1
|
Ma J, Yang G, Qin X, Mo L, Xiong X, Xiong Y, He H, Lan D, Fu W, Li J, Yin S. Molecular characterization of MSX2 gene and its role in regulating steroidogenesis in yak (Bos grunniens) cumulus granulosa cells. Theriogenology 2025; 231:101-110. [PMID: 39427591 DOI: 10.1016/j.theriogenology.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Cumulus granulosa cells (CGCs) are somatic cells surrounding the oocyte that play an important role in oocyte growth, meiotic maturation, ovulation, and fertilization in mammals. Therefore, revealing the molecular mechanisms related to the development and function of CGCs is essential for further understanding the regulatory network in female reproduction. MSX2 belongs to the highly conserved msh homeobox gene family and plays diverse roles in different biological processes. This study cloned the coding sequence (CDS) of the yak MSX2 gene and detected the abundance and localization of MSX2 in the major female reproductive organs. The results indicated that the CDS of this gene included 747 base pairs and encoded 248 amino acids. The abundance of MSX2 mRNA was highly expressed in the luteal phase of the yak ovary during the estrous cycle, and MSX2 protein was widely expressed in different female reproductive organs, including the ovary, corpus luteum, uterus, and oviduct. Repressing MSX2 abundance in yak CGCs declined the cell viability and defective steroidogenesis. Several genes abundances related to cell proliferation, apoptosis, and sterogenesis also changed after MSX2 knockdown. MSX2 overexpression had the opposite effect on cell viability in yak CGCs. These results reveal the specific mechanism by which MSX2 regulates the development and function of yak CGCs and give novel and valuable insights into the mechanisms involved in yak reproduction.
Collapse
Affiliation(s)
- Jun Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Gan Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xuan Qin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Luoyu Mo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xianrong Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Honghong He
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Daoliang Lan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Wei Fu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Jian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Shi Yin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province, Ministry of Education, Chengdu, Sichuan, 610041, China; Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Aikawa S, Hiraoka T, Matsuo M, Fukui Y, Fujita H, Saito-Fujita T, Shimizu-Hirota R, Takeda N, Hiratsuka D, He X, Ishizawa C, Iida R, Akaeda S, Harada M, Wada-Hiraike O, Ikawa M, Osuga Y, Hirota Y. Spatiotemporal functions of leukemia inhibitory factor in embryo attachment and implantation chamber formation. Cell Death Discov 2024; 10:481. [PMID: 39587062 PMCID: PMC11589870 DOI: 10.1038/s41420-024-02228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/27/2024] Open
Abstract
Embryo implantation is crucial for successful pregnancy, requiring appropriate uterine responses to implantation-competent blastocysts. Molecular communication at the maternal-fetal junction governs this process. Leukemia inhibitory factor (Lif) plays a pivotal role in implantation across species. Lif is abundantly expressed in the glandular epithelium during blastocyst-receptive phase and is induced in the stroma surrounding attached blastocysts. While diminished Lif expression leads to infertility, its influence on peri-implantation uteri remains unclear. Therefore, we investigated the role of Lif in uterine physiology using its uterine-specific knockout (uKO) and uterine epithelial-specific KO (eKO) in mice. Lif eKO and uKO mice displayed infertility owing to failed embryo attachment. Recombinant Lif supplementation rescued the reproductive phenotype of Lif eKO mice, but not Lif uKO mice; however, recombinant Lif injection rescued embryo attachment in Lif uKO mice. RNA-seq analysis indicated that Lif governs uterine epithelial genes, but not embryonic genes, to facilitate embryo attachment via activating nuclear Stat3. Concordantly, three-dimensional imaging of the uterine epithelium revealed that luminal closure and crypt formation are regulated by the uterine Lif-Stat3 axis as well as the presence of blastocysts. Collectively, our findings shed light on previously unknown mechanism on how Lif influences uterine functions molecularly and physiologically during early pregnancy.
Collapse
Affiliation(s)
- Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Tomoko Saito-Fujita
- Division of Cancer Biology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daiki Hiratsuka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Xueting He
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihiro Ishizawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rei Iida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Rüegg AB, Ulbrich SE. Review: Embryonic diapause in the European roe deer - slowed, but not stopped. Animal 2023; 17 Suppl 1:100829. [PMID: 37567662 DOI: 10.1016/j.animal.2023.100829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
Embryonic diapause in mammals describes a transient reduction of proliferation and developmental progression occurring at the blastocyst stage. It was first described in the European roe deer (Capreolus capreolus) in the 19th century, and later found to occur in at least over 130 mammalian species across several taxa. Diapause is often displayed as an interruption, a halt, or an arrest of embryonic development. In this review, we explore reduced, but not stopped pace of growth, proliferation and developmental progression during embryonic diapause and revisit early embryonic proliferation and continued slow development as peculiar phenomenon in the roe deer.
Collapse
Affiliation(s)
- Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, 8092 Zurich, Switzerland.
| |
Collapse
|
4
|
Lufkin H, Flores D, Raider Z, Madhavan M, Dawson M, Coronel A, Sharma D, Arora R. Pre-implantation mouse embryo movement under hormonally altered conditions. Mol Hum Reprod 2023; 29:6965029. [PMID: 36579867 PMCID: PMC10167929 DOI: 10.1093/molehr/gaac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/01/2022] [Indexed: 12/30/2022] Open
Abstract
Pre-implantation embryo movement is crucial to pregnancy success, but the role of ovarian hormones in modulating embryo movement is not understood. We ascertain the effects of altered hormonal environment on embryo location using two delayed implantation mouse models: natural lactational diapause (ND); and artificially induced diapause (AD), a laboratory version of ND generated by ovary removal and provision of supplemental progesterone (P4). Previously, we showed that embryos in a natural pregnancy (NP) first display unidirectional clustered movement, followed by bidirectional scattering and spacing movement. In the ND model, we discovered that embryos are present as clusters near the oviductal-uterine junction for ∼24 h longer than NP, followed by locations consistent with a unidirectional scattering and spacing movement. Intriguingly, the AD model resembles embryo location in NP and not ND. When measuring serum hormone levels, unlike the popular paradigm of reduced estrogen (E2) levels in diapause, we observed that E2 levels are comparable across NP, ND and AD. P4 levels are reduced in ND and highly increased in AD when compared to NP. Further, exogenous administration of E2 or P4 modifies embryo location during the unidirectional phase, while E2 treatment also affects embryo location in the bidirectional phase. Taken together, our data suggest that embryo movement can be modulated by both P4 and E2. Understanding natural hormonal adaptation in diapause provides an opportunity to determine key players that regulate embryo location, thus impacting implantation success. This knowledge can be leveraged to understand pregnancy survival and implantation success in hormonally altered conditions in the clinic.
