1
|
Shaha A, Wang Y, Wang X, Wang D, Guinovart D, Liu B, Kang N. CMTM6 mediates the Warburg effect and promotes the liver metastasis of colorectal cancer. Exp Mol Med 2024; 56:2002-2015. [PMID: 39218981 PMCID: PMC11447025 DOI: 10.1038/s12276-024-01303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024] Open
Abstract
Liver metastasis of colorectal cancer (CRC) is a leading cause of death among cancer patients. The overexpression of glucose transporter 1 (Glut1) and enhanced glucose uptake that are associated with the Warburg effect are frequently observed in CRC liver metastases, but the underlying mechanisms remain poorly understood. CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6) regulates the intracellular trafficking of programmed death-ligand-1 (PD-L1); therefore, we investigated whether CMTM6 regulates Glut1 trafficking and the Warburg effect in CRC cells. We found that knocking down of CMTM6 by shRNA induced the lysosomal degradation of Glut1, decreased glucose uptake and glycolysis in CRC cells, and suppressed subcutaneous CRC growth in nude mice and liver metastasis in C57BL/6 mice. Mechanistically, CMTM6 forms a complex with Glut1 and Rab11 in the endosomes of CRC cells, and this complex is required for the Rab11-dependent transport of Glut1 to the plasma membrane and for the protection of Glut1 from lysosomal degradation. Multiomics revealed global transcriptomic changes in CMTM6-knockdown CRC cells that affected the transcriptomes of adjacent cancer-associated fibroblasts from CRC liver metastases. As a result of these transcriptomic changes, CMTM6-knockdown CRC cells exhibited a defect in the G2-to-M phase transition, reduced secretion of 60 cytokines/chemokines, and inability to recruit cancer-associated fibroblasts to support an immunosuppressive CRC liver metastasis microenvironment. Analysis of TCGA data confirmed that CMTM6 expression was increased in CRC patients and that elevated CMTM6 expression was associated with worse patient survival. Together, our data suggest that CMTM6 plays multiple roles in regulating the Warburg effect, transcriptome, and liver metastasis of CRC.
Collapse
Affiliation(s)
- Aurpita Shaha
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xianghu Wang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA
- The School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| | - Dong Wang
- Transcription and Gene Regulation, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - David Guinovart
- Mathematical, Computational, and Statistical Modeling, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Bin Liu
- Transcription and Gene Regulation, the Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, the Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
2
|
Nakamura C, Ishizuka N, Yokoyama K, Yazaki Y, Tatsumi F, Ikumi N, Hempstock W, Ikari A, Yoshino Y, Hayashi H. Regulatory mechanisms of glucose absorption in the mouse proximal small intestine during fasting and feeding. Sci Rep 2023; 13:10838. [PMID: 37407613 DOI: 10.1038/s41598-023-38024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/30/2023] [Indexed: 07/07/2023] Open
Abstract
Fasting is known to alter the function of various organs and the mechanisms of glucose metabolism, which affect health outcomes and slow aging. However, it remains unclear how fasting and feeding affects glucose absorption function in the small intestine. We studied the effects of the fasting and feeding on glucose-induced short-circuit current (Isc) in vitro using an Ussing chamber technique. Glucose-induced Isc by SGLT1 was observed in the ileum, but little or no Isc was observed in the jejunum in ad libitum-fed mice. However, in mice fasted for 24-48 h, in addition to the ileum, robust glucose-induced Isc was observed over time in the jejunum. The expression of SGLT1 in the brush border membranes was significantly decreased in the jejunum under fed conditions compared to 48 h fasting, as analyzed by western blotting. Additionally, when mice were fed a 60% high glucose diet for 3 days, the increase in glucose-induced Isc was observed only in the ileum, and totally suppressed in the jejunum. An increase in Na+ permeability between epithelial cells was concomitantly observed in the jejunum of fasted mice. Transepithelial glucose flux was assessed using a non-metabolizable glucose analog, 14C-methyl α-D-glucopyranoside glucose (MGP). Regardless of whether fed or fasted, no glucose diffusion mechanism was observed. Fasting increased the SGLT1-mediated MGP flux in the jejunum. In conclusion, segment-dependent up- and down-regulation mechanisms during fasting and feeding are important for efficient glucose absorption once the fast is broken. Additionally, these mechanisms may play a crucial role in the small intestine's ability to autoregulate glucose absorption, preventing acute hyperglycemia when large amounts of glucose are ingested.
Collapse
Affiliation(s)
- Chisato Nakamura
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Noriko Ishizuka
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kanako Yokoyama
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yuyu Yazaki
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Fumiya Tatsumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Naotaka Ikumi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Wendy Hempstock
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
- Department of Nursing, School of Nursing, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yuta Yoshino
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Hisayoshi Hayashi
- Laboratory of Physiology, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
3
|
Pillay Y, Nagiah S, Chuturgoon A. Patulin Alters Insulin Signaling and Metabolic Flexibility in HepG2 and HEK293 Cells. Toxins (Basel) 2023; 15:toxins15040244. [PMID: 37104182 PMCID: PMC10145496 DOI: 10.3390/toxins15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Non-communicable diseases (NCDs) have risen rapidly worldwide, sparking interest in causative agents and pathways. Patulin (PAT), a xenobiotic found in fruit products contaminated by molds, is postulated to be diabetogenic in animals, but little is known about these effects in humans. This study examined the effects of PAT on the insulin signaling pathway and the pyruvate dehydrogenase complex (PDH). HEK293 and HepG2 cells were exposed to normal (5 mM) or high (25 mM) glucose levels, insulin (1.7 nM) and PAT (0.2 μM; 2.0 μM) for 24 h. The qPCR determined gene expression of key enzymes involved in carbohydrate metabolism while Western blotting assessed the effects of PAT on the insulin signaling pathway and Pyruvate Dehydrogenase (PDH) axis. Under hyperglycemic conditions, PAT stimulated glucose production pathways, caused defects in the insulin signaling pathway and impaired PDH activity. These trends under hyperglycemic conditions remained consistent in the presence of insulin. These findings are of importance, given that PAT is ingested with fruit and fruit products. Results suggest PAT exposure may be an initiating event in insulin resistance, alluding to an etiological role in the pathogenesis of type 2 diabetes and disorders of metabolism. This highlights the importance of both diet and food quality in addressing the causes of NCDs.
Collapse
|
4
|
Ahmad M, Abramovich I, Agranovich B, Nemirovski A, Gottlieb E, Hinden L, Tam J. Kidney Proximal Tubule GLUT2-More than Meets the Eye. Cells 2022; 12:cells12010094. [PMID: 36611887 PMCID: PMC9818791 DOI: 10.3390/cells12010094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Tubulopathy plays a central role in the pathophysiology of diabetic kidney disease (DKD). Under diabetic conditions, the kidney proximal tubule cells (KPTCs) are exposed to an extensive amount of nutrients, most notably glucose; these nutrients deteriorate KPTCs function and promote the development and progression of DKD. Recently, the facilitative glucose transporter 2 (GLUT2) in KPTCs has emerged as a central regulator in the pathogenesis of DKD. This has been demonstrated by identifying its specific role in enhancing glucose reabsorption and glucotoxicity, and by deciphering its effect in regulating the expression of the sodium-glucose transporter 2 (SGLT2) in KPTCs. Moreover, reduction/deletion of KPTC-GLUT2 has been recently found to ameliorate DKD, raising the plausible idea of considering it as a therapeutic target against DKD. However, the underlying molecular mechanisms by which GLUT2 exerts its deleterious effects in KPTCs remain vague. Herein, we review the current findings on the proximal tubule GLUT2 biology and function under physiologic conditions, and its involvement in the pathophysiology of DKD. Furthermore, we shed new light on its cellular regulation during diabetic conditions.
