodríguez-Lorenzo M, Mauri N, Royo C, Rambla JL, Diretto G, Demurtas O, Hilbert G, Renaud C, Tobar V, Huete J, Delrot S, Granell A, Martínez-Zapater JM, Carbonell-Bejerano P. The flavour of grape colour: anthocyanin content tunes aroma precursor composition by altering the berry microenvironment. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6369-6390. [PMID: 37294268 PMCID: PMC10627162 DOI: 10.1093/jxb/erad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
Anthocyaninless (white) instead of black/red (coloured) fruits develop in grapevine cultivars without functional VviMYBA1 and VviMYBA2 genes, and this conditions the colour of wines that can be produced. To evaluate whether this genetic variation has additional consequences on fruit ripening and composition, we performed comparisons of microenvironment, transcriptomics, and metabolomics of developing grapes between near-isogenic white- and black-berried somatic variants of Garnacha and Tempranillo cultivars. Berry temperature was as much as 3.5 ºC lower in white- compared to black-berried Tempranillo. An RNA-seq study combined with targeted and untargeted metabolomics revealed that ripening fruits of white-berried variants were characterized by the up-regulation of photosynthesis-related and other light-responsive genes and by their higher accumulation of specific terpene aroma precursors, fatty acid-derived aldehyde volatiles, and phenylpropanoid precursor amino acids. MYBA1-MYBA2 function proved essential for flavonol trihydroxylation in black-berried somatic variants, which were also characterized by enhanced expression of pathogen defence genes in the berry skin and increased accumulation of C6-derived alcohol and ester volatiles and γ-aminobutyric acid. Collectively, our results indicate that anthocyanin depletion has side-effects on grape composition by altering the internal microenvironment of the berry and the partitioning of the phenylpropanoid pathway. Our findings show how fruit colour can condition other fruit features, such as flavour potential and stress homeostasis.
Collapse
Affiliation(s)
- Maite Rodríguez-Lorenzo
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Nuria Mauri
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Carolina Royo
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - José L Rambla
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, CSIC - Universidad Politécnica de Valencia, 46011 Valencia, Spain
- Universitat Jaume I, Departamento de Biología, Bioquímica y Ciencias Naturales, 12071 Castellón de la Plana, Spain
| | - Gianfranco Diretto
- Italian National Agency for New Technologies Energy and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Olivia Demurtas
- Italian National Agency for New Technologies Energy and Sustainable Development, Casaccia Research Centre, 00123 Rome, Italy
| | - Ghislaine Hilbert
- EGFV, Bordeaux Sciences Agro, INRA - Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, France
| | - Christel Renaud
- EGFV, Bordeaux Sciences Agro, INRA - Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, France
| | - Vanessa Tobar
- Servicio de Información Agroclimática de La Rioja (SIAR). Consejería de Agricultura, Ganadería y Medio Ambiente, Gobierno de La Rioja, 26007 Logroño, Spain
| | - Joaquín Huete
- Servicio de Información Agroclimática de La Rioja (SIAR). Consejería de Agricultura, Ganadería y Medio Ambiente, Gobierno de La Rioja, 26007 Logroño, Spain
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRA - Université de Bordeaux, ISVV, 33140 Villenave d’Ornon, France
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, IBMCP, CSIC - Universidad Politécnica de Valencia, 46011 Valencia, Spain
| | - José Miguel Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino, ICVV, CSIC - Universidad de La Rioja - Gobierno de La Rioja, 26007 Logroño, Spain
| |
Collapse
|
6
|
Viola W, Zhao P, Andrew TL. Solar Thermal Textiles for On-Body Radiative Energy Collection Inspired by Polar Animals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19393-19402. [PMID: 37018749 DOI: 10.1021/acsami.2c23075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Humans use textiles to maintain thermal homeostasis amidst environmental extremes but known textiles have limited thermal windows. There is evidence that polar-dwelling animals have evolved a different mechanism of thermoregulation by using optical polymer materials to achieve an on-body "greenhouse" effect. Here, we design a bilayer textile to mimic these adaptations. Two ultralightweight fabrics with complementary optical functions, a polypropylene visible-transparent insulator and a nylon visible-absorber-infrared-reflector coated with a conjugated polymer, perform the same putative function as polar bear hair and skin, respectively. While retaining familiar textile qualities, these layers suppress dissipation of body heat and maximize radiative absorption of visible light. Under moderate illumination of 130 W/m2, the textile achieves a heating effect of +10 °C relative to a typical cotton T-shirt which is 30% heavier. Current approaches to personal radiative heating are limited to absorber/reflector layer optimization alone and fail to reproduce the thermoregulation afforded by the absorber-transmitter structure of polar animal pelts. With increasing pressures to adapt to a rapidly changing climate, our work leverages optical polymers to bridge this gap and evolve the basic function of textiles.