Collapse
Affiliation(s)
- Hannah Lufkin
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Diana Flores
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Zachary Raider
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Manoj Madhavan
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Madeline Dawson
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Anna Coronel
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Dhruv Sharma
- Center for Statistical Training & Consulting, Michigan State University, East Lansing, MI, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Hussein AM, Balachandar N, Mathieu J, Ruohola-Baker H. Molecular Regulators of Embryonic Diapause and Cancer Diapause-like State. Cells 2022; 11:cells11192929. [PMID: 36230891 PMCID: PMC9562880 DOI: 10.3390/cells11192929] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Embryonic diapause is an enigmatic state of dormancy that interrupts the normally tight connection between developmental stages and time. This reproductive strategy and state of suspended development occurs in mice, bears, roe deer, and over 130 other mammals and favors the survival of newborns. Diapause arrests the embryo at the blastocyst stage, delaying the post-implantation development of the embryo. This months-long quiescence is reversible, in contrast to senescence that occurs in aging stem cells. Recent studies have revealed critical regulators of diapause. These findings are important since defects in the diapause state can cause a lack of regeneration and control of normal growth. Controlling this state may also have therapeutic applications since recent findings suggest that radiation and chemotherapy may lead some cancer cells to a protective diapause-like, reversible state. Interestingly, recent studies have shown the metabolic regulation of epigenetic modifications and the role of microRNAs in embryonic diapause. In this review, we discuss the molecular mechanism of diapause induction.
Collapse
Affiliation(s)
- Abdiasis M. Hussein
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Nanditaa Balachandar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai 603203, India
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Correspondence:
| |
Collapse
|
6
|
Matsuo M, Yuan J, Kim YS, Dewar A, Fujita H, Dey SK, Sun X. Targeted depletion of uterine glandular Foxa2 induces embryonic diapause in mice. eLife 2022; 11:78277. [PMID: 35861728 PMCID: PMC9355561 DOI: 10.7554/elife.78277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Embryonic diapause is a reproductive strategy in which embryo development and growth is temporarily arrested within the uterus to ensure the survival of neonates and mothers during unfavorable conditions. Pregnancy is reinitiated when conditions become favorable for neonatal survival. The mechanism of how the uterus enters diapause in various species remains unclear. Mice with uterine depletion of Foxa2, a transcription factor, are infertile. In this study, we show that dormant blastocysts are recovered from these mice on day 8 of pregnancy with persistent expression of uterine Msx1, a gene critical to maintaining the uterine quiescent state, suggesting that these mice enter embryonic diapause. Leukemia inhibitory factor (LIF) can resume implantation in these mice. Although estrogen is critical for implantation in progesterone-primed uterus, our current model reveals that FOXA2-independent estrogenic effects are detrimental to sustaining uterine quiescence. Interestingly, progesterone and anti-estrogen can prolong uterine quiescence in the absence of FOXA2. Although we find that Msx1 expression persists in the uterus deficient in Foxa2, the complex relationship of FOXA2 with Msx genes and estrogen receptors remains to be explored.
Collapse
Affiliation(s)
- Mitsunori Matsuo
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Jia Yuan
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Yeon Sun Kim
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Amanda Dewar
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Hidetoshi Fujita
- Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| |
Collapse
|
7
|
Deng W, Wang H. Efficient cell chatting between embryo and uterus ensures embryo implantation. Biol Reprod 2022; 107:339-348. [PMID: 35774025 PMCID: PMC9310511 DOI: 10.1093/biolre/ioac135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 11/12/2022] Open
Abstract
Embryo implantation is one of the hottest topics during female reproduction since it is the first dialogue between maternal uterus and developing embryo whose disruption will contribute to adverse pregnancy outcome. Numerous achievements have been made to decipher the underlying mechanism of embryo implantation by genetic and molecular approaches accompanied with emerging technological advances. In recent decades, raising concepts incite insightful understanding on the mechanism of reciprocal communication between implantation competent embryos and receptive uterus. Enlightened by these gratifying evolvements, we aim to summarize and revisit current progress on the critical determinants of mutual communication between maternal uterus and embryonic signaling on the perspective of embryo implantation to alleviate infertility, enhance fetal health, and improve contraceptive design.
Collapse
Affiliation(s)
- Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
8
|
Renfree MB, Shaw G. Placentation in Marsupials. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2022; 234:41-60. [PMID: 34694477 DOI: 10.1007/978-3-030-77360-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It is sometimes implied that marsupials are "aplacental," on the presumption that the only mammals that have a placenta are the eponymous "placental" mammals. This misconception has persisted despite the interest in and descriptions of the marsupial placenta, even in Amoroso's definitive chapter. It was also said that marsupials had no maternal recognition of pregnancy and no placental hormone production. In addition, it was thought that genomic imprinting could not exist in marsupials because pregnancy was so short. We now know that none of these ideas have held true with extensive studies over the last four decades definitively showing that they are indeed mammals with a fully functional placenta, and with their own specializations.
Collapse
Affiliation(s)
- Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Zhou C, Lv M, Wang P, Guo C, Ni Z, Bao H, Tang Y, Cai H, Lu J, Deng W, Yang X, Xia G, Wang H, Wang C, Kong S. Sequential activation of uterine epithelial IGF1R by stromal IGF1 and embryonic IGF2 directs normal uterine preparation for embryo implantation. J Mol Cell Biol 2021; 13:646-661. [PMID: 34097060 PMCID: PMC8648386 DOI: 10.1093/jmcb/mjab034] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Embryo implantation in both humans and rodents is initiated by the attachment of a blastocyst to the uterine epithelium. For blastocyst attachment, the uterine epithelium needs to transform at both the structural and molecular levels first, and then initiate the interaction with trophectoderm. Any perturbation during this process will result in implantation failure or long-term adverse pregnancy outcomes. Endocrine steroid hormones, which function through nuclear receptors, combine with the local molecules produced by the uteri or embryo to facilitate implantation. The insulin-like growth factor (IGF) signaling has been reported to play a vital role during pregnancy. However, its physiological function during implantation remains elusive. This study revealed that mice with conditional deletion of Igf1r gene in uteri suffered from subfertility, mainly due to the disturbed uterine receptivity and abnormal embryo implantation. Mechanistically, we uncovered that in response to the nidatory estrogen on D4 of pregnancy, the epithelial IGF1R, stimulated by the stromal cell-produced IGF1, facilitated epithelial STAT3 activation to modulate the epithelial depolarity. Furthermore, embryonic derived IGF2 could activate both the epithelial ERK1/2 and STAT3 signaling through IGF1R, which was critical for the transcription of Cox2 and normal attachment reaction. In brief, our data revealed that epithelial IGF1R was sequentially activated by the uterine stromal IGF1 and embryonic IGF2 to guarantee normal epithelium differentiation during the implantation process.
