1
|
Ma L, Liu Y, Sun J, Yang X, He Y, Zhang T, Zhao J, Lu Z, Yan X, Qie X. The synthesis of nitric oxide regulated by JNK pathway in the pea aphid to defend against bacterial infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104315. [PMID: 40274239 DOI: 10.1016/j.ibmb.2025.104315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/13/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Compared to other insects, the pea aphid Acyrthosiphon pisum exhibits limited immune responses, particularly due to the absence of many immune genes, including those encoding antimicrobial peptides and key components of the IMD pathway. Prior studies proved that the conserved signaling, Jun N-terminal kinase (JNK) pathway, plays a critical role in the immune system of the pea aphid, and nitric oxide synthase (NOS) is required for the pea aphid's defense against infections. Herein, using in vitro biochemical assays and in vivo bioassays, we demonstrated that the JNK pathway directly regulates the expression of NOS and that the JNK pathway-NOS-NO signal axis is efficient in defending against bacterial infections. The Toll pathway is instrumental for combating bacterial infections, and NO can activate the Toll pathway. The Toll pathway induced by NO regulates the expressions of ROS metabolism, lysosome, and phagocytosis-related genes. NO was identified as a crucial signaling molecule that facilitates communication between the JNK and Toll pathways.
Collapse
Affiliation(s)
- Li Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yaya Liu
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jing Sun
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xiaorong Yang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yingying He
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Tingting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jingyu Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xizhong Yan
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Xingtao Qie
- College of Plant Protection, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
2
|
Xu M, Li W, Xu R, Liu L, Wu Z, Li W, Ma C, Xue L. Gp93 safeguards tissue homeostasis by preventing ROS-JNK-mediated apoptosis. Redox Biol 2025; 81:103537. [PMID: 39965405 PMCID: PMC11875814 DOI: 10.1016/j.redox.2025.103537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Reactive oxygen species (ROS) play a pivotal role in maintaining tissue homeostasis, yet their overabundance can impair normal cellular functions, induce cell death, and potentially lead to neurodegenerative disorders. This study identifies Drosophila Glycoprotein 93 (Gp93) as a crucial factor that safeguards tissue homeostasis and preserves normal neuronal functions by preventing ROS-induced, JNK-dependent apoptotic cell death. Firstly, loss of Gp93 induces JNK-dependent apoptosis primarily through the induction of ROS. Secondary, neuro-specific depletion of Gp93 results in ROS-JNK-mediated neurodegeneration. Thirdly, overexpression of Gp93 effectively curtails oxidative stress and neurodegeneration caused by paraquat exposure or the aging process. Furthermore, these functions of Gp93 can be substituted by its human ortholog, HSP90B1. Lastly, depletion of HSP90B1 in cultured human cells triggers ROS production, JNK activation, and apoptosis. Thus, this study not only unveils a novel physiological function of Gp93, but also provides valuable insights for understanding the physiological and pathological functions of human HSP90B1.
Collapse
Affiliation(s)
- Meng Xu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wanzhen Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Ruihong Xu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lixia Liu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhihan Wu
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chao Ma
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Department of Nuclear Medicine, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai 10th People's Hospital, 200072, Shanghai, China.
| |
Collapse
|
3
|
Brutscher F, Germani F, Hausmann G, Jutz L, Basler K. Activation of the Drosophila innate immune system accelerates growth in cooperation with oncogenic Ras. PLoS Biol 2025; 23:e3003068. [PMID: 40294154 PMCID: PMC12036928 DOI: 10.1371/journal.pbio.3003068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 02/13/2025] [Indexed: 04/30/2025] Open
Abstract
Innate immunity in Drosophila acts as an organismal surveillance system for external stimuli or cellular fitness and triggers context-specific responses to fight infections and maintain tissue homeostasis. However, uncontrolled activation of innate immune pathways can be detrimental. In mammals, innate immune signaling is often overactivated in malignant cells and contributes to tumor progression. Drosophila tumor models have been instrumental in the discovery of interactions between pathways that promote tumorigenesis, but little is known about whether and how the Toll innate immune pathway interacts with oncogenes. Here we use a Drosophila epithelial in vivo model to investigate the interplay between Toll signaling and oncogenic Ras. In the absence of oncogenic Ras (RasV12), Toll signaling suppresses differentiation and induces apoptosis. In contrast, in the context of RasV12, cells are protected from cell death and Dorsal promotes cell survival and proliferation to drive hyperplasia. Taken together, we show that the tissue-protective functions of innate immune activity can be hijacked by pre-malignant cells to induce tumorous overgrowth.
Collapse
Affiliation(s)
- Fabienne Brutscher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Federico Germani
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - George Hausmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Lena Jutz
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Brutscher F, Basler K. Functions of Drosophila Toll/NF-κB signaling in imaginal tissue homeostasis and cancer. Front Cell Dev Biol 2025; 13:1559753. [PMID: 40143968 PMCID: PMC11936955 DOI: 10.3389/fcell.2025.1559753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
The Toll/NF-κB pathway plays a central role in patterning the Drosophila embryo and in orchestrating the innate immune response against microbial infections. Both discoveries were associated with a Nobel Prize award and led to the recognition of the Toll-like receptor pathway in mammals, which has significant implications for diseases. Recent discoveries have revealed that the Toll/NF-κB pathway also maintains epithelial homeostasis of imaginal tissues during development: local Toll/NF-κB signaling activity monitors internal cellular fitness, and precancerous mutant cells can trigger systemic Toll/NF-κB pathway activation. However, this signaling can be exploited in diseases like cancer, in which Toll/NF-κB signaling is often co-opted or subverted. Various models have been proposed to explain how Toll/NF-κB signaling contributes to different types of cancer. Here we provide an overview of the functions of Toll/NF-κB signaling in imaginal tissue homeostasis with a focus on their misuse in pathological contexts, particularly their significance for tumor formation.