Collapse
Affiliation(s)
- Wesley Viola
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Peiyao Zhao
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Trisha L Andrew
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
7
|
Beltrán DF, Araya-Salas M, Parra JL, Stiles FG, Rico-Guevara A. The evolution of sexually dimorphic traits in ecological gradients: an interplay between natural and sexual selection in hummingbirds. Proc Biol Sci 2022; 289:20221783. [PMID: 36515116 PMCID: PMC9748779 DOI: 10.1098/rspb.2022.1783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Traits that exhibit differences between the sexes have been of special interest in the study of phenotypic evolution. Classic hypotheses explain sexually dimorphic traits via intra-sexual competition and mate selection, yet natural selection may also act differentially on the sexes to produce dimorphism. Natural selection can act either through physiological and ecological constraints on one of the sexes, or by modulating the strength of sexual/social selection. This predicts an association between the degree of dimorphism and variation in ecological environments. Here, we characterize the variation in hummingbird dimorphism across ecological gradients using rich databases of morphology, colouration and song. We show that morphological dimorphism decreases with elevation in the understorey and increases with elevation in mixed habitats, that dichromatism increases at high altitudes in open and mixed habitats, and that song is less complex in mixed habitats. Our results are consistent with flight constraints, lower predation pressure at high elevations and with habitat effects on song transmission. We also show that dichromatism and song complexity are positively associated, while tail dimorphism and song complexity are negatively associated. Our results suggest that key ecological factors shape sexually dimorphic traits, and that different communication modalities do not always evolve in tandem.
Collapse
Affiliation(s)
- Diego F. Beltrán
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Marcelo Araya-Salas
- Centro de Investigación en Neurociencias, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - F. Gary Stiles
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Alejandro Rico-Guevara
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
8
|
Ospina-Rozo L, Subbiah J, Seago A, Stuart-Fox D. Pretty Cool Beetles: Can Manipulation of Visible and Near-Infrared Sunlight Prevent Overheating? Integr Org Biol 2022; 4:obac036. [PMID: 36110288 PMCID: PMC9470487 DOI: 10.1093/iob/obac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 11/21/2022] Open
Abstract
Passive thermoregulation is an important strategy to prevent overheating in thermally challenging environments. Can the diversity of optical properties found in Christmas beetles (Rutelinae) be an advantage to keep cool? We measured changes in temperature of the elytra of 26 species of Christmas beetles, exclusively due to direct radiation from a solar simulator in visible (VIS: 400–700 nm) and near infrared (NIR: 700–1700 nm) wavebands. Then, we evaluated if the optical properties of elytra could predict their steady state temperature and heating rates, while controlling for size. We found that higher absorptivity increases the heating rate and final steady state of the beetle elytra in a biologically significant range (3 to 5°C). There was substantial variation in the absorptivity of Christmas beetle elytra; and this variation was achieved by different combinations of reflectivity and transmissivity in both VIS and NIR. Size was an important factor predicting the change in temperature of the elytra after 5 min (steady state) but not maximum heating rate. Lastly, we show that the presence of the elytra covering the body of the beetle can reduce heating of the body itself. We propose that beetle elytra can act as a semi-insulating layer to enable passive thermoregulation through high reflectivity of elytra, resulting in low absorptivity of solar radiation. Alternatively, if beetle elytra absorb a high proportion of solar radiation, they may reduce heat transfer from the elytra to the body through behavioral or physiological mechanisms.
Collapse
Affiliation(s)
- Laura Ospina-Rozo
- School of Biosciences, University of Melbourne , Building 147, Parkville Victoria 3010, Australia
| | - Jegadesan Subbiah
- School of Chemistry, Bio21 Institute - University of Melbourne , 30 Flemington Road, Victoria 3010, Australia
| | - Ainsley Seago
- Carnegie Museum of Natural History , 4400 Forbes Ave, Pittsburgh PA 15213, USA
| | - Devi Stuart-Fox
- School of Biosciences, University of Melbourne , Building 147, Parkville Victoria 3010, Australia
| |
Collapse
|