Collapse
Affiliation(s)
- Chan Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Meiying Lv
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Peike Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Chuanhui Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Zhangli Ni
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yedong Tang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Xiaoyu Yang
- Fuzhou Hospital of Traditional Chinese Medicine Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, College of Life Science, NingXia University, Yinchuan, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
10
|
van der Weijden VA, Bulut-Karslioglu A. Molecular Regulation of Paused Pluripotency in Early Mammalian Embryos and Stem Cells. Front Cell Dev Biol 2021; 9:708318. [PMID: 34386497 PMCID: PMC8353277 DOI: 10.3389/fcell.2021.708318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
The energetically costly mammalian investment in gestation and lactation requires plentiful nutritional sources and thus links the environmental conditions to reproductive success. Flexibility in adjusting developmental timing enhances chances of survival in adverse conditions. Over 130 mammalian species can reversibly pause early embryonic development by switching to a near dormant state that can be sustained for months, a phenomenon called embryonic diapause. Lineage-specific cells are retained during diapause, and they proliferate and differentiate upon activation. Studying diapause thus reveals principles of pluripotency and dormancy and is not only relevant for development, but also for regeneration and cancer. In this review, we focus on the molecular regulation of diapause in early mammalian embryos and relate it to maintenance of potency in stem cells in vitro. Diapause is established and maintained by active rewiring of the embryonic metabolome, epigenome, and gene expression in communication with maternal tissues. Herein, we particularly discuss factors required at distinct stages of diapause to induce, maintain, and terminate dormancy.
Collapse
|
11
|
Ajit K, Murphy BD, Banerjee A. Elucidating evolutionarily conserved mechanisms of diapause regulation using an in silico approach. FEBS Lett 2021; 595:1350-1374. [PMID: 33650678 DOI: 10.1002/1873-3468.14064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 11/11/2022]
Abstract
Embryonic diapause is an enigmatic phenomenon that appears in diverse species. Although regulatory mechanisms have been established, there is much to be discovered. Herein, we have made the first comprehensive attempt to elucidate diapause regulatory mechanisms using a computational approach. We found transcription factors unique to promoters of genes in diapause species. From pathway analysis and STRING PPI networks, the signaling pathways regulated by these unique transcription factors were identified. The pathways were then consolidated into a model to combine various known mechanisms of diapause regulation. This work also highlighted certain transcription factors that may act as 'master transcription factors' to regulate the phenomenon. Promoter analysis further suggested evidence for independent evolution for some of regulatory elements involved in diapause.
Collapse
Affiliation(s)
- Kamal Ajit
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| | - Bruce D Murphy
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médicine Vétérinaire, Université Montréal, St-Hyacinthe, QC, Canada
| | - Arnab Banerjee
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Goa, India
| |
Collapse
|
12
|
van der Weijden VA, Rüegg AB, Bernal-Ulloa SM, Ulbrich SE. Embryonic diapause in mammals and dormancy in embryonic stem cells with the European roe deer as experimental model. Reprod Fertil Dev 2021; 33:76-81. [PMID: 38769673 DOI: 10.1071/rd20256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
In species displaying embryonic diapause, the developmental pace of the embryo is either temporarily and reversibly halted or largely reduced. Only limited knowledge on its regulation and the inhibition of cell proliferation extending pluripotency is available. In contrast with embryos from other diapausing species that reversibly halt during diapause, embryos of the roe deer Capreolus capreolus slowly proliferate over a period of 4-5 months to reach a diameter of approximately 4mm before elongation. The diapausing roe deer embryos present an interesting model species for research on preimplantation developmental progression. Based on our and other research, we summarise the available knowledge and indicate that the use of embryonic stem cells (ESCs) would help to increase our understanding of embryonic diapause. We report on known molecular mechanisms regulating embryonic diapause, as well as cellular dormancy of pluripotent cells. Further, we address the promising application of ESCs to study embryonic diapause, and highlight the current knowledge on the cellular microenvironment regulating embryonic diapause and cellular dormancy.
Collapse
Affiliation(s)
- Vera A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Anna B Rüegg
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Sandra M Bernal-Ulloa
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Universitaetstrasse 2, 8092 Zurich, Switzerland; and Corresponding author
| |
Collapse
|
13
|
Cha J, Fenelon JC, Murphy BD, Shaw G, Renfree MB, Dey SK. A role for Msx genes in mammalian embryonic diapause. ACTA ACUST UNITED AC 2020; 10:44-51. [PMID: 33215058 DOI: 10.1530/biosciprocs.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mammalian embryonic diapause is a reproductive phenomenon defined by the reversible arrest in blastocyst development and metabolic activity within the uterus which synchronously becomes quiescent to implantation. This natural strategy, evident in over 130 species across eight orders, can temporally uncouple conception from delivery until conditions are favorable for the survival of the mother and newborn. While the maternal endocrine milieu has been shown to be important for this process, the local molecular mechanisms by which the uterus and embryo achieve quiescence, maintain blastocyst survival and then resumes blastocyst activation with subsequent implantation in response to endocrine cues remains unclear. Here we review the first evidence that the proximal molecular control of embryonic diapause is conserved in three unrelated mammalian species which employ different endocrine programs to initiate diapause. In particular, uterine expression of muscle segment homeobox (Msx) genes Msx1 or Msx2 persists during diapause, followed by downregulation with blastocyst reactivation and implantation. Mice (Mus musculus) with conditional inactivation of Msx1 and Msx2 in the uterus fail to achieve diapause and reactivation. Remarkably, the mink (Neovison vison) and tammar wallaby (Macropus eugenii) share this pattern of MSX1 or MSX2 expression as in mice during delay - it persists during diapause and is rapidly downregulated upon implantation. Therefore, these findings were the first to provide evidence that there are common conserved molecular regulators in the uterus of unrelated mammals during embryonic diapause.
Collapse
Affiliation(s)
- J Cha
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, USA.,Present address: Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, USA
| | - J C Fenelon
- School of Biosciences, University of Melbourne, Melbourne, Australia
| | - B D Murphy
- Centre de recherche en reproduction et fertilité, Université de Montréal, Québec, Canada
| | - G Shaw
- School of Biosciences, University of Melbourne, Melbourne, Australia
| | - M B Renfree
- School of Biosciences, University of Melbourne, Melbourne, Australia
| | - S K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, USA
| |
Collapse
|
14
|
Jiang Y, Tang S, Xiao W, Yun P, Ding X. A genome-wide association study of reproduction traits in four pig populations with different genetic backgrounds. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1400-1410. [PMID: 32054232 PMCID: PMC7468174 DOI: 10.5713/ajas.19.0411] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/03/2019] [Indexed: 01/04/2023]
Abstract
Objective Genome-wide association study and two meta-analysis based on GWAS performed to explore the genetic mechanism underlying variation in pig number born alive (NBA) and total number born (TNB). Methods Single trait GWAS and two meta-analysis (single-trait meta analysis and multi-trait meta analysis) were used in our study for NBA and TNB on 3,121 Yorkshires from 4 populations, including three different American Yorkshire populations (n = 2,247) and one British Yorkshire populations (n = 874). Results The result of single trait GWAS showed that no significant associated single nucleotide polymorphisms (SNPs) were identified. Using single-trait meta analysis and multi-trait meta analysis within populations, 11 significant loci were identified associated with target traits. Spindlin 1, vascular endothelial growth factor A, forkhead box Q1, msh homeobox 1, and LHFPL tetraspan submily member 3 are five functionally plausible candidate genes for NBA and TNB. Compared to the single population GWAS, single-trait Meta analysis can improve the detection power to identify SNPs by integrating information of multiple populations. The multiple-trait analysis reduced the power to detect trait-specific loci but enhanced the power to identify the common loci across traits. Conclusion In total, our findings identified novel genes to be validated as candidates for NBA and TNB in pigs. Also, it enabled us to enlarge population size by including multiple populations with different genetic backgrounds and increase the power of GWAS by using meta analysis.