Collapse
Affiliation(s)
- Fabienne Brutscher
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Xie MQ, Wang LJ, Xiao HM, Wei SJ. Regulatory networks of mRNAs and miRNAs involved in the immune response of diamondback moth, Plutella xylostella to fungal infection. BMC Genomics 2025; 26:15. [PMID: 39762741 PMCID: PMC11706182 DOI: 10.1186/s12864-024-11192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The entomopathogenic fungus, Isaria fumosorosea, shows promise as a biological control agent in managing the diamondback moth (DBM) Plutella xylostella, a highly destructive global pest of cruciferous vegetables. To date, the miRNA-mRNA regulatory networks underlying the immune response of DBM to I. fumosorosea infection are still poorly understood. Here, we characterize the expression profiles of miRNA and mRNA, and construct the miRNA-gene regulatory network in DBM infected with I. fumosorosea. RESULTS We identified 580 differentially expressed genes (DEGs) and 55 differentially expressed miRNAs (DEMs) in I. fumosorosea-infected DBM. Among these DEGs, we found 28 immunity-related genes, which mainly include pattern recognition receptors, signal modulators, and immune effectors. Integrated analysis discovered 87 negative correlation pairs between miRNA and mRNA, involving 40 DEMs and 62 DEGs in infected DBM. Additionally, 13 miRNAs and 10 corresponding mRNAs were identified as candidate miRNA-mRNA pairs for DBM immunity against fungal infection. Gene functional enrichment analysis indicated that these miRNAs could target genes associated with various pathways, such as the immune system, infectious diseases, digestive system, endocrine system, nervous system, and signal transduction. Finally, the regulatory relationships of six miRNA-mRNA pairs were validated using quantitative reverse transcription PCR. CONCLUSIONS For the first time, we present integrated miRNA and mRNA data to elucidate the immune response of the DBM to fungal infection. Our findings enhance the understanding of the immune response of the DBM to entomopathogenic fungi infection.
Collapse
Affiliation(s)
- Mei-Qiong Xie
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Long-Jiang Wang
- College of Chemistry and Bioengineering, Yichun University, Yichun, 336000, China.
| | - Hua-Mei Xiao
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, 336000, China
| | - Shu-Jun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
6
|
Wang Y, Qiu L, Xu H, Luo S, Yang L, Huang N, Guo Y, Wu J. Inhibition of JNK transcription via the Nrf2/Keap1a pathway to resist microcystin-induced oxidative stress and apoptosis in freshwater mussels Cristaria plicata. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109982. [PMID: 39033794 DOI: 10.1016/j.cbpc.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
With global warming and increasing eutrophication of water bodies, a variety of algal toxins, including microcystin (MC), released into water by cyanobacterial blooms pose a serious threat to the survival of aquatic organisms. To investigate the mechanism of the Nrf2/Keap1a pathway on resisting MC-induced oxidative stress and apoptosis in Cristata plicata, we cloned the full-length cDNA of CpBcl-2. The cDNA full-length of CpBcl-2 was 760 bp, encoded a 177 amino acid peptide, and contained a highly conserved Bcl-2-like superfamily domain. MC stimulation increased the expression and activity levels of related antioxidant enzymes. After CpNrf2 knockdown, the transcription levels of NAD(P)H quinone redox Enzyme-1 (NQO1) and related antioxidant enzymes activity in the gills and kidney of C. plicata were significantly down-regulated upon MC stress, but that was significantly upregulated after knockdown of CpKeap1a. Additionally, Upon MC stress, the mRNA levels of CpBcl-2 were increased in the gills and kidney after knockdown of CpNrf2 at 24 h, and that of CpBcl-2 were decreased at 72 and 96 h in the CpKeap1a-siRNA+MC group. Moreover, MC stimulation significantly inhibited CpJNK expression in the gills and kidney, but which regulated the Nrf2/Keap1a pathway in C. plicata. However, the JNK inhibitor SP600125 promoted the expression of CpNrf2 and related enzymes with antioxidant response element (ARE-driven enzyme) in the gills and kidney. Then, we speculated that CpKeap1a was a negative regulator of CpNrf2, and C. plicata resisted MC-induced oxidative damage and apoptosis by inhibiting JNK transcription via the Nrf2/Keap1a pathway.
Collapse
Affiliation(s)
- Yanrui Wang
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Linhan Qiu
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Hui Xu
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Shanshan Luo
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Lang Yang
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Nana Huang
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Yuping Guo
- Jiangxi Science & Technology Normal University, Nanchang 330013, China
| | - Jielian Wu
- Jiangxi Science & Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
7
|
Luo F, Zhang C, Shi Z, Mao T, Jin LH. Notch signaling promotes differentiation, cell death and autophagy in Drosophila hematopoietic system. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 173:104176. [PMID: 39168254 DOI: 10.1016/j.ibmb.2024.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Notch signaling is a highly conserved pathway between mammals and Drosophila and plays a key role in various biological processes. Drosophila has emerged as a powerful model for studying hematopoiesis and leukemia. In exception to crystal cells, the strength of Notch signaling in Drosophila lymph gland cortical zone (CZ)/intermediate zone (IZ) cells is weak. However, the influence of Notch activation in the lymph gland CZ/IZ cells and circulating hemocytes on hematopoietic homeostasis maintenance is unclear. Here, we showed that Notch activation in lymph gland CZ/IZ cells induced overdifferentiation of progenitors. Moreover, Notch activation promoted lamellocyte generation via NFκB/Toll signaling activation and increased reactive oxygen species (ROS). In addition, we found that Notch activation in lymph gland CZ/IZ cells and circulating hemocytes caused caspase-independent and nonautophagic cell death. However, crystal cell autophagy was activated by upregulation of the expression of the target gene of the Hippo/Yki pathway Diap1. Moreover, we showed that Notch activation could alleviate cytokine storms and improve the survival of Rasv12 leukemia model flies. Our study revealed the various mechanisms of hematopoietic dysregulation induced by Notch activation in healthy flies and the therapeutic effect of Notch activation on leukemia model flies.