Collapse
Affiliation(s)
- Majdoleen Ahmad
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Bella Agranovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 3525422, Israel
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Faculty of Medicine, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Correspondence: (L.H.); (J.T.); Tel.: +972-2-675-7650 (L.H.); +972-2-675-7645 (J.T.)
| |
Collapse
|
5
|
SREBP2/Rab11s/GLUT1/6 network regulates proliferation and migration of glioblastoma. Pathol Res Pract 2022; 240:154176. [PMID: 36327817 DOI: 10.1016/j.prp.2022.154176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Cholesterol serves a vital role in the occurrence and development of glioblastoma multiforme (GBM). Furthermore, cholesterol synthesis is regulated by sterol regulatory element-binding protein 2 (SREBP2), and certain glucose transporters (GLUTs) and Ras-related protein Rab11 (Rab11) small GTPase family members (Rab11s) may contribute to the process. The Cancer Genome Atlas was used to analyze the relationship between prognosis and GLUT gene expressions. To investigate the regulatory effect of Rab11s and SREBP2 on GLUTs during tumor progression, single cell RNA sequencing (scRNA-seq), western blotting and reverse transcription-quantitative PCR were performed on glioma tissues and the T98G GBM cell line. Cell viability and migration were assessed by performing MTT and wound healing assays, respectively. Moreover, the dual-luciferase reporter gene assay was conducted to predict the sterol regulatory elements in the promoter regions of the target genes. The results demonstrated that high SREBP2, GLUT1 and GLUT6 expression was associated with poor survival of patients with GBM. ScRNA-seq distinguished glioblastoma cells by EGFR and indicated the related lipid metabolism signaling pathways. Moreover, the results indicated that GLUT1 and GLUT6 were regulated by SREBP2 and Rab11s. Rab11s and SREBP2 also contributed to T98G cell viability and migration. Additionally, the results indicated that Rab11s, GLUT1 and GLUT6 were transcriptionally regulated by SREBP2. Therefore, the present study suggested that the SREBP2/Rab11/GLUT network promoted T98G cell growth, thus, identifying potential therapeutic targets for GBM.
Collapse
|
6
|
Ioannidis K, Cohen A, Ghosheh M, Ehrlich A, Fischer A, Cohen M, Nahmias Y. Aminoglycoside-induced lipotoxicity and its reversal in kidney on chip. LAB ON A CHIP 2022; 22:4469-4480. [PMID: 36281785 DOI: 10.1039/d2lc00825d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Aminoglycosides are an important class of antibiotics that play a critical role in the treatment of life-threatening infections, but their use is limited by their toxicity. In fact, gentamicin causes severe nephrotoxicity in 17% of hospitalized patients. The kidney proximal tubule is particularly vulnerable to drug-induced nephrotoxicity due to its role in drug transport. In this work, we developed a perfused vascularized model of human kidney tubuloids integrated with tissue-embedded microsensors that track the metabolic dynamics of aminoglycoside-induced renal toxicity in real time. Our model shows that gentamicin disrupts proximal tubule polarity at concentrations 20-fold below its TC50, leading to a 3.2-fold increase in glucose uptake, and reverse TCA cycle flux culminating in a 40-fold increase in lipid accumulation. Blocking glucose reabsorption using the SGLT2 inhibitor empagliflozin significantly reduced gentamicin toxicity by 10-fold. These results demonstrate the utility of sensor-integrated kidney-on-chip platforms to rapidly identify new metabolic mechanisms that may underly adverse drug reactions. The results should improve our ability to modulate the toxicity of novel aminoglycosides.
Collapse
Affiliation(s)
- Konstantinos Ioannidis
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Aaron Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Mohammad Ghosheh
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| | - Amit Fischer
- Department of Biological Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| |
Collapse
|
7
|
Dietary Polyphenols and In Vitro Intestinal Fructose Uptake and Transport: A Systematic Literature Review. Int J Mol Sci 2022; 23:ijms232214355. [PMID: 36430831 PMCID: PMC9697405 DOI: 10.3390/ijms232214355] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Recent evidence links chronic consumption of large amounts of fructose (FRU) with several non-communicable disease. After ingestion, dietary FRU is absorbed into the intestinal tract by glucose transporter (GLUT) 5 and transported to the portal vein via GLUT2. GLUT2 is primarily localized on the basolateral membrane, but GLUT2 may be dislocated post-prandially from the basolateral membrane of intestinal cells to the apical one. Polyphenols (PP) are plant secondary metabolites that exert hypoglycemic properties by modulating intracellular insulin signaling pathways and by inhibiting intestinal enzymes and transporters. Post-prandially, PP may reach high concentrations in the gut lumen, making the inhibition of FRU absorption a prime target for exploring the effects of PP on FRU metabolism. Herein, we have systematically reviewed studies on the effect of PP and PP-rich products on FRU uptake and transport in intestinal cells. In spite of expectations, the very different experimental conditions in the various individual studies do not allow definitive conclusions to be drawn. Future investigations should rely on standardized conditions in order to obtain comparable results that allow a credible rating of polyphenols and polyphenol-rich products as inhibitors of fructose uptake.
Collapse
|
8
|
Laskowska AK, Wilczak A, Skowrońska W, Michel P, Melzig MF, Czerwińska ME. Fruits of Hippophaë rhamnoides in human leukocytes and Caco-2 cell monolayer models—A question about their preventive role in lipopolysaccharide leakage and cytokine secretion in endotoxemia. Front Pharmacol 2022; 13:981874. [PMID: 36249809 PMCID: PMC9561609 DOI: 10.3389/fphar.2022.981874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Preparations from Hippophaë rhamnoides L. (sea buckthorn) have been traditionally used in the treatment of skin and digestive disorders, such as gastritis, gastric and duodenal ulcers, uterine erosions, as well as oral, rectal, and vaginal mucositis, in particular in the Himalayan and Eurasian regions. An influence of an aqueous extract from the fruits of H. rhamnoides (HR) on leakage of lipopolysaccharide (LPS) from Escherichia coli through gut epithelium developed from the human colorectal adenocarcinoma (Caco-2) monolayer in vitro and glucose transporter 2 (GLUT2) translocation were the principal objectives of the study. Additionally, the effect of HR on the production of pro- and anti-inflammatory cytokines (interleukins: IL-8, IL-1β, IL-10, IL-6; tumor necrosis factor: TNF-α) by the Caco-2 cell line, human neutrophils (PMN), and peripheral blood mononuclear cells (PBMC) was evaluated. The concentration of LPS on the apical and basolateral sides of the Caco-2 monolayer was evaluated with a Limulus Amebocyte Lysate (LAL) assay. GLUT2 translocation was evaluated using an immunostaining assay, whereas secretion of cytokines by cell cultures was established with an enzyme-linked immunosorbent (ELISA) assay. HR (500 μg/ml) significantly inhibited LPS leakage through epithelial monolayer in vitro in comparison with non-treated control. The treatment of Caco-2 cells with HR (50–100 μg/ml) showed GLUT2 expression similar to the non-treated control. HR decreased the secretion of most pro-inflammatory cytokines in all tested models. HR might prevent low-grade chronic inflammation caused by metabolic endotoxemia through the prevention of the absorption of LPS and decrease of chemotactic factors released by immune and epithelial cells, which support its use in metabolic disorders in traditional medicine.
Collapse
Affiliation(s)
- Anna K. Laskowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Wilczak
- Student Scientific Association, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Skowrońska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | | | - Monika E. Czerwińska
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Monika E. Czerwińska,
| |
Collapse
|
9
|
Liu M, Chen MY, An L, Ma SQ, Mei J, Huang WH, Zhang W. Effects of apolipoprotein E on regulating insulin sensitivity via regulating insulin receptor signalosome in caveolae. Life Sci 2022; 308:120929. [PMID: 36063979 DOI: 10.1016/j.lfs.2022.120929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
AIMS Although impaired insulin signaling at a post-receptor level was a well-established key driver of insulin resistance, the role of surface abnormal insulin receptor (INSR) location in insulin resistance pathogenesis tended to be ignored and its molecular mechanisms remained obscure. Herein, this study aimed to investigate hepatic apolipoprotein E (APOE) impaired cellular insulin action via reducing cell surface INSR, especially in caveolae. KEY FINDINGS Downregulation of APOE enhanced the caveolae translocation of INSR and glucose transporter 2 (GLUT2), and improved hepatic cells' sensitivity to insulin. Consistently, mice with selective suppression of liver tissue APOE showed lower fasting insulin and fasting glucose levels, better homeostatic model assessment (HOMA) index (HOMA-IS, HOMA-IR, HOMA-β) and quantitative insulin sensitivity check index (QUICKI). Furthermore, the co-localization of INSR and CAV1 in the liver of these mice were more substantial than controls. SIGNIFICANCE APOE might adversely set the basal gain of INSR signaling implied that APOE could be a new endogenous INSR regulator.