Collapse
Affiliation(s)
- Yao Jiang
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaoqing Tang
- Beijing Station of Animal Husbandry, Beijing 100107, China
| | - Wei Xiao
- Beijing Station of Animal Husbandry, Beijing 100107, China
| | - Peng Yun
- Beijing Station of Animal Husbandry, Beijing 100107, China
| | - Xiangdong Ding
- National Engineering Laboratory for Animal Breeding, Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Zhang B, Wang C, Yang W, Zhang H, Meng Q, Shi B, Shan A. Transcriptome analysis of the effect of pyrroloquinoline quinone disodium (PQQ·Na 2) on reproductive performance in sows during gestation and lactation. J Anim Sci Biotechnol 2019; 10:62. [PMID: 31406573 PMCID: PMC6685232 DOI: 10.1186/s40104-019-0369-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background Pyrroloquinoline quinone (PQQ), which is a water soluble, thermo-stable triglyceride-quinone, is widely distributed in nature and characterized as a mammalian vitamin-like redox cofactor. The objective of this study was to investigate the effects of pyrroloquinoline quinone disodium (PQQ·Na2) on reproductive performance in sows. Results Dietary supplementation with PQQ·Na2 significantly increased the total number of piglets born, the number of piglets born alive and the born alive litter weight. It also increased the antioxidant status in the placenta, plasma and milk. The concentration of NO was significantly increased in the plasma and placenta. RNA-seq analysis showed that 462 unigenes were differentially expressed between the control (Con) treatment and PQQ treatment groups. Among these unigenes, 199 were upregulated, while 263 unigenes were downregulated. The assigned functions of the unigenes covered a broad range of GO categories. Reproduction (27, 7.03%) and the reproduction process (27, 7.03%) were assigned to the biological process category. By matching DEGs to the KEGG database, we identified 29 pathways. Conclusions In conclusion, dietary supplementation with PQQ·Na2 in gestating and lactating sows had positive effects on their reproductive performance. Electronic supplementary material The online version of this article (10.1186/s40104-019-0369-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Boru Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030 People's Republic of China
| | - Chenxi Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030 People's Republic of China
| | - Wei Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030 People's Republic of China
| | - Hongyun Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030 People's Republic of China
| | - Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030 People's Republic of China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030 People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030 People's Republic of China
| |
Collapse
|
16
|
Nallasamy S, Kaya Okur HS, Bhurke A, Davila J, Li Q, Young SL, Taylor RN, Bagchi MK, Bagchi IC. Msx Homeobox Genes Act Downstream of BMP2 to Regulate Endometrial Decidualization in Mice and in Humans. Endocrinology 2019; 160:1631-1644. [PMID: 31125045 PMCID: PMC6591014 DOI: 10.1210/en.2019-00131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
Endometrial stromal cells differentiate to form decidual cells in a process known as decidualization, which is critical for embryo implantation and successful establishment of pregnancy. We previously reported that bone morphogenetic protein 2 (BMP2) mediates uterine stromal cell differentiation in mice and in humans. To identify the downstream target(s) of BMP2 signaling during decidualization, we performed gene-expression profiling of mouse uterine stromal cells, treated or not treated with recombinant BMP2. Our studies revealed that expression of Msx2, a member of the mammalian Msx homeobox gene family, was markedly upregulated in response to exogenous BMP2. Interestingly, conditional ablation of Msx2 in the uterus failed to prevent a decidual phenotype, presumably because of functional compensation of Msx2 by Msx1, a closely related member of the Msx family. Indeed, in Msx2-null uteri, the level of Msx1 expression in the stromal cells was markedly elevated. When conditional, tissue-specific ablation of both Msx1 and Msx2 was accomplished in the mouse uterus, a dramatically impaired decidual response was observed. In the absence of both Msx1 and Msx2, uterine stromal cells were able to proliferate, but they failed to undergo terminal differentiation. In parallel experiments, addition of BMP2 to human endometrial stromal cell cultures led to a robust enhancement of MSX1 and MSX2 expression and stimulated the differentiation process. Attenuation of MSX1 and MSX2 expression by small interfering RNAs greatly reduced human stromal differentiation in vitro, indicating a conservation of their roles as key mediators of BMP2-induced decidualization in mice and women.
Collapse
Affiliation(s)
| | - Hatice S Kaya Okur
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Arpita Bhurke
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Juanmahel Davila
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Quanxi Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
17
|
He JP, Zhao M, Zhang WQ, Huang MY, Zhu C, Cheng HZ, Liu JL. Identification of Gene Expression Changes Associated With Uterine Receptivity in Mice. Front Physiol 2019; 10:125. [PMID: 30890945 PMCID: PMC6413723 DOI: 10.3389/fphys.2019.00125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 01/31/2019] [Indexed: 01/22/2023] Open
Abstract
The mouse is a widely used animal model for studying human reproduction. Although global gene expression changes associated with human uterine receptivity have been determined by independent groups, the same studies in the mouse are scarce. The extent of similarities/differences between mice and humans on uterine receptivity at the molecular level remains to be determined. In the present study, we analyzed global gene expression changes in receptive uterus on day 4 of pregnancy compared to non-receptive uterus on day 3 of pregnancy in mice. A total of 541 differentially expressed genes were identified, of which 316 genes were up-regulated and 225 genes were down-regulated in receptive uterus compared to non-receptive uterus. Gene ontology and gene network analysis highlighted the activation of inflammatory response in the receptive uterus. By analyzing the promoter sequences of differentially expressed genes, we identified 12 causal transcription factors. Through connectivity map (CMap) analysis, we revealed several compounds with potential anti-receptivity activity. Finally, we performed a cross-species comparison against human uterine receptivity from a published dataset. Our study provides a valuable resource for understanding the molecular mechanism underlying uterine receptivity in mice.
Collapse
Affiliation(s)
- Jia-Peng He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen-Qian Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ming-Yu Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Can Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Hao-Zhuang Cheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ji-Long Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Cao X, Xu C, Zhang Y, Wei H, Liu Y, Cao J, Zhao W, Bao K, Wu Q. Comparative transcriptome analysis of embryo invasion in the mink uterus. Placenta 2019; 75:16-22. [PMID: 30712661 DOI: 10.1016/j.placenta.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION In mink, as many as 65% of embryos die during gestation. The causes and the mechanisms of embryonic mortality remain unclear. The purpose of our study was to examine global gene expression changes during embryo invasion in mink, and thereby to identify potential signaling pathways involved in implantation failure and early pregnancy loss. METHODS Illumina's next-generation sequencing technology (RNA-Seq) was used to analyze the differentially expressed genes (DEGs) in implantation (IMs) and inter-implantation sites (inter-IMs) of uterine tissue. RESULTS We identified a total of 606 DEGs, including 420 up- and 186 down-regulated genes in IMs compared to inter-IMs. Gene annotation analysis indicated multiple biological pathways to be significantly enriched for DEGs, including immune response, ECM complex, cytokine activity, chemokine activity and protein binding. The KEGG pathway including cytokine-cytokine receptor interaction, Jak-STAT, TNF and the chemokine signaling pathway were the most enriched. A gene network was constructed, and hub nodes such as CSF3, ICAM1, FOS, IL1B, IL8, CD14 and MYC were found through network analysis. DISCUSSION This report provides a valuable resource for understanding the mechanisms of embryo implantation in mink.