Collapse
Affiliation(s)
- Fangzhou Luo
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chengcheng Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zhengqi Shi
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tong Mao
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- College of Life Sciences, Northeast Forestry University, Harbin, China.
| |
Collapse
|
8
|
Kodra AL, Singh AS, de la Cova C, Ziosi M, Johnston LA. The Drosophila tumor necrosis factor Eiger promotes Myc supercompetition independent of canonical Jun N-terminal kinase signaling. Genetics 2024; 228:iyae107. [PMID: 38985651 PMCID: PMC11373512 DOI: 10.1093/genetics/iyae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/12/2024] Open
Abstract
Numerous factors have been implicated in the cell-cell interactions that lead to elimination of cells via cell competition, a context-dependent process of cell selection in somatic tissues that is based on comparisons of cellular fitness. Here, we use a series of genetic tests in Drosophila to explore the relative contribution of the pleiotropic cytokine tumor necrosis factor α (TNFα) in Myc-mediated cell competition (also known as Myc supercompetition or Myc cell competition). We find that the sole Drosophila TNF, Eiger (Egr), its receptor Grindelwald (Grnd/TNF receptor), and the adaptor proteins Traf4 and Traf6 are required to eliminate wild-type "loser" cells during Myc cell competition. Although typically the interaction between Egr and Grnd leads to cell death by activating the intracellular Jun N-terminal kinase (JNK) stress signaling pathway, our experiments reveal that many components of canonical JNK signaling are dispensable for cell death in Myc cell competition, including the JNKKK Tak1, the JNKK Hemipterous and the JNK Basket. Our results suggest that Egr/Grnd signaling participates in Myc cell competition but functions in a role that is largely independent of the JNK signaling pathway.
Collapse
Affiliation(s)
- Albana L Kodra
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Aditi Sharma Singh
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Claire de la Cova
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53201, USA
| | | | - Laura A Johnston
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Zhang LQ, Sun L, Zhou YQ, Liu JJ, Wang QD, Mo WB, Cheng KG. Pentacyclic triterpene-amino acid derivatives induced apoptosis and autophagy in tumor cells, affected the JNK and PI3K/AKT/mTOR pathway. Bioorg Med Chem 2023; 94:117478. [PMID: 37742398 DOI: 10.1016/j.bmc.2023.117478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
A series of pentacyclic triterpene-amino acid derivatives were synthesized and tested for anti-proliferative activity. The results showed that most of the target compounds had good anti-proliferative activity. 2c did not contain protecting groups and hydrochloride, had excellent cytotoxicity, so it had been selected for further study in the mechanism of action in T24 cells. The data from transcriptome sequencing indicated that 2c was found to be closely related to apoptosis and autophagy. Observation of fluorescence staining and analysis from flow cytometry demonstrated that 2c induced apoptosis and cause cell cycle arrest in S/G2 phase in T24 cells. Molecular mechanism studies exhibited that 2c induced apoptosis in the intrinsic and extrinsic pathways. 2c also induced cellular autophagy in T24 cells. Results from Western Blotting showed that 2c could activate JNK pathway and inhibit PI3K/AKT/mTOR pathway. In conclusion, 2c was deserved further investigation in the field of anti-tumor.
Collapse
Affiliation(s)
- Li-Qiong Zhang
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Li Sun
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yu-Qing Zhou
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jing-Jing Liu
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Quan-de Wang
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Wei-Bin Mo
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; College of Physical and Health Education, Guangxi Normal University, Guilin 541006, China.
| | - Ke-Guang Cheng
- State/Ministry of Education of China Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, China; School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
10
|
Sakakibara Y, Yamashiro R, Chikamatsu S, Hirota Y, Tsubokawa Y, Nishijima R, Takei K, Sekiya M, Iijima KM. Drosophila Toll-9 is induced by aging and neurodegeneration to modulate stress signaling and its deficiency exacerbates tau-mediated neurodegeneration. iScience 2023; 26:105968. [PMID: 36718365 PMCID: PMC9883205 DOI: 10.1016/j.isci.2023.105968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Drosophila Toll-9 is most closely related to mammalian Toll-like receptors; however, physiological functions of Toll-9 remain elusive. We examined the roles of Toll-9 in fly brains in aging and neurodegeneration. Toll-9 mRNA levels were increased in aged fly heads accompanied by activation of nuclear factor-kappa B (NF-kB) and stress-activated protein kinase (SAPK) signaling, and many of these changes were modulated by Toll-9 in glial cells. The loss of Toll-9 did not affect lifespan or brain integrity, whereas it exacerbated hydrogen peroxide-induced lethality. Toll-9 expression was also induced by nerve injury but did not affect acute stress response or glial engulfment activity, suggesting Toll-9 may modulate subsequent neurodegeneration. In a fly tauopathy model, Toll-9 deficiency enhanced neurodegeneration and disease-related tau phosphorylation with reduced SAPK activity, and blocking SAPK enhanced tau phosphorylation and neurodegeneration. In sum, Toll-9 is induced upon aging and nerve injury and affects neurodegeneration by modulating stress kinase signaling.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Yamashiro
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Reseach Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoko Tsubokawa
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Risa Nishijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| | - Koichi M. Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan,Corresponding author
| |
Collapse
|
11
|
Abstract
Inflammatory response in Drosophila to sterile (axenic) injury in embryos and adults has received some attention in recent years, and most concentrate on the events at the injury site. Here we focus on the effect sterile injury has on the hematopoietic organ, the lymph gland, and the circulating blood cells in the larva, the developmental stage at which major events of hematopoiesis are evident. In mammals, injury activates Toll-like receptor/NF-κB signaling in macrophages, which then express and secrete secondary, proinflammatory cytokines. In Drosophila larvae, distal puncture injury of the body wall epidermis causes a rapid activation of Toll and Jun kinase (JNK) signaling throughout the hematopoietic system and the differentiation of a unique blood cell type, the lamellocyte. Furthermore, we find that Toll and JNK signaling are coupled in their activation. Secondary to this Toll/JNK response, a cytokine, Upd3, is induced as a Toll pathway transcriptional target, which then promotes JAK/STAT signaling within the blood cells. Toll and JAK/STAT signaling are required for the emergence of the injury-induced lamellocytes. This is akin to the derivation of specialized macrophages in mammalian systems. Upstream, at the injury site, a Duox- and peroxide-dependent signal causes the activation of the proteases Grass and SPE, needed for the activation of the Toll-ligand Spz, but microbial sensors or the proteases most closely associated with them during septic injury are not involved in the axenic inflammatory response.