Collapse
Affiliation(s)
- Miao Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Man-Yun Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Liang An
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Si-Qing Ma
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jie Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Wei-Hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China; NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Hunan 410008, PR China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
10
|
Zhouyao H, Malunga LN, Chu YF, Eck P, Ames N, Thandapilly SJ. The inhibition of intestinal glucose absorption by oat-derived avenanthramides. J Food Biochem 2022; 46:e14324. [PMID: 35892210 DOI: 10.1111/jfbc.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Avenanthramides are phenolic compounds unique to oats and may contribute to health-promoting properties associated with oat consumption. This study used Xenopus laevis oocytes expressing the glucose transporters, glucose transporter 2 (GLUT2) or sodium-glucose transport protein 1 (SGLT1) and human Caco-2 cells models to investigate the effect of oat avenanthramides on human intestinal glucose transporters. The presence of avenanthramide reduced the glucose uptake in a dose-dependent manner in Caco-2 cells. Glucose uptake in oocytes expressing either GLUT2 or SGLT1 was nullified by oat avenanthramide. There was no significant difference between the inhibition potencies of avenanthramides C and B. Thus, our results suggest that avenanthramides may contribute to the antidiabetic properties of oats. PRACTICAL APPLICATIONS: The present research focus on the antidiabetic properties of avenanthramides, which are unique phenolic compounds found in oats. Inhibiting the activities of the glucose transport proteins expressed in the small intestine is a known strategy to improve the control of postprandial glucose level. We therefore examined the inhibitory effects of avenanthramides on two glucose transporters, glucose transporter 2 and sodium-glucose transport protein 1, predominantly found in the small intestine using the human small intestinal cell model Caco-2 cell line and by heterologously expressing these two transporters in the Xenopus laevis oocytes. Based on our results, we have confirmed for the first time that the glucose uptake is indeed inhibited by the presence of avenanthramides, suggesting the possibility of incorporating avenanthramides in foods to enhance postprandial glucose response, and ultimately improve the management of diabetes. Therefore, future research could consider utilizing this evidence in the development of diabetic-friendly functional foods or nutraceuticals containing avenanthramides.
Collapse
Affiliation(s)
- Haonan Zhouyao
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lovemore Nkhata Malunga
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Agriculture & Agri-Food Canada, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yi Fang Chu
- Quaker Oats Center of Excellence, PepsiCo R&D Nutrition, Barrington, Illinois, USA
| | - Peter Eck
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nancy Ames
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Agriculture & Agri-Food Canada, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sijo Joseph Thandapilly
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Agriculture & Agri-Food Canada, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Hinden L, Ahmad M, Hamad S, Nemirovski A, Szanda G, Glasmacher S, Kogot-Levin A, Abramovitch R, Thorens B, Gertsch J, Leibowitz G, Tam J. Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Nat Commun 2022; 13:1783. [PMID: 35379807 PMCID: PMC8980033 DOI: 10.1038/s41467-022-29124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions. Renal proximal tubules modulate whole-body homeostasis by sensing various nutrients. Here the authors describe the existence and importance of a unique CB1/mTORC1/GLUT2 signaling axis in regulating nutrient homeostasis in healthy and diseased kidney.
Collapse
|
12
|
Qiao L, Men L, Yu S, Yao J, Li Y, Wang M, Yu Y, Wang N, Ran L, Wu Y, Du J. Hepatic deficiency of selenoprotein S exacerbates hepatic steatosis and insulin resistance. Cell Death Dis 2022; 13:275. [PMID: 35347118 PMCID: PMC8960781 DOI: 10.1038/s41419-022-04716-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is closely associated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), which are all complex metabolic disorders. Selenoprotein S (SelS) is an endoplasmic reticulum (ER) resident selenoprotein involved in regulating ER stress and has been found to participate in the occurrence and development of IR and T2DM. However, the potential role and mechanism of SelS in NAFLD remains unclear. Here, we analyzed SelS expression in the liver of high-fat diet (HFD)-fed mice and obese T2DM model (db/db) mice and generated hepatocyte-specific SelS knockout (SelSH-KO) mice using the Cre-loxP system. We showed that hepatic SelS expression levels were significantly downregulated in HFD-fed mice and db/db mice. Hepatic SelS deficiency markedly increased ER stress markers in the liver and caused hepatic steatosis via increased fatty acid uptake and reduced fatty acid oxidation. Impaired insulin signaling was detected in the liver of SelSH-KO mice with decreased phosphorylation levels of insulin receptor substrate 1 (IRS1) and protein kinase B (PKB/Akt), which ultimately led to disturbed glucose homeostasis. Meanwhile, our results showed hepatic protein kinase Cɛ (PKCɛ) activation participated in the negative regulation of insulin signaling in SelSH-KO mice. Moreover, the inhibitory effect of SelS on hepatic steatosis and IR was confirmed by SelS overexpression in primary hepatocytes in vitro. Thus, we conclude that hepatic SelS plays a key role in regulating hepatic lipid accumulation and insulin action, suggesting that SelS may be a potential intervention target for the prevention and treatment of NAFLD and T2DM.
Collapse
Affiliation(s)
- Lu Qiao
- Department of Endocrinology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, China
| | - Lili Men
- Department of Endocrinology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, China
| | - Shanshan Yu
- Department of Endocrinology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, China
| | - Junjie Yao
- Department of Endocrinology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, China
| | - Yu Li
- Department of Endocrinology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, China
| | - Mingming Wang
- Department of Endocrinology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, China
| | - Ying Yu
- Department of Endocrinology, the First Affiliated Hospital of Dalian Medical University, Dalian, China.,Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, China
| | - Ning Wang
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, China.,National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, China
| | - Liyuan Ran
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, China.,National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, Dalian Medical University, Dalian, China. .,National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, China. .,Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA.
| | - Jianling Du
- Department of Endocrinology, the First Affiliated Hospital of Dalian Medical University, Dalian, China. .,Dalian Key Laboratory of Prevention and Treatment of Metabolic Diseases and the Vascular Complications, Dalian, China.
| |
Collapse
|
13
|
Dextrose 10% drink is superior to sodium-dextrose drink in increasing blood glucose and sprint speed in soccer players: A double-blinded randomized crossover trial study. Sci Sports 2022. [DOI: 10.1016/j.scispo.2020.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Afshar N, Safaei S, Nickerson DP, Hunter PJ, Suresh V. Computational Modelling of Glucose Uptake by SGLT1 and Apical GLUT2 in the Enterocyte. Front Physiol 2021; 12:699152. [PMID: 34950044 PMCID: PMC8688934 DOI: 10.3389/fphys.2021.699152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/04/2021] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that glucose absorption in the small intestine depends on both constitutively expressed SGLT1 and translocated GLUT2 in the brush border membrane, especially in the presence of high levels of luminal glucose. Here, we present a computational model of non-isotonic glucose uptake by small intestinal epithelial cells. The model incorporates apical uptake via SGLT1 and GLUT2, basolateral efflux into the blood via GLUT2, and cellular volume changes in response to non-isotonic conditions. The dependence of glucose absorption on luminal glucose, blood flow rate, and inlet blood glucose concentration is studied. Uptake via apical GLUT2 is found to be sensitive to all these factors. Under a range of conditions, the maximum apical GLUT2 flux is about half of the SGLT1 flux and is achieved at high luminal glucose (> 50 mM), high blood flow rates, and low inlet blood concentrations. In contrast, SGLT1 flux is less sensitive to these factors. When luminal glucose concentration is less than 10 mM, apical GLUT2 serves as an efflux pathway for glucose to move from the blood to the lumen. The model results indicate that translocation of GLUT2 from the basolateral to the apical membrane increases glucose uptake into the cell; however, the reduction of efflux capacity results in a decrease in net absorption. Recruitment of GLUT2 from a cytosolic pool elicits a 10–20% increase in absorption for luminal glucose levels in the a 20–100 mM range. Increased SGLT1 activity also leads to a roughly 20% increase in absorption. A concomitant increase in blood supply results in a larger increase in absorption. Increases in apical glucose transporter activity help to minimise cell volume changes by reducing the osmotic gradient between the cell and the lumen.