Collapse
Affiliation(s)
- Xinyan Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yufei Zhang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haijun Wei
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yong Liu
- Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, College of Biological and Food Engineering, Fuyang Teachers College, Fuyang, China
| | - Junguo Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weigang Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Kun Bao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Qiong Wu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China; State Key Laboratory for Molecular Biology of Special Economic Animal and Plant Science, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
19
|
Research advances on embryonic diapause in mammals. Anim Reprod Sci 2018; 198:1-10. [DOI: 10.1016/j.anireprosci.2018.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/06/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
|
20
|
Fenelon JC, Renfree MB. The history of the discovery of embryonic diapause in mammals. Biol Reprod 2018; 99:242-251. [DOI: 10.1093/biolre/ioy112] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/05/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jane C Fenelon
- School of BioSciences, The University of Melbourne, Parkville, Victoria Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Parkville, Victoria Australia
| |
Collapse
|
21
|
He B, Ni Z, Kong S, Lu J, Wang H. Homeobox genes for embryo implantation: From mouse to human. Animal Model Exp Med 2018; 1:14-22. [PMID: 30891542 PMCID: PMC6357426 DOI: 10.1002/ame2.12002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022] Open
Abstract
The proper development of uterus to a state of receptivity and the attainment of implantation competency for blastocyst are 2 indispensable aspects for implantation, which is considered to be a critical event for successful pregnancy. Like many developmental processes, a large number of transcription factors, such as homeobox genes, have been shown to orchestrate this complicated but highly organized physiological process during implantation. In this review, we focus on progress in studies of the role of homeobox genes, especially the Hox and Msx gene families, during implantation, together with subsequent development of post-implantation uterus and related reproductive defects in both mouse models and humans, that have led to better understanding of how implantation is precisely regulated and provide new insights into infertility.
Collapse
Affiliation(s)
- Bo He
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Zhang‐li Ni
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Shuang‐bo Kong
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Jin‐hua Lu
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| | - Hai‐bin Wang
- Reproductive Medical CenterThe First Affiliated Hospital of Xiamen UniversityXiamenFujianChina
- Fujian Provincial Key Laboratory of Reproductive Health ResearchMedical College of Xiamen UniversityXiamenFujianChina
| |
Collapse
|
22
|
Abstract
Embryonic diapause – a period of embryonic suspension at the blastocyst stage – is a fascinating phenomenon that occurs in over 130 species of mammals, ranging from bears and badgers to mice and marsupials. It might even occur in humans. During diapause, there is minimal cell division and greatly reduced metabolism, and development is put on hold. Yet there are no ill effects for the pregnancy when it eventually continues. Multiple factors can induce diapause, including seasonal supplies of food, temperature, photoperiod and lactation. The successful reactivation and continuation of pregnancy then requires a viable embryo, a receptive uterus and effective molecular communication between the two. But how do the blastocysts survive and remain viable during this period of time, which can be up to a year in some cases? And what are the signals that bring it out of suspended animation? Here, we provide an overview of the process of diapause and address these questions, focussing on recent molecular data.
Collapse
Affiliation(s)
- Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Victoria, Australia 3010
| | - Jane C. Fenelon
- The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H8L6
| |
Collapse
|
23
|
Fenelon JC, Murphy BD. Inhibition of polyamine synthesis causes entry of the mouse blastocyst into embryonic diapause†. Biol Reprod 2017. [DOI: 10.1093/biolre/iox060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
24
|
Fenelon JC, Shaw G, Frankenberg SR, Murphy BD, Renfree MB. Embryo arrest and reactivation: potential candidates controlling embryonic diapause in the tammar wallaby and mink†. Biol Reprod 2017; 96:877-894. [DOI: 10.1093/biolre/iox019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
|
25
|
Ge SX. Exploratory bioinformatics investigation reveals importance of "junk" DNA in early embryo development. BMC Genomics 2017; 18:200. [PMID: 28231763 PMCID: PMC5324221 DOI: 10.1186/s12864-017-3566-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Instead of testing predefined hypotheses, the goal of exploratory data analysis (EDA) is to find what data can tell us. Following this strategy, we re-analyzed a large body of genomic data to study the complex gene regulation in mouse pre-implantation development (PD). RESULTS Starting with a single-cell RNA-seq dataset consisting of 259 mouse embryonic cells derived from zygote to blastocyst stages, we reconstructed the temporal and spatial gene expression pattern during PD. The dynamics of gene expression can be partially explained by the enrichment of transposable elements in gene promoters and the similarity of expression profiles with those of corresponding transposons. Long Terminal Repeats (LTRs) are associated with transient, strong induction of many nearby genes at the 2-4 cell stages, probably by providing binding sites for Obox and other homeobox factors. B1 and B2 SINEs (Short Interspersed Nuclear Elements) are correlated with the upregulation of thousands of nearby genes during zygotic genome activation. Such enhancer-like effects are also found for human Alu and bovine tRNA SINEs. SINEs also seem to be predictive of gene expression in embryonic stem cells (ESCs), raising the possibility that they may also be involved in regulating pluripotency. We also identified many potential transcription factors underlying PD and discussed the evolutionary necessity of transposons in enhancing genetic diversity, especially for species with longer generation time. CONCLUSIONS Together with other recent studies, our results provide further evidence that many transposable elements may play a role in establishing the expression landscape in early embryos. It also demonstrates that exploratory bioinformatics investigation can pinpoint developmental pathways for further study, and serve as a strategy to generate novel insights from big genomic data.
Collapse
Affiliation(s)
- Steven Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Box 2225, Brookings, SD, 57110, USA.
| |
Collapse
|
26
|
The total and mitochondrial lipidome of Artemia franciscana encysted embryos. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1727-1735. [DOI: 10.1016/j.bbalip.2016.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/22/2016] [Accepted: 08/15/2016] [Indexed: 01/12/2023]
|
27
|
Martin FC, Ang CS, Gardner DK, Renfree MB, Shaw G. Uterine flushing proteome of the tammar wallaby after reactivation from diapause. Reproduction 2016; 152:491-505. [DOI: 10.1530/rep-16-0154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/01/2016] [Indexed: 01/15/2023]
Abstract
The marsupial tammar wallaby has the longest period of embryonic diapause of any mammal, up to 11 months, during which there is no cell division or blastocyst growth. Since the blastocyst in diapause is surrounded by acellular coats, the signals that maintain or terminate diapause involve factors that reside in uterine secretions. The nature of such factors remains to be resolved. In this study, uterine flushings (UFs) were used to assess changes in uterine secretions of tammars using liquid chromatography–mass spectrometry (LC–MS/MS) during diapause (day 0 and 3) and reactivation days (d) 4, 5, 6, 8, 9, 11 and 24 after removal of pouch young (RPY), which initiates embryonic development. This study supports earlier suggestions that the presence of specific factors stimulate reactivation, early embryonic growth and cell proliferation. A mitogen, hepatoma-derived growth factor and soluble epidermal growth factor receptors were observed from d3 until at least d11 RPY when these secreted proteins constituted 21% of the UF proteome. Binding of these factors to specific cellular receptors or growth factors may directly stimulate DNA synthesis and division in endometrial gland cells. Proteins involved in the p53/CDKN1A (p21) cell cycle inhibition pathway were also observed in the diapause samples. Progesterone and most of the oestrogen-regulated proteins were present in the UF after d3, which is concomitant with the start of blastocyst mitoses at d4. We propose that once the p21 inhibition of the cell cycle is lost, growth factors including HDGF and EGFR are responsible for reactivation of the diapausing blastocyst via the uterine secretions.