Collapse
|
12
|
Ding X, Li Z, Lin G, Li W, Xue L. Toll-7 promotes tumour growth and invasion in Drosophila. Cell Prolif 2022; 55:e13188. [PMID: 35050535 PMCID: PMC8828261 DOI: 10.1111/cpr.13188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/25/2022] Open
Abstract
Objectives Drosophila melanogaster has become an excellent model organism to explore the genetic mechanisms underlying tumour progression. Here, by using well‐established Drosophila tumour models, we identified Toll‐7 as a novel regulator of tumour growth and invasion. Materials and methods Transgenic flies and genetic epistasis analysis were used. All flies were raised on a standard cornmeal and agar medium at 25°C unless otherwise indicated. Immunostaining and RT‐qPCR were performed by standard procedures. Images were taken by OLYMPUS BX51 microscope and Zeiss LSM 880 confocal microscope. Adobe Photoshop 2020 and Zeiss Zen were used to analyse the images. All results were presented in Scatter plots or Column bar graphs created by GraphPad Prism 8.0. Results Loss of Toll‐7 suppresses RasV12/lgl−/−‐induced tumour growth and invasion, as well as cell polarity disruption‐induced invasive cell migration, whereas expression of a constitutively active allele of Toll‐7 is sufficient to promote tumorous growth and cell migration. In addition, the Egr‐JNK signalling is necessary and sufficient for Toll‐7‐induced invasive cell migration. Mechanistically, Toll‐7 facilitates the endocytosis of Egr, which is known to activate JNK in the early endosomes. Moreover, Toll‐7 activates the EGFR‐Ras signalling, which cooperates with the Egr‐JNK signalling to promote Yki‐mediated cell proliferation and tissue overgrowth. Finally, Toll‐7 is necessary and sufficient for the proper maintenance of EGFR protein level. Conclusions Our findings characterized Toll‐7 as a proto‐oncogene that promotes tumour growth and invasion in Drosophila, which shed light on the pro‐tumour function of mammalian Toll‐like receptors (TLRs).
Collapse
Affiliation(s)
- Xiang Ding
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Zhuojie Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, China.,Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
13
|
Wu C, Ding X, Li Z, Huang Y, Xu Q, Zou R, Zhao M, Chang H, Jiang C, La X, Lin G, Li W, Xue L. CtBP modulates Snail-mediated tumor invasion in Drosophila. Cell Death Discov 2021; 7:202. [PMID: 34349099 PMCID: PMC8339073 DOI: 10.1038/s41420-021-00516-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most fatal diseases that threaten human health, whereas more than 90% mortality of cancer patients is caused by tumor metastasis, rather than the growth of primary tumors. Thus, how to effectively control or even reverse the migration of tumor cells is of great significance for cancer therapy. CtBP, a transcriptional cofactor displaying high expression in a variety of human cancers, has become one of the main targets for cancer prediction, diagnosis, and treatment. The roles of CtBP in promoting tumorigenesis have been well studied in vitro, mostly based on gain-of-function, while its physiological functions in tumor invasion and the underlying mechanism remain largely elusive. Snail (Sna) is a well-known transcription factor involved in epithelial-to-mesenchymal transition (EMT) and tumor invasion, yet the mechanism that regulates Sna activity has not been fully understood. Using Drosophila as a model organism, we found that depletion of CtBP or snail (sna) suppressed RasV12/lgl-/--triggered tumor growth and invasion, and disrupted cell polarity-induced invasive cell migration. In addition, loss of CtBP inhibits RasV12/Sna-induced tumor invasion and Sna-mediated invasive cell migration. Furthermore, both CtBP and Sna are physiologically required for developmental cell migration during thorax closure. Finally, Sna activates the JNK signaling and promotes JNK-dependent cell invasion. Given that CtBP physically interacts with Sna, our data suggest that CtBP and Sna may form a transcriptional complex that regulates JNK-dependent tumor invasion and cell migration in vivo.
Collapse
Affiliation(s)
- Chenxi Wu
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiang Ding
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhuojie Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yuanyuan Huang
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qian Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Rui Zou
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingyang Zhao
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Hong Chang
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Chunhua Jiang
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiaojin La
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Wenzhe Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Lei Xue
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China. .,Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 51900, China.
| |
Collapse
|
14
|
Sharma V, Mutsuddi M, Mukherjee A. Deltex positively regulates Toll signaling in a JNK independent manner in Drosophila. Genes Cells 2021; 26:254-263. [PMID: 33555648 DOI: 10.1111/gtc.12837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/31/2022]
Abstract
Toll pathway is the center for the function of immune system in both Drosophila and mammals. Toll pathway in Drosophila gets activated upon binding of the ligand Spätzle to the receptor, Toll, triggering a series of proteolytic cascade culminating into the activation of the NF-κB factors Dorsal and/or Dif (Dorsal-related immunity factor). Inappropriate activation of the Toll pathway is often associated with systemic inflammation phenotype in the absence of infection, and thus, it is important to understand the regulation of Toll signaling. Deltex (Dx) is a context-dependent regulator of Notch signaling and has been linked with cell-mediated immunity in the mammalian system lately. However, the unambiguous role of Dx in humoral and cell-mediated immunity is yet to be explored. Our study unravels the novel role of Dx in Toll pathway activation. Gain of function of dx in Drosophila larvae results in increased melanotic mass formation and increased lamellocyte production. Our results also reveal the nuclear accumulation of transcription factors Dorsal and Dif and expression of Toll-associated antimicrobial peptides (AMP) in Dx over-expression background. Further, we also tried to elucidate the role of Dx in JNK-independent Toll activation. Here we present Dx as a novel candidate in the regulation of Toll pathway.