Collapse
Affiliation(s)
- Nima Afshar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Soroush Safaei
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - David P Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Vinod Suresh
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.,Department of Engineering Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Identification of new GLUT2-selective inhibitors through in silico ligand screening and validation in eukaryotic expression systems. Sci Rep 2021; 11:13751. [PMID: 34215797 PMCID: PMC8253845 DOI: 10.1038/s41598-021-93063-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023] Open
Abstract
Glucose is an essential energy source for cells. In humans, its passive diffusion through the cell membrane is facilitated by members of the glucose transporter family (GLUT, SLC2 gene family). GLUT2 transports both glucose and fructose with low affinity and plays a critical role in glucose sensing mechanisms. Alterations in the function or expression of GLUT2 are involved in the Fanconi-Bickel syndrome, diabetes, and cancer. Distinguishing GLUT2 transport in tissues where other GLUTs coexist is challenging due to the low affinity of GLUT2 for glucose and fructose and the scarcity of GLUT-specific modulators. By combining in silico ligand screening of an inward-facing conformation model of GLUT2 and glucose uptake assays in a hexose transporter-deficient yeast strain, in which the GLUT1-5 can be expressed individually, we identified eleven new GLUT2 inhibitors (IC50 ranging from 0.61 to 19.3 µM). Among them, nine were GLUT2-selective, one inhibited GLUT1-4 (pan-Class I GLUT inhibitor), and another inhibited GLUT5 only. All these inhibitors dock to the substrate cavity periphery, close to the large cytosolic loop connecting the two transporter halves, outside the substrate-binding site. The GLUT2 inhibitors described here have various applications; GLUT2-specific inhibitors can serve as tools to examine the pathophysiological role of GLUT2 relative to other GLUTs, the pan-Class I GLUT inhibitor can block glucose entry in cancer cells, and the GLUT2/GLUT5 inhibitor can reduce the intestinal absorption of fructose to combat the harmful effects of a high-fructose diet.
Collapse
|
16
|
Hinden L, Kogot-Levin A, Tam J, Leibowitz G. Pathogenesis of diabesity-induced kidney disease: role of kidney nutrient sensing. FEBS J 2021; 289:901-921. [PMID: 33630415 DOI: 10.1111/febs.15790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Diabetes kidney disease (DKD) is a major healthcare problem associated with increased risk for developing end-stage kidney disease and high mortality. It is widely accepted that DKD is primarily a glomerular disease. Recent findings however suggest that kidney proximal tubule cells (KPTCs) may play a central role in the pathophysiology of DKD. In diabetes and obesity, KPTCs are exposed to nutrient overload, including glucose, free-fatty acids and amino acids, which dysregulate nutrient and energy sensing by mechanistic target of rapamycin complex 1 and AMP-activated protein kinase, with subsequent induction of tubular injury, inflammation, and fibrosis. Pharmacological treatments that modulate nutrient sensing and signaling in KPTCs, including cannabinoid-1 receptor antagonists and sodium glucose transporter 2 inhibitors, exert robust kidney protective effects. Shedding light on how nutrients are sensed and metabolized in KPTCs and in other kidney domains, and on their effects on signal transduction pathways that mediate kidney injury, is important for understanding the pathophysiology of DKD and for the development of novel therapeutic approaches in DKD and probably also in other forms of kidney disease.
Collapse
Affiliation(s)
- Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Cohen A, Ioannidis K, Ehrlich A, Regenbaum S, Cohen M, Ayyash M, Tikva SS, Nahmias Y. Mechanism and reversal of drug-induced nephrotoxicity on a chip. Sci Transl Med 2021; 13:eabd6299. [PMID: 33627489 PMCID: PMC8897043 DOI: 10.1126/scitranslmed.abd6299] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/30/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
The kidney plays a critical role in fluid homeostasis, glucose control, and drug excretion. Loss of kidney function due to drug-induced nephrotoxicity affects over 20% of the adult population. The kidney proximal tubule is a complex vascularized structure that is particularly vulnerable to drug-induced nephrotoxicity. Here, we introduce a model of vascularized human kidney spheroids with integrated tissue-embedded microsensors for oxygen, glucose, lactate, and glutamine, providing real-time assessment of cellular metabolism. Our model shows that both the immunosuppressive drug cyclosporine and the anticancer drug cisplatin disrupt proximal tubule polarity at subtoxic concentrations, leading to glucose accumulation and lipotoxicity. Impeding glucose reabsorption using glucose transport inhibitors blocked cyclosporine and cisplatin toxicity by 1000- to 3-fold, respectively. Retrospective study of 247 patients who were diagnosed with kidney damage receiving cyclosporine or cisplatin in combination with the sodium-glucose cotransporter-2 (SGLT2) inhibitor empagliflozin showed significant (P < 0.001) improvement of kidney function, as well as reduction in creatinine and uric acid, markers of kidney damage. These results demonstrate the potential of sensor-integrated kidney-on-chip platforms to elucidate mechanisms of action and rapidly reformulate effective therapeutic solutions, increasing drug safety and reducing the cost of clinical and commercial failures.
Collapse
Affiliation(s)
- Aaron Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Konstantinos Ioannidis
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shaun Regenbaum
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Muneef Ayyash
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| | | | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Tissue Dynamics, Jerusalem 91904, Israel
| |
Collapse
|
18
|
Dao M, François H. Cannabinoid Receptor 1 Inhibition in Chronic Kidney Disease: A New Therapeutic Toolbox. Front Endocrinol (Lausanne) 2021; 12:720734. [PMID: 34305821 PMCID: PMC8293381 DOI: 10.3389/fendo.2021.720734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) concerns millions of individuals worldwide, with few therapeutic strategies available to date. Recent evidence suggests that the endocannabinoid system (ECS) could be a new therapeutic target to prevent CKD. ECS combines receptors, cannabinoid receptor type 1 (CB1R) and type 2 (CB2R), and ligands. The most prominent receptor within the kidney is CB1R, its endogenous local ligands being anandamide and 2-arachidonoylglycerol. Therefore, the present review focuses on the therapeutic potential of CB1R and not CB2R. In the normal kidney, CB1R is expressed in many cell types, especially in the vasculature where it contributes to the regulation of renal hemodynamics. CB1R could also participate to water and sodium balance and to blood pressure regulation but its precise role remains to decipher. CB1R promotes renal fibrosis in both metabolic and non-metabolic nephropathies. In metabolic syndrome, obesity and diabetes, CB1R inhibition not only improves metabolic parameters, but also exerts a direct role in preventing renal fibrosis. In non-metabolic nephropathies, its inhibition reduces the development of renal fibrosis. There is a growing interest of the industry to develop new CB1R antagonists without central nervous side-effects. Experimental data on renal fibrosis are encouraging and some molecules are currently under early-stage clinical phases (phases I and IIa studies). In the present review, we will first describe the role of the endocannabinoid receptors, especially CB1R, in renal physiology. We will next explore the role of endocannabinoid receptors in both metabolic and non-metabolic CKD and renal fibrosis. Finally, we will discuss the therapeutic potential of CB1R inhibition using the new pharmacological approaches. Overall, the new pharmacological blockers of CB1R could provide an additional therapeutic toolbox in the management of CKD and renal fibrosis from both metabolic and non-metabolic origin.
Collapse
Affiliation(s)
- Myriam Dao
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Néphrologie et Transplantation Rénale Adulte, Hôpital Necker Enfants Malades, Paris, France
| | - Helene François
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Hôpital Tenon, Sorbonne Université, Paris, France
- *Correspondence: Helene François,
| |
Collapse
|
19
|
Richter V, Lanzerstorfer P, Weghuber J, Schneckenburger H. Super-Resolution Live Cell Microscopy of Membrane-Proximal Fluorophores. Int J Mol Sci 2020; 21:E7099. [PMID: 32993061 PMCID: PMC7582769 DOI: 10.3390/ijms21197099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023] Open
Abstract
Here, we present a simple and robust experimental setup for the super-resolution live cell microscopy of membrane-proximal fluorophores, which is comparably easy to perform and to implement. The method is based on Structured Illumination Microscopy (SIM) with a switchable spatial light modulator (SLM) and exchangeable objective lenses for epi-illumination and total internal reflection fluorescence (TIRF) microscopy. While, in the case of SIM (upon epi-illumination), cell layers of about 1-2 µm in close proximity to the plasma membrane can be selected by software, layers in the 100 nm range are assessed experimentally by TIRF-SIM. To show the applicability of this approach, both methods are used to measure the translocation of the glucose transporter 4 (GLUT4) from intracellular vesicles to the plasma membrane upon stimulation by insulin or insulin-mimetic compounds, with a lateral resolution of around 100 nm and an axial resolution of around 200 nm. While SIM is an appropriate method to visualize the intracellular localization of GLUT4 fused with a green fluorescent protein, TIRF-SIM permits the quantitative evaluation of its fluorescence in the plasma membrane. These imaging methods are discussed in the context of fluorescence lifetime kinetics, providing additional data for the molecular microenvironment.
Collapse
Affiliation(s)
- Verena Richter
- Institute of Applied Research, Aalen University, 373430 Aalen, Germany;
| | - Peter Lanzerstorfer
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (P.L.); (J.W.)
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | - Julian Weghuber
- Department of Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria; (P.L.); (J.W.)