Collapse
|
28
|
Laird MK, Hearn CM, Shaw G, Renfree MB. Uterine morphology during diapause and early pregnancy in the tammar wallaby (Macropus eugenii). J Anat 2016; 229:459-72. [PMID: 27168485 PMCID: PMC4974553 DOI: 10.1111/joa.12483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 11/27/2022] Open
Abstract
In mammals, embryonic diapause, or suspension of embryonic development, occurs when embryos at the blastocyst stage are arrested in growth and metabolism. In the tammar wallaby (Macropus eugenii), there are two separate uteri, only one of which becomes gravid with the single conceptus at a post-partum oestrus, so changes during pregnancy can be compared between the gravid and non-gravid uterus within the same individual. Maintenance of the viable blastocyst and inhibition of further conceptus growth during diapause in the tammar is completely dependent on the uterine environment. Although the specific endocrine and seasonal signals are well established, much less is known about the cellular changes required to create this environment. Here we present the first detailed study of uterine morphology during diapause and early pregnancy of the tammar wallaby. We combined transmission electron microscopy and light microscopy to describe the histological and ultrastructural changes to luminal and glandular epithelial cells. At entry into diapause after the post-partum oestrus and formation of the new conceptus, there was an increase in abundance of organelles associated with respiration in the endometrial cells of the newly gravid uterus, particularly in the endoplasmic reticulum and mitochondria, as well as an increase in secretory activity. Organelle changes and active secretion then ceased in these cells as they became quiescent and remained so for the duration of diapause. In contrast, cells of the non-gravid, post-partum, contralateral uterus underwent sloughing and remodelling during this time and some organelle changes in glandular epithelial cells continued throughout diapause, suggesting these cells are not completely quiescent during diapause, although no active secretion occurred. These findings demonstrate that diapause, like pregnancy, is under unilateral endocrine control in the tammar, and that preparation for and maintenance of diapause requires substantial changes to uterine endometrial cell ultrastructure and activity.
Collapse
Affiliation(s)
- Melanie K. Laird
- School of Biological SciencesUniversity of SydneySydneyNSWAustralia
| | - Cyrma M. Hearn
- School of BioSciencesUniversity of MelbourneMelbourneVICAustralia
| | - Geoff Shaw
- School of BioSciencesUniversity of MelbourneMelbourneVICAustralia
| | | |
Collapse
|
29
|
Bolnick AD, Bolnick JM, Kilburn BA, Stewart T, Oakes J, Rodriguez-Kovacs J, Kohan-Ghadr HR, Dai J, Diamond MP, Hirota Y, Drewlo S, Dey SK, Armant DR. Reduced homeobox protein MSX1 in human endometrial tissue is linked to infertility. Hum Reprod 2016; 31:2042-50. [PMID: 27312535 PMCID: PMC4991657 DOI: 10.1093/humrep/dew143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Is protein expression of the muscle segment homeobox gene family member MSX1 altered in the human secretory endometrium by cell type, developmental stage or fertility? SUMMARY ANSWER MSX1 protein levels, normally elevated in the secretory phase endometrium, were significantly reduced in endometrial biopsies obtained from women of infertile couples. WHAT IS KNOWN ALREADY Molecular changes in the endometrium are important for fertility in both animals and humans. Msx1 is expressed in the preimplantation mouse uterus and regulates uterine receptivity for implantation. The MSX protein persists a short time, after its message has been down-regulated. Microarray analysis of the human endometrium reveals a similar pattern of MSX1 mRNA expression that peaks before the receptive period, with depressed expression at implantation. Targeted deletion of uterine Msx1 and Msx2 in mice prevents the loss of epithelial cell polarity during implantation and causes infertility. STUDY DESIGN, SIZE DURATION MSX1 mRNA and cell type-specific levels of MSX1 protein were quantified from two retrospective cohorts during the human endometrial cycle. MSX1 protein expression patterns were compared between fertile and infertile couples. Selected samples were dual-labeled by immunofluorescence microscopy to localize E-cadherin and β-catenin in epithelial cells. PARTICIPANTS/MATERIALS, SETTING METHODS MSX1 mRNA was quantified by PCR in endometrium from hysterectomies (n = 14) determined by endometrial dating to be in the late-proliferative (cycle days 10-13), early-secretory (cycle days 14-19) or mid-secretory (cycle days 20-24) phase. MSX1 protein was localized using high-throughput, semi-quantitative immunohistochemistry with sectioned endometrial biopsy tissues from fertile (n = 89) and infertile (n = 89) couples. Image analysis measured stain intensity specifically within the luminal epithelium, glands and stroma during the early-, mid- and late- (cycle days 25-28) secretory phases. MAIN RESULTS AND THE ROLE OF CHANCE MSX1 transcript increased 5-fold (P < 0.05) between the late-proliferative and early secretory phase and was then down-regulated (P < 0.05) prior to receptivity for implantation. In fertile patients, MSX1 protein displayed strong nuclear localization in the luminal epithelium and glands, while it was weakly expressed in nuclei of the stroma. MSX1 protein levels accumulated throughout the secretory phase in all endometrial cellular compartments. MSX1 protein decreased (P < 0.05) in the glands between mid- and late-secretory phases. However, infertile patients demonstrated a broad reduction (P < 0.001) of MSX1 accumulation in all cell types throughout the secretory phase that was most pronounced (∼3-fold) in stroma and glands. Infertility was associated with persistent co-localization of E-cadherin and β-catenin in epithelial cell junctions in the mid- and late-secretory phases. LIMITATIONS, REASONS FOR CAUTION Details of the infertility diagnoses and other patient demographic data were not available. Therefore, patients with uterine abnormalities (Mullerian) could not be distinguished from other sources of infertility. Antibody against human MSX2 is not available, limiting the study to MSX1. However, both RNAs in the human endometrium are similarly regulated. In mice, Msx1 and Msx2 are imperative for murine embryo implantation, with Msx2 compensating for genetic ablation of Msx1 through its up-regulation in a knockout model. WIDER IMPLICATIONS OF THE FINDINGS This investigation establishes that the MSX1 homeobox protein accumulation is associated with the secretory phase in endometrium of fertile couples, and is widely disrupted in infertile patients. It is the first study to examine MSX1 protein localization in the human endometrium, and supported by genetic findings in mice, suggests that genes regulated by MSX1 are linked to the loss of epithelial cell polarity required for uterine receptivity during implantation. STUDY FUNDING/COMPETING INTERESTS This research was supported by the NICHD National Cooperative Reproductive Medicine Network grant HD039005 (M.P.D.), NIH grants HD068524 (S.K.D.), HD071408 (D.R.A., M.P.D.), and HL128628 (S.D.), the Intramural Research Program of the NICHD, March of Dimes (S.K.D., S.D.) and JSPS KAKENHI grant 26112506 (Y.H.). There were no conflicts or competing interests.