Collapse
Affiliation(s)
- Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
15
|
Yu S, Luo F, Jin LH. Rab5 and Rab11 maintain hematopoietic homeostasis by restricting multiple signaling pathways in Drosophila. eLife 2021; 10:60870. [PMID: 33560224 PMCID: PMC7891935 DOI: 10.7554/elife.60870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
The hematopoietic system of Drosophila is a powerful genetic model for studying hematopoiesis, and vesicle trafficking is important for signal transduction during various developmental processes; however, its interaction with hematopoiesis is currently largely unknown. In this article, we selected three endosome markers, Rab5, Rab7, and Rab11, that play a key role in membrane trafficking and determined whether they participate in hematopoiesis. Inhibiting Rab5 or Rab11 in hemocytes or the cortical zone (CZ) significantly induced cell overproliferation and lamellocyte formation in circulating hemocytes and lymph glands and disrupted blood cell progenitor maintenance. Lamellocyte formation involves the JNK, Toll, and Ras/EGFR signaling pathways. Notably, lamellocyte formation was also associated with JNK-dependent autophagy. In conclusion, we identified Rab5 and Rab11 as novel regulators of hematopoiesis, and our results advance the understanding of the mechanisms underlying the maintenance of hematopoietic homeostasis as well as the pathology of blood disorders such as leukemia.
Collapse
Affiliation(s)
- Shichao Yu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Fangzhou Luo
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, China
| |
Collapse
|
16
|
Krautz R, Khalili D, Theopold U. Tissue-autonomous immune response regulates stress signaling during hypertrophy. eLife 2020; 9:64919. [PMID: 33377870 PMCID: PMC7880693 DOI: 10.7554/elife.64919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
Postmitotic tissues are incapable of replacing damaged cells through proliferation, but need to rely on buffering mechanisms to prevent tissue disintegration. By constitutively activating the Ras/MAPK-pathway via RasV12-overexpression in the postmitotic salivary glands (SGs) of Drosophila larvae, we overrode the glands adaptability to growth signals and induced hypertrophy. The accompanied loss of tissue integrity, recognition by cellular immunity, and cell death are all buffered by blocking stress signaling through a genuine tissue-autonomous immune response. This novel, spatio-temporally tightly regulated mechanism relies on the inhibition of a feedback-loop in the JNK-pathway by the immune effector and antimicrobial peptide Drosomycin. While this interaction might allow growing SGs to cope with temporary stress, continuous Drosomycin expression in RasV12-glands favors unrestricted hypertrophy. These findings indicate the necessity to refine therapeutic approaches that stimulate immune responses by acknowledging their possible, detrimental effects in damaged or stressed tissues. Tissues and organs work hard to maintain balance in everything from taking up nutrients to controlling their growth. Ageing, wounding, sickness, and changes in the genetic code can all alter this balance, and cause the tissue or organ to lose some of its cells. Many tissues restore this loss by dividing their remaining cells to fill in the gaps. But some – like the salivary glands of fruit fly larvae – have lost this ability. Tissues like these rely on being able to sense and counteract problems as they arise so as to not lose their balance in the first place. The immune system and stress responses are crucial for this process. They trigger steps to correct the problem and interact with each other to find a common decision about the fate of the affected tissue. To better understand how the immune system and stress response work together, Krautz, Khalili and Theopold genetically manipulated cells in the salivary gland of fruit fly larvae. These modifications switched on signals that stimulate cells to keep growing, causing the salivary gland’s tissue to slowly lose its balance and trigger the stress and immune response. The experiments showed that while the stress response instructed the cells in the gland to die, a peptide released by the immune system called Drosomycin blocked this response and prevented the tissue from collapsing. The cells in the part of the gland not producing this immune peptide were consequently killed by the stress response. When all the cells in the salivary gland were forced to produce Drosomycin, none of the cells died and the whole tissue survived. But it also allowed the cells in the gland to grow uncontrollably, like a tumor, threatening the health of the entire organism. Mapping the interactions between immune and stress pathways could help to fine-tune treatments that can prevent tissue damage. Fruit flies share many genetic features and molecular pathways with humans. So, the next step towards these kinds of treatments would be to screen for similar mechanisms that block stress activation in damaged human tissues. But this research carries a warning: careless activation of the immune system to protect stressed tissues could lead to uncontrolled tissue growth, and might cause more harm than good.