- Austrian Competence Center for Feed and Food Quality, Safety and Innovation, 3430 Tulln, Austria
| | | |
Collapse
|
20
|
Afifi M, Alkaladi A, Abomughaid MM, Abdelazim AM. Nanocurcumin improved glucose metabolism in streptozotocin-induced diabetic rats: a comparison study with Gliclazide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25271-25277. [PMID: 32347481 DOI: 10.1007/s11356-020-08941-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
In the present study, the biochemical effect of nanocurcumin (nanoCUR) compared with Gliclazide (GLZ) on the diabetic rats was studied. Forty male albino rats (Sprague Dawley) weighted 110 ± 20 g were used. Rats were randomly separated into two groups. Control, received no treatment. Streptozotocin (STZ)-induced diabetic groups take 5 ml/kg of STZ in normal saline daily for 30 days, further divided into diabetic non-treated group, did not receive any treatment: diabetic group treated by nanoCUR, received 15 mg/kg/day of nanoCUR orally for 30 days; diabetic group treated by GLZ, received 2 mg/kg/day of GLZ for 30 days. The mean body weights of all rats were registered and serum samples were collected for determination of fasting blood glucose (FBG), insulin concentration, liver glucokinase (GK), and glycogen synthase (GS) activities. Liver tissues were collected for determination of mRNA expression of insulin (INS), insulin receptor A (IRA), glucokinase (GK), and glucose transporter 2 (GLUT2). The results revealed a significant reduction of body weight in diabetic rats, with no significant differences in nanoCUR and GLZ groups. There was a decline in FBG levels and significant elevation of INS levels, GK, and GS activities in diabetic rats received nanoCUR and GLZ. mRNA expression of INS, IRA, GK, and GLUT2 significantly upregulated in diabetic rats received nanoCUR and GLZ. The amazing observation was a non-significant difference in all measured parameters between nanoCUR and GLZ groups. In conclusion, nanoCUR is able to improve cellular uptake of glucose, the hepatic insulin signaling, and insulin sensitivity in diabetic rats. Its effect was similar to standard hypoglycemic drug (GLZ).
Collapse
Affiliation(s)
- Mohamed Afifi
- College of Science, Department of Biochemistry, University of Jeddah, Jeddah, Saudi Arabia.
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Ali Alkaladi
- College of Science, Department of Biological Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Mosleh M Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Aaser M Abdelazim
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
21
|
Xiao Z, Chu Y, Qin W. IGFBP5 modulates lipid metabolism and insulin sensitivity through activating AMPK pathway in non-alcoholic fatty liver disease. Life Sci 2020; 256:117997. [PMID: 32585242 DOI: 10.1016/j.lfs.2020.117997] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
AIMS Non-alcoholic fatty liver disease (NAFLD) characterized by excessive hepatic fat deposition is an increasing public health issue worldwide. Insulin resistance is a pivotal factor in NAFLD progression. Studies have found that IGFBP5 was related to insulin sensitivity. Nevertheless, the role of IGFBP5 in NAFLD remains unclear. MATERIALS AND METHODS NAFLD models were established in vitro and in vivo by treating HepG2 cells with free fatty acids (FFA) and feeding mice with high-fat diet (HFD), respectively. IGFBP5 expression was then analyzed in these models. The effects and mechanism of IGFBP5 on lipid lipogenesis, fatty acid β-oxidation, and insulin resistance were investigated following IGFBP5 overexpression. Additionally, AMPK inhibitor compound C was used to treat HepG2 cells to confirm whether IGFBP5 functioned via activating AMPK pathway. KEY FINDINGS IGFBP5 expression was decreased in both NAFLD models. IGFBP5 overexpression reduced levels of lipogenesis-associated proteins (SREBP-1c, FAS and ACC1), elevated expression of fatty acid β-oxidation-related genes (PPARα, CPT1A and ACOX1), decreased intracellular lipid droplets, promoted glucose uptake and glycogenesis, and activated IRS1/Akt and AMPK pathways. Administration of IGFBP5 vectors also decreased body weight and relieved liver damage in HFD-treated mice. In contrast, compound C abrogated the influences of IGFBP5 overexpression on cell models. SIGNIFICANCE IGFBP5 dampened hepatic lipid accumulation and insulin resistance in NAFLD development via activating AMPK pathway. This study indicates that IGFBP5 may be a novel therapeutic agent for NAFLD.
Collapse
Affiliation(s)
- Zheng Xiao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Yafei Chu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China
| | - Wangsen Qin
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| |
Collapse
|
22
|
Le Gall M, Thenet S, Aguanno D, Jarry AC, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 2020; 77:129-143. [PMID: 30517714 DOI: 10.1093/nutrit/nuy064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The plasticity of a material corresponds to its capacity to change its feature under the effect of an external action. Intestinal plasticity could be defined as the ability of the intestine to modify its size or thickness and intestinal cells to modulate their absorption and secretion functions in response to external or internal cues/signals. This review will focus on intestinal adaptation mechanisms in response to diet and nutritional status. These physiological mechanisms allow a fine and rapid adaptation of the gut to promote absorption of ingested food, but they can also lead to obesity in response to overnutrition. This plasticity could thus become a therapeutic target to treat not only undernutrition but also obesity. How the intestine adapts in response to 2 types of surgical remodeling of the digestive tract-extensive bowel resection leading to intestinal failure and surgical treatment of pathological obesity (ie, bariatric surgeries)-will also be reviewed.
Collapse
Affiliation(s)
- Maude Le Gall
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Doriane Aguanno
- Centre de Recherche des Cordeliers, Sorbonne Université, EPHE, PSL University, Sorbonne Cités, UPD Univ Paris 05, INSERM, CNRS, Paris, France
| | - Anne-Charlotte Jarry
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutriomics Team, Paris, France, and the Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Hepato-Biliary and Pancreatic Surgery, Liver Transplantation, Paris, France
| | - Lara Ribeiro-Parenti
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of General and Digestive Surgery, University Hospital Bichat-Claude-Bernard, Paris, France
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Department of Gastroenterology, Inflammatory Bowel Diseases, Nutritional Support and Intestinal Transplantation, Paris, France
| | - Séverine Ledoux
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Service des Explorations Fonctionnelles, Centre de référence de prise en charge de l'obésité, GHUPNVS, Hôpital Louis Mourier, Colombes, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France
| | - Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, Inserm UMRS _1149, Université Paris Diderot, AP-HP, Paris, France.,Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière-Charles Foix, Biochimie Endocrinienne et Oncologique, Paris, France
| |
Collapse
|
23
|
Pereira-Moreira R, Muscelli E. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review. J Diabetes Res 2020; 2020:8492467. [PMID: 32377524 PMCID: PMC7180501 DOI: 10.1155/2020/8492467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Renal proximal tubules reabsorb glucose from the glomerular filtrate and release it back into the circulation. Modulation of glomerular filtration and renal glucose disposal are some of the insulin actions, but little is known about a possible insulin effect on tubular glucose reabsorption. This review is aimed at synthesizing the current knowledge about insulin action on glucose handling by proximal tubules. Method. A systematic article selection from Medline (PubMed) and Embase between 2008 and 2019. 180 selected articles were clustered into topics (renal insulin handling, proximal tubule glucose transport, renal gluconeogenesis, and renal insulin resistance). Summary of Results. Insulin upregulates its renal uptake and degradation, and there is probably a renal site-specific insulin action and resistance; studies in diabetic animal models suggest that insulin increases renal SGLT2 protein content; in vivo human studies on glucose transport are few, and results of glucose transporter protein and mRNA contents are conflicting in human kidney biopsies; maximum renal glucose reabsorptive capacity is higher in diabetic patients than in healthy subjects; glucose stimulates SGLT1, SGLT2, and GLUT2 in renal cell cultures while insulin raises SGLT2 protein availability and activity and seems to directly inhibit the SGLT1 activity despite it activating this transporter indirectly. Besides, insulin regulates SGLT2 inhibitor bioavailability, inhibits renal gluconeogenesis, and interferes with Na+K+ATPase activity impacting on glucose transport. Conclusion. Available data points to an important insulin participation in renal glucose handling, including tubular glucose transport, but human studies with reproducible and comparable method are still needed.