Collapse
Affiliation(s)
- Alan D. Bolnick
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Jay M. Bolnick
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Brian A. Kilburn
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Tamika Stewart
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Jonathan Oakes
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | | | | | - Jing Dai
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | | | - Yasushi Hirota
- Obstetrics and Gynecology, University of Tokyo, Tokyo, Japan
| | - Sascha Drewlo
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Sudhansu K. Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - D. Randall Armant
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
30
|
Kutlu T, Ozkaya E, Ayvaci H, Devranoglu B, Sanverdi I, Sahin Y, Senol T, Karateke A. Area under curve of temporal estradiol measurements for prediction of the detrimental effect of estrogen exposure on implantation. Int J Gynaecol Obstet 2016; 135:168-171. [PMID: 27484925 DOI: 10.1016/j.ijgo.2016.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/21/2016] [Accepted: 07/13/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To assess whether the area under the curve of temporal estradiol measurements (AUCEM) during cycles of assisted reproductive technology (ART) can be used to predict failure of implantation and clinical pregnancy. METHODS In a prospective study, women aged 24-39years undergoing ART at a center in Turkey were enrolled between January and December 2014. Eligible patients had a regular menstrual cycle, normal levels of serum prolactin, and no hormone treatment within the past 3months. The area under the curve of the time course of estradiol measurements was calculated for each participant, and assessed for its ability to predict successful implantation. RESULTS Among 282 participants, 109 (38.6%) women had successful implantation. There was a significant difference between the two groups of women in AUCEM, estradiol per day (AUCEM divided by duration of stimulation), and endometrial thickness on the day of human chorionic gonadotropin administration (P<0.05 for all). CONCLUSION The area under the curve of estradiol measurements during ART cycles might be useful for predicting failure of implantation and clinical pregnancy.
Collapse
Affiliation(s)
- Tayfun Kutlu
- Department of Obstetrics and Gynecology, Zeynep Kamil Training and Research Hospital, Istanbul, Turkey
| | - Enis Ozkaya
- Department of Obstetrics and Gynecology, Zeynep Kamil Training and Research Hospital, Istanbul, Turkey.
| | - Habibe Ayvaci
- Department of Obstetrics and Gynecology, Zeynep Kamil Training and Research Hospital, Istanbul, Turkey
| | - Belgin Devranoglu
- Department of Obstetrics and Gynecology, Zeynep Kamil Training and Research Hospital, Istanbul, Turkey
| | - Ilhan Sanverdi
- Department of Obstetrics and Gynecology, Zeynep Kamil Training and Research Hospital, Istanbul, Turkey
| | - Yavuz Sahin
- Department of Obstetrics and Gynecology, Zeynep Kamil Training and Research Hospital, Istanbul, Turkey
| | - Taylan Senol
- Department of Obstetrics and Gynecology, Zeynep Kamil Training and Research Hospital, Istanbul, Turkey
| | - Ates Karateke
- Department of Obstetrics and Gynecology, Zeynep Kamil Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
31
|
Abstract
Normal implantation depends on appropriate trophoblast growth and invasion. Inadequate trophoblast invasion results in pregnancy-related disorders, such as early miscarriage and pre-eclampsia, which are dangerous to both the mother and fetus. Msh Homeobox 2 (MSX2), a member of the MSX family of homeobox proteins, plays a significant role in the proliferation and differentiation of various cells and tissues, including ectodermal organs, teeth, and chondrocytes. Recently, MSX2 was found to play important roles in the invasion of cancer cells into adjacent tissues via the epithelial-mesenchymal transition (EMT). However, the role of MSX2 in trophoblastic invasion during placental development has yet to be explored. In the present study, we detected MSX2 expression in cytotrophoblast, syncytiotrophoblast, and extravillous cytotrophoblast cells of first or third trimester human placentas via immunohistochemistry analysis. Furthermore, we found that the in vitro invasive ability of HTR8/SVneo cells was enhanced by exogenous overexpression of MSX2, and that this effect was accompanied by increased protein expression of matrix metalloproteinase-2 (MMP-2), vimentin, and β-catenin. Conversely, treatment of HTR8/SVneo cells with MSX2-specific siRNAs resulted in decreased protein expression of MMP-2, vimentin, and β-catenin, and reduced invasion levels in a Matrigel invasion test. Notably, however, treatment with the MSX2 overexpression plasmid and the MSX2 siRNAs had no effect on the mRNA expression levels of β-catenin. Meanwhile, overexpression of MSX2 and treatment with the MSX2-specific siRNA resulted in decreased and increased E-cadherin expression, respectively, in JEG-3 cells. Lastly, the protein expression levels of MSX2 were significantly lower in human pre-eclamptic placental villi than in the matched control placentas. Collectively, our results suggest that MSX2 may induce human trophoblast cell invasion, and dysregulation of MSX2 expression may be associated with pre-eclampsia.
Collapse
|
32
|
Frankenberg SR, de Barros FR, Rossant J, Renfree MB. The mammalian blastocyst. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:210-32. [DOI: 10.1002/wdev.220] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/22/2015] [Accepted: 10/29/2015] [Indexed: 11/10/2022]
Affiliation(s)
| | - Flavia R.O. de Barros
- Program in Developmental and Stem Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Canada
- Department of Molecular Genetics; University of Toronto; Toronto Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Canada
- Department of Molecular Genetics; University of Toronto; Toronto Canada
| | | |
Collapse
|
33
|
Sun X, Park CB, Deng W, Potter SS, Dey SK. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation. FASEB J 2015; 30:1425-35. [PMID: 26667042 DOI: 10.1096/fj.15-282798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/23/2015] [Indexed: 12/28/2022]
Abstract
Embryo implantation requires that the uterus differentiate into the receptive state. Failure to attain uterine receptivity will impede blastocyst attachment and result in a compromised pregnancy. The molecular mechanism by which the uterus transitions from the prereceptive to the receptive stage is complex, involving an intricate interplay of various molecules. We recently found that mice with uterine deletion ofMsxgenes (Msx1(d/d)/Msx2(d/d)) are infertile because of implantation failure associated with heightened apicobasal polarity of luminal epithelial cells during the receptive period. However, information on Msx's roles in regulating epithelial polarity remains limited. To gain further insight, we analyzed cell-type-specific gene expression by RNA sequencing of separated luminal epithelial and stromal cells by laser capture microdissection fromMsx1(d/d)/Msx2(d/d)and floxed mouse uteri on d 4 of pseudopregnancy. We found that claudin-1, a tight junction protein, and small proline-rich (Sprr2) protein, a major component of cornified envelopes in keratinized epidermis, were substantially up-regulated inMsx1(d/d)/Msx2(d/d)uterine epithelia. These factors also exhibited unique epithelial expression patterns at the implantation chamber (crypt) inMsx1(f/f)/Msx2(f/f)females; the patterns were lost inMsx1(d/d)/Msx2(d/d)epithelia on d 5, suggesting important roles during implantation. The results suggest thatMsxgenes play important roles during uterine receptivity including modulation of epithelial junctional activity.-Sun, X., Park, C. B., Deng, W., Potter, S. S., Dey, S. K. Uterine inactivation of muscle segment homeobox (Msx) genes alters epithelial cell junction proteins during embryo implantation.