Collapse
Affiliation(s)
- Robert Krautz
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Dilan Khalili
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| | - Ulrich Theopold
- Department of Molecular Biosciences, The Wenner-Gren Institute (MBW), Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Wang XC, Liu Z, Jin LH. Drosophila jumu modulates apoptosis via a JNK-dependent pathway and is required for other processes in wing development. Apoptosis 2020; 24:465-477. [PMID: 30796611 DOI: 10.1007/s10495-019-01527-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies in several model organisms have revealed that members of the Forkhead (Fkh) transcription factor family have multiple functions. Drosophila Jumeau (Jumu), a member of this family, participates in cardiogenesis, hematopoiesis and immune system homeostasis. Here, we show that loss of jumu function positively regulates or triggers apoptosis via a JNK-dependent pathway in wing development. jumu mutants showed reduced wing size and increased apoptosis. Moreover, we observed a loss of the anterior cross vein (ACV) phenotype that was similar to that observed in wings in which JNK signaling has been ectopically activated. The JNK signaling markers puckered (puc) and p-JNK were also significantly increased in the wing discs of jumu mutants. In addition, apoptosis induced by the loss of jumu was rescued by knocking down JNK, indicating a role for JNK in reducing jumu-induced apoptosis. Jumu could also control wing margin development via the positive regulation of cut expression, and the observed wing margin defect did not result from a loss of jumu-induced apoptosis. Further, jumu deficiency in the pupal wing could induce multiple wing hairs via a Rho1-mediated planar cell polarity pathway, but abnormal Rho1 expression was not why jumu loss induced apoptosis via a JNK-dependent pathway in wing discs.
Collapse
Affiliation(s)
- Xiao Chun Wang
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ziguang Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150040, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
18
|
Effects of Xuefu Zhuyu Decoction on Cell Migration and Ocular Tumor Invasion in Drosophila. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/5463652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Xuefu Zhuyu Decoction (XFZYD), a Traditional Chinese Medicine (TCM) decoction mainly for treating blood stasis syndrome, has been widely investigated and applied in clinic and in laboratory. XFZYD contains 11 herbs and has been identified to promoting blood circulation to remove blood stasis for cardiovascular disease. Meanwhile, blood stasis is directly related to malignant tumor according to TCM basic theory. However, the effects of XFZYD on tumor metastasis and the underlying mechanisms are still largely unknown. Here, we employed well-establishedDrosophilacell migration and tumor invasion models to explore whether XFZYD has the anticancer activity on tumor metastasisin vivo. Our work has demonstrated that XFZYD could suppress cell migration and tumor invasion at the moderate concentrations. In addition, XFZYD altered the expression of MMP1,β-integrin, and E-cadherin to impede cell migration. Moreover, XFZYD inhibited ocular tumor invasion presumably by reducing the activity of Notch signaling. Together, these evidences reveal a positive role of XFZYD in suppressing cell migration and tumor metastasis, providing the potential drug targets and key clues for cancer clinical treatment strategies.
Collapse
|
19
|
Li Z, Wu C, Ding X, Li W, Xue L. Toll signaling promotes JNK-dependent apoptosis in Drosophila. Cell Div 2020; 15:7. [PMID: 32174999 PMCID: PMC7063707 DOI: 10.1186/s13008-020-00062-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Apoptosis plays pivotal roles in organ development and tissue homeostasis, with its major function to remove unhealthy cells that may compromise the fitness of the organism. Toll signaling, with the ancient evolutionary origin, regulates embryonic dorsal–ventral patterning, axon targeting and degeneration, and innate immunity. Using Drosophila as a genetic model, we characterized the role of Toll signaling in apoptotic cell death. Results We found that gain of Toll signaling is able to trigger caspase-dependent cell death in development. In addition, JNK activity is required for Toll-induced cell death. Furthermore, ectopic Toll expression induces the activation of JNK pathway. Moreover, physiological activation of Toll signaling is sufficient to produce JNK-dependent cell death. Finally, Toll signaling activates JNK-mediated cell death through promoting ROS production. Conclusions As Toll pathway has been evolutionarily conserved from Drosophila to human, this study may shed light on the mechanism of mammalian Toll-like receptors (TLRs) signaling in apoptotic cell death.
Collapse
Affiliation(s)
- Zhuojie Li
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Chenxi Wu
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China.,2College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210 China
| | - Xiang Ding
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Wenzhe Li
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China
| | - Lei Xue
- 1Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092 China.,3Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong 519000 China
| |
Collapse
|
20
|
La Marca JE, Richardson HE. Two-Faced: Roles of JNK Signalling During Tumourigenesis in the Drosophila Model. Front Cell Dev Biol 2020; 8:42. [PMID: 32117973 PMCID: PMC7012784 DOI: 10.3389/fcell.2020.00042] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/17/2020] [Indexed: 12/27/2022] Open
Abstract
The highly conserved c-Jun N-terminal Kinase (JNK) signalling pathway has many functions, regulating a diversity of processes: from cell movement during embryogenesis to the stress response of cells after environmental insults. Studies modelling cancer using the vinegar fly, Drosophila melanogaster, have identified both pro- and anti-tumourigenic roles for JNK signalling, depending on context. As a tumour suppressor, JNK signalling commonly is activated by conserved Tumour Necrosis Factor (TNF) signalling, which promotes the caspase-mediated death of tumourigenic cells. JNK pathway activation can also occur via actin cytoskeleton alterations, and after cellular damage inflicted by reactive oxygen species (ROS). Additionally, JNK signalling frequently acts in concert with Salvador-Warts-Hippo (SWH) signalling – either upstream of or parallel to this potent growth-suppressing pathway. As a tumour promoter, JNK signalling is co-opted by cells expressing activated Ras-MAPK signalling (among other pathways), and used to drive cell morphological changes, induce invasive behaviours, block differentiation, and enable persistent cell proliferation. Furthermore, JNK is capable of non-autonomous influences within tumour microenvironments by effecting the transcription of various cell growth- and proliferation-promoting molecules. In this review, we discuss these aspects of JNK signalling in Drosophila tumourigenesis models, and highlight recent publications that have expanded our knowledge of this important and versatile pathway.