Collapse
Affiliation(s)
- Ricardo Pereira-Moreira
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| | - Elza Muscelli
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| |
Collapse
|
24
|
Zhao L, Zheng Q, Zou Y, Wang Y, Wu Y, Liu X. Chitooligosaccharide Biguanidine Alleviates Liver Injury and Insulin Resistance in Type 2 Diabetic Rats. STARCH-STARKE 2019. [DOI: 10.1002/star.201900203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Liyan Zhao
- School of Material Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin University Tianjin 300350 China
| | - Qifang Zheng
- School of Material Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin University Tianjin 300350 China
| | - Yalu Zou
- School of Material Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin University Tianjin 300350 China
| | - Yuanyuan Wang
- School of Material Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin University Tianjin 300350 China
| | - Yuntang Wu
- Department of Nutrition and Food ScienceSchool of Public HealthTianjin Medical University Tianjin 300070 China
| | - Xiaofei Liu
- School of Material Science and EngineeringTianjin Key Laboratory of Composite and Functional MaterialsTianjin University Tianjin 300350 China
| |
Collapse
|
25
|
García-Carro C, Vergara A, Agraz I, Jacobs-Cachá C, Espinel E, Seron D, Soler MJ. The New Era for Reno-Cardiovascular Treatment in Type 2 Diabetes. J Clin Med 2019; 8:E864. [PMID: 31212945 PMCID: PMC6617211 DOI: 10.3390/jcm8060864] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease in the developed world. Until 2016, the only treatment that was clearly demonstrated to delay the DKD was the renin-angiotensin system blockade, either by angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. However, this strategy only partially covered the DKD progression. Thus, new strategies for reno-cardiovascular protection in type 2 diabetic patients are urgently needed. In the last few years, hypoglycaemic drugs, such as sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide-1 receptor agonists, demonstrated a cardioprotective effect, mainly in terms of decreasing hospitalization for heart failure and cardiovascular death in type 2 diabetic patients. In addition, these drugs also demonstrated a clear renoprotective effect by delaying DKD progression and decreasing albuminuria. Another hypoglycaemic drug class, dipeptidyl peptidase 4 inhibitors, has been approved for its use in patients with advanced chronic kidney disease, avoiding, in part, the need for insulinization in this group of DKD patients. Studies in diabetic and non-diabetic experimental models suggest that these drugs may exert their reno-cardiovascular protective effect by glucose and non-glucose dependent mechanisms. This review focuses on newly demonstrated strategies that have shown reno-cardiovascular benefits in type 2 diabetes and that may change diabetes management algorithms.
Collapse
Affiliation(s)
- Clara García-Carro
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Ander Vergara
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Irene Agraz
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Eugenia Espinel
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Daniel Seron
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - María José Soler
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| |
Collapse
|
26
|
Shen H, Scialis RJ, Lehman-McKeeman L. Xenobiotic Transporters in the Kidney: Function and Role in Toxicity. Semin Nephrol 2019; 39:159-175. [DOI: 10.1016/j.semnephrol.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Jaykumar AB, Caceres PS, Ortiz PA. Single-molecule labeling for studying trafficking of renal transporters. Am J Physiol Renal Physiol 2018; 315:F1243-F1249. [PMID: 30043625 DOI: 10.1152/ajprenal.00082.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to detect and track single molecules presents the advantage of visualizing the complex behavior of transmembrane proteins with a time and space resolution that would otherwise be lost with traditional labeling and biochemical techniques. Development of new imaging probes has provided a robust method to study their trafficking and surface dynamics. This mini-review focuses on the current technology available for single-molecule labeling of transmembrane proteins, their advantages, and limitations. We also discuss the application of these techniques to the study of renal transporter trafficking in light of recent research.
Collapse
Affiliation(s)
- Ankita Bachhawat Jaykumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Paulo S Caceres
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
28
|
Intestinal Saturated Long-Chain Fatty Acid, Glucose and Fructose Transporters and Their Inhibition by Natural Plant Extracts in Caco-2 Cells. Molecules 2018; 23:molecules23102544. [PMID: 30301205 PMCID: PMC6222386 DOI: 10.3390/molecules23102544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023] Open
Abstract
The intestinal absorption of fatty acids, glucose and fructose is part of the basic requirements for the provision of energy in the body. High access of saturated long-chain fatty acids (LCFA), glucose and fructose can facilitate the development of metabolic diseases, particularly the metabolic syndrome and type-2 diabetes mellitus (T2DM). Research has been done to find substances which decelerate or inhibit intestinal resorption of these specific food components. Promising targets are the inhibition of intestinal long-chain fatty acid (FATP2, FATP4), glucose (SGLT1, GLUT2) and fructose (GLUT2, GLUT5) transporters by plant extracts and by pure substances. The largest part of active components in plant extracts belongs to the group of polyphenols. This review summarizes the knowledge about binding sites of named transporters and lists the plant extracts which were tested in Caco-2 cells regarding uptake inhibition.
Collapse
|
29
|
Mojica L, Luna-Vital DA, Gonzalez de Mejia E. Black bean peptides inhibit glucose uptake in Caco-2 adenocarcinoma cells by blocking the expression and translocation pathway of glucose transporters. Toxicol Rep 2018; 5:552-560. [PMID: 29854625 PMCID: PMC5977767 DOI: 10.1016/j.toxrep.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 02/07/2023] Open
Abstract
Common bean protein fractions decreased glucose uptake in colorectal cancer cells. Protein fractions decreased SGLT1 and GLUT2 gene and protein expression and translocation. Black bean protein fractions could be used as anticancer drug adjuvants.
The objective was to evaluate the effect of black bean protein fraction (PFRA), and its derived peptides on glucose uptake, SGLT1 and GLUT2 expression and translocation on Caco-2 cells. The effect of treatments was evaluated on glucose uptake, protein expression and localization and gene expression on Caco-2 cells. PFRA (10 mg/mL) lowered glucose uptake from 27.4% after 30 min to 33.9% after 180 min of treatment compared to untreated control (p < 0.05). All treatments lowered GLUT2 expression after 30 min of treatment compared to untreated control (31.4 to 48.6%, p < 0.05). Similarly, after 24 h of treatment, GLUT2 was decreased in all treatments (23.5% to 48.9%) (p < 0.05). SGLT1 protein expression decreased 18.3% for LSVSVL (100 μM) to 45.1% for PFRA (10 mg/mL) after 24 h. Immunofluorescence microscopy showed a decrease in expression and membrane translocation of GLUT2 and SGLT1 for all treatments compared to untreated control (p < 0.05). Relative gene expression of SLC2A2 (GLUT2) and SLC5A1 (SGLT1) was downregulated significantly up to two-fold change compared to the untreated control after 24 h treatment. Black bean protein fractions are an inexpensive, functional ingredient with significant biological potential to reduce glucose uptake and could be used as an adjuvant in the treatment of colorectal cancer.
Collapse
Key Words
- 2-NBDG PubChem CID: 6711157
- 2-NBDG, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose
- A, alanine
- AMPK, 5′ adenosine monophosphate-activated protein kinase
- AU, arbitrary units
- BPI, bean protein isolate
- Black bean protein fraction
- Colorectal cancer
- E, glutamic acid
- F, phenylalanine
- GLUT2
- GLUT2, glucose transporter 2
- Glucose uptake
- Glucose: PubChem CID: 10954115
- I:K, lysine
- L, leucine
- N, asparagine
- P FRA, protein fractions
- P, proline
- PHL, phloretin
- PKC, protein kinase C II
- Phloretin: PubChem CID: 4788
- S, serine
- SD, standard deviation
- SGLT1
- SGLT1, sodium-dependent glucose cotransporter 1
- T, threonine
- V, valine
- WZB117, 3-fluoro-1,2-phenylene bis (3-hydroxybenzoate)
Collapse
Affiliation(s)
- Luis Mojica
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, United States.,Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., CIATEJ, 44270, Guadalajara, Mexico
| | - Diego A Luna-Vital
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, United States
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, IL, 61801, United States
| |
Collapse
|
30
|
Gauer JS, Tumova S, Lippiat JD, Kerimi A, Williamson G. Differential patterns of inhibition of the sugar transporters GLUT2, GLUT5 and GLUT7 by flavonoids. Biochem Pharmacol 2018; 152:11-20. [PMID: 29548810 DOI: 10.1016/j.bcp.2018.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/09/2018] [Indexed: 11/16/2022]
Abstract
Only limited data are available on the inhibition of the sugar transporter GLUT5 by flavonoids or other classes of bioactives. Intestinal GLUT7 is poorly characterised and no information exists concerning its inhibition. We aimed to study the expression of GLUT7 in Caco-2/TC7 intestinal cells, and evaluate inhibition of glucose transport by GLUT2 and GLUT7, and of fructose transport by GLUT2, GLUT5 and GLUT7, by flavonoids. Differentiated Caco-2/TC7 cell monolayers were used to investigate GLUT7 expression, as well as biotinylation and immunofluorescence to assess GLUT7 location. For mechanistic sugar transport studies, X. laevis oocytes were injected with individual mRNA, and GLUT protein expression on oocyte membranes was confirmed. Oocytes were incubated with D-[14C(U)]-glucose or D-[14C(U)]-fructose in the presence of flavonoids, and uptake was estimated by liquid scintilation counting. In differentiated Caco-2/TC7 cell monolayers, GLUT7 was mostly expressed apically. When applied apically, or to both compartments, sorbitol, galactose, L-glucose or sucrose did not affect GLUT7 mRNA expression. Fructose applied to both sides increased GLUT7 mRNA (13%, p ≤ 0.001) and total GLUT7 protein (2.7-fold, p ≤ 0.05), while the ratio between apical, basolateral and total GLUT7 protein was unchanged. In the X. laevis oocyte model, GLUT2-mediated glucose and fructose transport were inhibited by quercetin, (-)-epigallocatechin gallate (EGCG) and apigenin, GLUT5-mediated fructose transport was inhibited by apigenin and EGCG, but not by quercetin, and GLUT7-mediated uptake of both glucose and fructose was inhibited by apigenin, but not by quercetin nor EGCG. Expression of GLUT7 was increased by fructose, but only when applied to Caco-2/TC7 cells both apically and basolaterally. Since GLUT2, GLUT5 and GLUT7 show different patterns of inhibition by the tested flavonoids, we suggest that they have the potential to be used as investigational tools to distinguish sugar transporter activity in different biological settings.