Collapse
Affiliation(s)
- Xiaofei Sun
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Craig B Park
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Wenbo Deng
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - S Steven Potter
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sudhansu K Dey
- *Division of Reproductive Sciences and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
34
|
Cha J, Burnum-Johnson KE, Bartos A, Li Y, Baker ES, Tilton SC, Webb-Robertson BJM, Piehowski PD, Monroe ME, Jegga AG, Murata S, Hirota Y, Dey SK. Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus. J Biol Chem 2015; 290:15337-49. [PMID: 25931120 DOI: 10.1074/jbc.m115.655001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 12/30/2022] Open
Abstract
Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses ("pseudoimplantation") that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause.
Collapse
Affiliation(s)
- Jeeyeon Cha
- From the Division of Reproductive Sciences and
| | - Kristin E Burnum-Johnson
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | | | - Yingju Li
- From the Division of Reproductive Sciences and
| | - Erin S Baker
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Susan C Tilton
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, the Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331
| | | | | | - Matthew E Monroe
- the Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039
| | - Shigeo Murata
- the Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan, and
| | - Yasushi Hirota
- the Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | | |
Collapse
|
35
|
Embryonic Diapause and Maternal Recognition of Pregnancy in Diapausing Mammals. REGULATION OF IMPLANTATION AND ESTABLISHMENT OF PREGNANCY IN MAMMALS 2015; 216:239-52. [DOI: 10.1007/978-3-319-15856-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Cha JM, Dey SK. Reflections on Rodent Implantation. REGULATION OF IMPLANTATION AND ESTABLISHMENT OF PREGNANCY IN MAMMALS 2015; 216:69-85. [DOI: 10.1007/978-3-319-15856-3_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Cha J, Dey SK. Cadence of procreation: orchestrating embryo-uterine interactions. Semin Cell Dev Biol 2014; 34:56-64. [PMID: 24862857 DOI: 10.1016/j.semcdb.2014.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/06/2014] [Accepted: 05/06/2014] [Indexed: 01/07/2023]
Abstract
Embryo implantation in eutherian mammals is a highly complex process and requires reciprocal communication between different cell types of the embryo at the blastocyst stage and receptive uterus. The events of implantation are dynamic and highly orchestrated over a species-specific period of time with distinctive and overlapping expression of many genes. Delayed implantation in different species has helped elucidate some of the intricacies of implantation timing and different modes of the implantation process. How these events are coordinated in time and space are not clearly understood. We discuss potential regulators of the precise timing of these events with respect to central and local clock mechanisms. This review focuses on the timing and synchronization of early pregnancy events in mouse and consequences of their aberrations at later stages of pregnancy.
Collapse
Affiliation(s)
- Jeeyeon Cha
- Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, United States.
| |
Collapse
|
38
|
King AM, Toxopeus J, MacRae TH. Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females. ACTA ACUST UNITED AC 2014; 217:1719-24. [PMID: 24526727 DOI: 10.1242/jeb.100081] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Females of the crustacean Artemia franciscana produce either motile nauplii or gastrula stage embryos enclosed in a shell impermeable to nonvolatile compounds and known as cysts. The encysted embryos enter diapause, a state of greatly reduced metabolism and profound stress tolerance. Artemin, a diapause-specific ferritin homolog in cysts has molecular chaperone activity in vitro. Artemin represents 7.2% of soluble protein in cysts, approximately equal to the amount of p26, a small heat shock protein. However, there is almost twice as much artemin mRNA in cysts as compared with p26 mRNA, suggesting that artemin mRNA is translated less efficiently. RNA interference employing the injection of artemin double-stranded RNA into the egg sacs of A. franciscana females substantially reduced artemin mRNA and protein in cysts. Decreasing artemin diminished desiccation and freezing tolerance of cysts, demonstrating a role for this protein in stress resistance. Knockdown of artemin increased the time required for complete discharge of a brood of cysts carried within a female from a few hours up to 4 days, an effect weakened in successive broods. Artemin, an abundant molecular chaperone, contributes to stress tolerance of A. franciscana cysts while influencing their development and/or exit from females.
Collapse
Affiliation(s)
- Allison M King
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jantina Toxopeus
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
39
|
Kelleher FC, O'Sullivan H. Oxford and the Savannah: can the hippo provide an explanation for Peto's paradox? Clin Cancer Res 2013; 20:557-64. [PMID: 24166913 DOI: 10.1158/1078-0432.ccr-13-2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peto's paradox is the counterintuitive finding that increasing body mass and thereby cell number does not correlate with an increase in cancer incidence across different species. The Hippo signaling pathway is an evolutionarily conserved system that determines organ size by regulating apoptosis and cell proliferation. It also affects cell growth by microRNA-29 (miR-29)-mediated cross-talk to the mTOR signaling pathway. Whether these pathways that decide organ size could explain this paradox merits consideration. Inactivation of most genes of the Hippo pathway in Drosophila melanogaster genetic screens causes excessive tissue-specific growth of developing tissues. Altered Hippo pathway activity is frequently found in diverse tumor types, but mutations of component pathway genes are rare. Most Hippo pathway components are encoded by tumor suppressor genes (TSG), but an exception is the downstream effector gene called YAP. Activity of the Hippo pathway causes deactivating phosphorylation of YES-associated protein (YAP) with nuclear exclusion. YAP can also be phosphorylated at a second site, S127, by AKT. YAP induces the expression of genes responsible for proliferation and suppression of apoptosis. Resolving Peto's paradox may serendipitously provide new insights into the biology and treatment of cancer. This article considers Hippo signaling and Peto's paradox in the context of TSG-oncogene computed models. Interspecies differences in dietary composition, metabolic rates, and anabolic processes are also discussed in the context of Hippo-mTOR signaling. The metabolically important LKB1-AMPK (liver kinase B1-AMP activated protein kinase) signaling axis that suppresses the mTOR pathway is also considered.
Collapse
Affiliation(s)
- Fergal C Kelleher
- Authors' Affiliations: St. Vincent's University Hospital, Dublin, Ireland; and Whangarei Base Hospital, Whangarei, New Zealand
| | | |
Collapse
|