Collapse
Affiliation(s)
- John E La Marca
- Richardson Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Helena E Richardson
- Richardson Laboratory, Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Wu C, Li Z, Ding X, Guo X, Sun Y, Wang X, Hu Y, Li T, La X, Li J, Li JA, Li W, Xue L. Snail modulates JNK-mediated cell death in Drosophila. Cell Death Dis 2019; 10:893. [PMID: 31772150 PMCID: PMC6879600 DOI: 10.1038/s41419-019-2135-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Cell death plays a pivotal role in animal development and tissue homeostasis. Dysregulation of this process is associated with a wide variety of human diseases, including developmental and immunological disorders, neurodegenerative diseases and tumors. While the fundamental role of JNK pathway in cell death has been extensively studied, its down-stream regulators and the underlying mechanisms remain largely elusive. From a Drosophila genetic screen, we identified Snail (Sna), a Zinc-finger transcription factor, as a novel modulator of ectopic Egr-induced JNK-mediated cell death. In addition, sna is essential for the physiological function of JNK signaling in development. Our genetic epistasis data suggest that Sna acts downstream of JNK to promote cell death. Mechanistically, JNK signaling triggers dFoxO-dependent transcriptional activation of sna. Thus, our findings not only reveal a novel function and the underlying mechanism of Sna in modulating JNK-mediated cell death, but also provide a potential drug target and therapeutic strategies for JNK signaling-related diseases.
Collapse
Affiliation(s)
- Chenxi Wu
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Zhuojie Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiang Ding
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaowei Guo
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ying Sun
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xingjun Wang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,Department of Neuroscience, Scripps Research Institute, 130 Scripps Way, Jupiter, Fl, 33458, USA
| | - Yujia Hu
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.,Life Sciences Institute, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tongtong Li
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Xiaojin La
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Jianing Li
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Ji-An Li
- College of Traditional Chinese Medicine, North China University of Science and Technology, 21 Bohai Road, Tangshan, 063210, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China. .,Center of Intervention Radiology, Zhuhai People's Hospital, Zhuhai, 519000, China.
| |
Collapse
|
22
|
Wang S, Liu X, Xia Z, Xie G, Tang B, Wang S. Transcriptome analysis of the molecular mechanism underlying immunity- and reproduction trade-off in Locusta migratoria infected by Micrococcus luteus. PLoS One 2019; 14:e0211605. [PMID: 31412031 PMCID: PMC6693777 DOI: 10.1371/journal.pone.0211605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/01/2019] [Indexed: 01/12/2023] Open
Abstract
Immune response and reproductive success are two vital energy-consuming processes in living organisms. However, it is still unclear which process is prioritized when both are required. Therefore, the present study was designed to examine this question arising for one of the world’s most destructive agricultural pests, the migratory locust, Locusta migratoria. Transcripts from the ovaries and fat bodies of newly emerged locusts were analyzed, using RNA-seq based transcriptome and qualitative real-time PCR, at 4 h and 6 d after being infected with the gram-positive bacteria Micrococcus luteus. Changes in the main biological pathways involved in reproduction and immunization were analyzed using bioinformatics. After 4 h of infection, 348 and 133 transcripts were up- and down-regulated, respectively, whereas 5699 and 44 transcripts were up- and down-regulated, respectively, at 6 d after infection. Moreover, KEGG analysis indicated that vital pathways related with immunity and reproduction, such as Insulin resistance, FoxO signaling, Lysosome, mTOR signaling, and Toll-like receptor signaling pathways were up-regulated. Among the differentially expressed genes, 22 and 17 were related to immunity and reproduction, respectively. The expression levels of PPO1 and antimicrobial peptide defensin 3 were increased (log2FC = 5.93 and 6.75, respectively), whereas those of VgA and VgB were reduced (log2FC = -17.82 and -18.13, respectively). These results indicated that locust allocate energy and resources to maintain their own survival by increasing immune response when dealing with both immune and reproductive processes. The present study provides the first report of expression levels for genes related with reproduction and immunity in locusts, thereby providing a reference for future studies, as well as theoretical guidance for investigations of locust control.
Collapse
Affiliation(s)
- Shaohua Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaojun Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhiyong Xia
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Guoqiang Xie
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shigui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
23
|
Li R, Huang Y, Zhang Q, Zhou H, Jin P, Ma F. The miR-317 functions as a negative regulator of Toll immune response and influences Drosophila survival. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:19-27. [PMID: 30708026 DOI: 10.1016/j.dci.2019.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/26/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
The miR-317 has been revealed to involve in the reproductive response and the larval ovary morphogenesis of Drosophila. However, whether the miR-317 can also regulate Drosophila innate immune responses, which remains unclear to date. Here we have verified that miR-317 can directly target the 3'UTR of Dif-Rc to down-regulate the expression levels of AMP Drs to negatively control Drosophila Toll immune response in vivo and vitro. Specially, the Dif is an important transcription factor of Toll pathway with four transcripts (Dif-Ra, Dif-Rb, Dif-Rc and Dif-Rd). Our results show that miR-317 only targets to Dif-Rc, but not Dif-Ra/b/d, implying that miRNAs can regulate different isoforms of an alternative splicing gene to fine tune immune responses and maintain homeostasis in post-transcriptional level. Furthermore, we have demonstrated that the miR-317 sponge can restore the expression levels of Drs and Dif-Rc at mRNA and protein levels. Remarkably, during Gram-positive bacterial infection, the overexpressed miR-317 flies have poor survival outcome, whereas the knockout miR-317 flies have favorable survival compared to the control group, respectively, suggesting that the miR-317 might play a key role in Drosophila survival. Taken together, our current works not only reveal an innate immune function and a novel regulation pattern of miR-317, but also provide a new insight into the underlying molecular mechanisms of immunity disorder influencing on Drosophila survival.