Collapse
Affiliation(s)
- Julia S Gauer
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Sarka Tumova
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
31
|
Tam J, Hinden L, Drori A, Udi S, Azar S, Baraghithy S. The therapeutic potential of targeting the peripheral endocannabinoid/CB 1 receptor system. Eur J Intern Med 2018; 49:23-29. [PMID: 29336868 DOI: 10.1016/j.ejim.2018.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Endocannabinoids (eCBs) are internal lipid mediators recognized by the cannabinoid-1 and -2 receptors (CB1R and CB2R, respectively), which also mediate the different physiological effects of marijuana. The endocannabinoid system, consisting of eCBs, their receptors, and the enzymes involved in their biosynthesis and degradation, is present in a vast number of peripheral organs. In this review we describe the role of the eCB/CB1R system in modulating the metabolism in several peripheral organs. We assess how eCBs, via activating the CB1R, contribute to obesity and regulate food intake. In addition, we describe their roles in modulating liver and kidney functions, as well as bone remodeling and mass. Special importance is given to emphasizing the efficacy of the recently developed peripherally restricted CB1R antagonists, which were pre-clinically tested in the management of energy homeostasis, and in ameliorating both obesity- and diabetes-induced metabolic complications.
Collapse
Affiliation(s)
- Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Adi Drori
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Saja Baraghithy
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
32
|
Hassani-Nezhad-Gashti F, Rysä J, Kummu O, Näpänkangas J, Buler M, Karpale M, Hukkanen J, Hakkola J. Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochem Pharmacol 2018; 148:253-264. [PMID: 29309761 DOI: 10.1016/j.bcp.2018.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Pregnane X receptor (PXR) is a nuclear receptor that senses chemical environment and is activated by numerous clinically used drugs and environmental contaminants. Previous studies have indicated that several drugs known to activate PXR appear to induce glucose intolerance. We now aimed to reveal the role of PXR in drug-induced glucose intolerance and characterize the mechanisms involved. We used PXR knockout mice model to investigate the significance of this nuclear receptor in the regulation of glucose tolerance. PXR ligand pregnenolone-16ɑ-carbonitrile (PCN) impaired glucose tolerance in the wildtype mice but not in the PXR knockout mice. Furthermore, DNA microarray and bioinformatics analysis of differentially expressed genes and glucose metabolism relevant pathways in PCN treated primary hepatocytes indicated that PXR regulates genes involved in glucose uptake. PCN decreased the expression of glucose transporter 2 (GLUT2) in mouse liver and in the wildtype mouse hepatocytes but not in the PXR knockout cells. Data mining of published chromatin immunoprecipitation-sequencing results indicate that Glut2 gene is a direct PXR target. Furthermore, PCN induced internalization of GLUT2 protein from the plasma membrane to the cytosol in the liver in vivo and repressed glucose uptake in the primary hepatocytes. Our results indicate that the activation of PXR impairs glucose tolerance and thus PXR represents a novel diabetogenic pathway. PXR activation dysregulates GLUT2 function by two different mechanisms. These findings may partly explain the diabetogenic effects of medications and environmental contaminants.
Collapse
Affiliation(s)
- Fatemeh Hassani-Nezhad-Gashti
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juha Näpänkangas
- Department of Pathology, Cancer Research and Translational Medicine Research Unit, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Marcin Buler
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikko Karpale
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Internal Medicine, Research Unit of Internal Medicine, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
33
|
Abstract
The facilitative glucose transporter (GLUT) family plays a key role in metabolic homeostasis, controlling the absorption rates and rapid response to changing carbohydrate levels. The facilitative GLUT2 transporter is uniquely expressed in metabolic epithelial cells of the intestine, pancreas, liver, and kidney. GLUT2 dysfunction is associated with several pathologies, including Fanconi-Bickel syndrome, a glycogen storage disease, characterized by growth retardation and renal dysfunction. Interestingly, GLUT2 activity is modulated by its cellular localization. Membrane translocation specifically regulates GLUT2 activity in enterocytes, pancreatic β-cells, hepatocytes, and proximal tubule cells. We have established a system to visualize and quantify GLUT2 translocation, and its dynamics, by live imaging of a mCherry-hGLUT2 fusion protein in polarized epithelial cells. This system enables testing of putative modulators of GLUT2 translocation, which are potential drugs for conditions of impaired glucose homeostasis and associated nephropathy.
Collapse
Affiliation(s)
- Sabina Tsytkin-Kirschenzweig
- Alexander Grass Center for Bioengineering, The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Merav Cohen
- Alexander Grass Center for Bioengineering, The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yaakov Nahmias
- Alexander Grass Center for Bioengineering, The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
- Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
34
|
Lorincz R, Emfinger CH, Walcher A, Giolai M, Krautgasser C, Remedi MS, Nichols CG, Meyer D. In vivo monitoring of intracellular Ca 2+ dynamics in the pancreatic β-cells of zebrafish embryos. Islets 2018; 10:221-238. [PMID: 30521410 PMCID: PMC6300091 DOI: 10.1080/19382014.2018.1540234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Assessing the response of pancreatic islet cells to glucose stimulation is important for understanding β-cell function. Zebrafish are a promising model for studies of metabolism in general, including stimulus-secretion coupling in the pancreas. We used transgenic zebrafish embryos expressing a genetically-encoded Ca2+ sensor in pancreatic β-cells to monitor a key step in glucose induced insulin secretion; the elevations of intracellular [Ca2+]i. In vivo and ex vivo analyses of [Ca2+]i demonstrate that β-cell responsiveness to glucose is well established in late embryogenesis and that embryonic β-cells also respond to free fatty acid and amino acid challenges. In vivo imaging of whole embryos further shows that indirect glucose administration, for example by yolk injection, results in a slow and asynchronous induction of β-cell [Ca2+]i responses, while intravenous glucose injections cause immediate and islet-wide synchronized [Ca2+]i fluctuations. Finally, we demonstrate that embryos with disrupted mutation of the CaV1.2 channel gene cacna1c are hyperglycemic and that this phenotype is associated with glucose-independent [Ca2+]i fluctuation in β-cells. The data reveal a novel central role of cacna1c in β-cell specific stimulus-secretion coupling in zebrafish and demonstrate that the novel approach we propose - to monitor the [Ca2+]i dynamics in embryonic β-cells in vivo - will help to expand the understanding of β-cell physiological functions in healthy and diseased states.
Collapse
Affiliation(s)
- Reka Lorincz
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Christopher H. Emfinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrea Walcher
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Michael Giolai
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Claudia Krautgasser
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
| | - Maria S. Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, MO, USA
| | - Dirk Meyer
- Institute of Molecular Biology/CMBI, University of Innsbruck, Innsbruck, Austria
- CONTACT Dirk Meyer Institute of Molecular Biology/CMBI, University of Innsbruck, Technikerstrasse 25, Innsbruck 6020, Austria
| |
Collapse
|
35
|
Hinden L, Udi S, Drori A, Gammal A, Nemirovski A, Hadar R, Baraghithy S, Permyakova A, Geron M, Cohen M, Tsytkin-Kirschenzweig S, Riahi Y, Leibowitz G, Nahmias Y, Priel A, Tam J. Modulation of Renal GLUT2 by the Cannabinoid-1 Receptor: Implications for the Treatment of Diabetic Nephropathy. J Am Soc Nephrol 2017; 29:434-448. [PMID: 29030466 DOI: 10.1681/asn.2017040371] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/10/2017] [Indexed: 12/15/2022] Open
Abstract
Altered glucose reabsorption via the facilitative glucose transporter 2 (GLUT2) during diabetes may lead to renal proximal tubule cell (RPTC) injury, inflammation, and interstitial fibrosis. These pathologies are also triggered by activating the cannabinoid-1 receptor (CB1R), which contributes to the development of diabetic nephropathy (DN). However, the link between CB1R and GLUT2 remains to be determined. Here, we show that chronic peripheral CB1R blockade or genetically inactivating CB1Rs in the RPTCs ameliorated diabetes-induced renal structural and functional changes, kidney inflammation, and tubulointerstitial fibrosis in mice. Inhibition of CB1R also downregulated GLUT2 expression, affected the dynamic translocation of GLUT2 to the brush border membrane of RPTCs, and reduced glucose reabsorption. Thus, targeting peripheral CB1R or inhibiting GLUT2 dynamics in RPTCs has the potential to treat and ameliorate DN. These findings may support the rationale for the clinical testing of peripherally restricted CB1R antagonists or the development of novel renal-specific GLUT2 inhibitors against DN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Matan Geron
- Cellular and Molecular Pain Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, and
| | - Merav Cohen
- The Alexander Grass Center for Bioengineering, Benin School of Computer and Science Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Jerusalem, Israel; and
| | - Sabina Tsytkin-Kirschenzweig
- The Alexander Grass Center for Bioengineering, Benin School of Computer and Science Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Jerusalem, Israel; and
| | - Yael Riahi
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gil Leibowitz
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaakov Nahmias
- The Alexander Grass Center for Bioengineering, Benin School of Computer and Science Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Cell and Developmental Biology, Silberman Institute of Life Sciences, Jerusalem, Israel; and
| | - Avi Priel
- Cellular and Molecular Pain Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, and
| | | |
Collapse
|
36
|
Shashikanth N, Yeruva S, Ong MLDM, Odenwald MA, Pavlyuk R, Turner JR. Epithelial Organization: The Gut and Beyond. Compr Physiol 2017; 7:1497-1518. [DOI: 10.1002/cphy.c170003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Lundquist P, Artursson P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv Drug Deliv Rev 2016; 106:256-276. [PMID: 27496705 DOI: 10.1016/j.addr.2016.07.007] [Citation(s) in RCA: 328] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/02/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022]
Abstract
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed.
Collapse
Affiliation(s)
- P Lundquist
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| | - P Artursson
- Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden.
| |
Collapse
|
38
|
Involvement of the Niacin Receptor GPR109a in the LocalControl of Glucose Uptake in Small Intestine of Type 2Diabetic Mice. Nutrients 2015; 7:7543-61. [PMID: 26371038 PMCID: PMC4586547 DOI: 10.3390/nu7095352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022] Open
Abstract
Niacin is a popular nutritional supplement known to reduce the risk of cardiovascular diseases by enhancing high-density lipoprotein levels. Despite such health benefits, niacin impairs fasting blood glucose. In type 2 diabetes (T2DM), an increase in jejunal glucose transport has been well documented; however, this is intriguingly decreased during niacin deficient state. In this regard, the role of the niacin receptor GPR109a in T2DM jejunal glucose transport remains unknown. Therefore, the effects of diabetes and high-glucose conditions on GPR109a expression were studied using jejunal enterocytes of 10-week-old m+/db and db/db mice, as well as Caco-2 cells cultured in 5.6 or 25.2 mM glucose concentrations. Expression of the target genes and proteins were quantified using real-time polymerase chain reaction (RT-PCR) and Western blotting. Glucose uptake in Caco-2 cells and everted mouse jejunum was measured using liquid scintillation counting. 10-week T2DM increased mRNA and protein expression levels of GPR109a in jejunum by 195.0% and 75.9%, respectively, as compared with the respective m+/db control; high-glucose concentrations increased mRNA and protein expression of GPR109a in Caco-2 cells by 130.2% and 69.0%, respectively, which was also confirmed by immunohistochemistry. In conclusion, the enhanced GPR109a expression in jejunal enterocytes of T2DM mice and high-glucose treated Caco-2 cells suggests that GPR109a is involved in elevating intestinal glucose transport observed in diabetes.
Collapse
|
39
|
Ontogenic Changes of Villus Growth, Lactase Activity, and Intestinal Glucose Transporters in Preterm and Term Born Calves with or without Prolonged Colostrum Feeding. PLoS One 2015; 10:e0128154. [PMID: 26011395 PMCID: PMC4443978 DOI: 10.1371/journal.pone.0128154] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/22/2015] [Indexed: 01/03/2023] Open
Abstract
Oral glucose supply is important for neonatal calves to stabilize postnatal plasma glucose concentration. The objective of this study was to investigate ontogenic development of small intestinal growth, lactase activity, and glucose transporter in calves (n = 7 per group) that were born either preterm (PT; delivered by section 9 d before term) or at term (T; spontaneous vaginal delivery) or spontaneously born and fed colostrum for 4 days (TC). Tissue samples from duodenum and proximal, mid, and distal jejunum were taken to measure villus size and crypt depth, protein concentration of mucosa and brush border membrane vesicles (BBMV), total DNA and RNA concentration of mucosa, mRNA expression and activity of lactase, and mRNA expression of sodium-dependent glucose co-transporter-1 (SGLT1) and facilitative glucose transporter 2 (GLUT2) in mucosal tissue. Additionally, protein expression of SGLT1 in BBMV and GLUT2 in crude mucosal membranes and immunochemical localization of GLUT2 in the enterocytes were determined. Villus height in distal jejunum was lower in TC than in T. Crypt depth in all segments was largest and the villus height/crypt depth ratio in jejunum was smallest in TC calves. Concentration of RNA was highest in duodenal mucosa of TC calves, but neither lactase mRNA and activity nor SGLT1 and GLUT2 mRNA and protein expression differed among groups. Localization of GLUT2 in the apical membrane was greater, whereas in the basolateral membrane was lower in TC than in T and PT calves. Our study indicates maturation processes after birth for mucosal growth and trafficking of GLUT2 from the basolateral to the apical membrane. Minor differences of mucosal growth, lactase activity, and intestinal glucose transporters were seen between PT and T calves, pointing at the importance of postnatal maturation and feeding for mucosal growth and GLUT2 trafficking.
Collapse
|
40
|
Abstract
It has been proposed that the non-saturable component of intestinal glucose absorption, apparent following prolonged exposure to high intraluminal glucose concentrations, is mediated via the low affinity glucose and fructose transporter, GLUT2, upregulated within the small intestinal apical border. The evidence that the non-saturable transport component is mediated via an apical membrane sugar transporter is that it is inhibited by phloretin, after exposure to phloridzin. Since the other apical membrane sugar transporter, GLUT5, is insensitive to inhibition by either cytochalasin B, or phloretin, GLUT2 was deduced to be the low affinity sugar transport route. As in its uninhibited state, polarized intestinal glucose absorption depends both on coupled entry of glucose and sodium across the brush border membrane and on the enterocyte cytosolic glucose concentration exceeding that in both luminal and submucosal interstitial fluids, upregulation of GLUT2 within the intestinal brush border will usually stimulate downhill glucose reflux to the intestinal lumen from the enterocytes; thereby reducing, rather than enhancing net glucose absorption across the luminal surface. These states are simulated with a computer model generating solutions to the differential equations for glucose, Na and water flows between luminal, cell, interstitial and capillary compartments. The model demonstrates that uphill glucose transport via SGLT1 into enterocytes, when short-circuited by any passive glucose carrier in the apical membrane, such as GLUT2, will reduce transcellular glucose absorption and thereby lead to increased paracellular flow. The model also illustrates that apical GLUT2 may usefully act as an osmoregulator to prevent excessive enterocyte volume change with altered luminal glucose concentrations.
Collapse
Affiliation(s)
- Richard J Naftalin
- Department of Physiology and BHF Centre of Research Excellence, King's College London, School of Medicine, London, SE1 9HN, UK
| |
Collapse
|