Collapse
Affiliation(s)
- Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Qi Zhang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
24
|
Troha K, Buchon N. Methods for the study of innate immunity in Drosophila melanogaster. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e344. [PMID: 30993906 DOI: 10.1002/wdev.344] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 12/12/2022]
Abstract
From flies to humans, many components of the innate immune system have been conserved during metazoan evolution. This foundational observation has allowed us to develop Drosophila melanogaster, the fruit fly, into a powerful model to study innate immunity in animals. Thanks to an ever-growing arsenal of genetic tools, an easily manipulated genome, and its winning disposition, Drosophila is now employed to study not only basic molecular mechanisms of pathogen recognition and immune signaling, but also the nature of physiological responses activated in the host by microbial challenge and how dysregulation of these processes contributes to disease. Here, we present a collection of methods and protocols to challenge the fly with an assortment of microbes, both systemically and orally, and assess its humoral, cellular, and epithelial response to infection. Our review covers techniques for measuring the reaction to microbial infection both qualitatively and quantitatively. Specifically, we describe survival, bacterial load, BLUD (a measure of disease tolerance), phagocytosis, melanization, clotting, and ROS production assays, as well as efficient protocols to collect hemolymph and measure immune gene expression. We also offer an updated catalog of online resources and a collection of popular reporter lines and mutants to facilitate research efforts. This article is categorized under: Technologies > Analysis of Cell, Tissue, and Animal Phenotypes.
Collapse
Affiliation(s)
- Katia Troha
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York
| | - Nicolas Buchon
- Department of Entomology, Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York
| |
Collapse
|
25
|
Ohsawa S. Elimination of oncogenic cells that regulate epithelial homeostasis in Drosophila. Dev Growth Differ 2019; 61:337-342. [PMID: 30957223 PMCID: PMC6850057 DOI: 10.1111/dgd.12604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Normal epithelial tissues often put anti‐tumorigenic pressure on newly emerged oncogenic cells through cell–cell communications. In Drosophila epithelium, clones of oncogenic cells mutant for evolutionarily conserved apico‐basal polarity genes such as scribble (scrib) and discs large (dlg) are actively eliminated when surrounded by normal cells. It has been reported that c‐Jun N‐terminal kinase (JNK) signaling in polarity‐deficient cells is crucial for their cell death. However, the mechanism by which normal epithelial tissues exert anti‐tumorigenic effects on polarity‐deficient cells had been elusive. Here, I describe our genetic studies in Drosophila epithelium especially focused on the role of surrounding normal epithelial cells in response to the emergence of polarity‐deficient cells. Furthermore, I also describe recent studies regarding the mechanism by which polarity‐deficient cells are extruded from the tissue, and discuss future perspectives on the study of cell–cell communications in epithelial homeostasis.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
26
|
Sun Y, Zhang D, Li C, Huang J, Li W, Qiu Y, Mao A, Zhou M, Xue L. Lic regulates JNK-mediated cell death in Drosophila. Cell Prolif 2019; 52:e12593. [PMID: 30847993 PMCID: PMC6536442 DOI: 10.1111/cpr.12593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/01/2023] Open
Abstract
Objectives The evolutionary conserved JNK pathway plays crucial role in cell death, yet factors that modulate this signalling have not been fully disclosed. In this study, we aim to identify additional factors that regulate JNK signalling in cell death, and characterize the underlying mechanisms. Materials and Methods Drosophila were raised on standard media, and cross was carried out at 25°C. The Gal4/UAS system was used to express proteins or RNAi in a specific temporal and spatial pattern. Gene expression was revealed by GFP fluorescence, X‐gal staining or immunostaining of 3rd instar larval eye and wing discs. Cell death was visualized by acridine orange (AO) staining. Images of fly eyes and wings were taken by OLYMPUS microscopes. Results We found that licorne (lic) encoding the Drosophila MKK3 is an essential regulator of JNK‐mediated cell death. Firstly, loss of lic suppressed ectopic Egr‐triggered JNK activation and cell death in eye and wing development. Secondary, lic is necessary for loss‐of‐cell polarity‐induced, physiological JNK‐dependent cell death in wing development. Thirdly, Lic overexpression is sufficient to initiate JNK‐mediated cell death in developing eyes and wings. Furthermore, ectopic Lic activates JNK signalling by promoting JNK phosphorylation. Finally, genetic epistatic analysis confirmed that Lic acts in parallel with Hep in the Egr‐JNK pathway. Conclusions This study not only identified Lic as a novel component of the JNK signalling, but also disclosed the crucial roles and mechanism of Lic in cell death.
Collapse
Affiliation(s)
- Yihao Sun
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Di Zhang
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Chenglin Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jiuhong Huang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wenzhe Li
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yu Qiu
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Aiwu Mao
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingcheng Zhou
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| | - Lei Xue
- The First Rehabilitation Hospital of Shanghai, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, Shanghai, China
| |
Collapse
|
27
|
Gypsy moth genome provides insights into flight capability and virus-host interactions. Proc Natl Acad Sci U S A 2019; 116:1669-1678. [PMID: 30642971 DOI: 10.1073/pnas.1818283116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since its accidental introduction to Massachusetts in the late 1800s, the European gypsy moth (EGM; Lymantria dispar dispar) has become a major defoliator in North American forests. However, in part because females are flightless, the spread of the EGM across the United States and Canada has been relatively slow over the past 150 years. In contrast, females of the Asian gypsy moth (AGM; Lymantria dispar asiatica) subspecies have fully developed wings and can fly, thereby posing a serious economic threat if populations are established in North America. To explore the genetic determinants of these phenotypic differences, we sequenced and annotated a draft genome of L. dispar and used it to identify genetic variation between EGM and AGM populations. The 865-Mb gypsy moth genome is the largest Lepidoptera genome sequenced to date and encodes ∼13,300 proteins. Gene ontology analyses of EGM and AGM samples revealed divergence between these populations in genes enriched for several gene ontology categories related to muscle adaptation, chemosensory communication, detoxification of food plant foliage, and immunity. These genetic differences likely contribute to variations in flight ability, chemical sensing, and pathogen interactions among EGM and AGM populations. Finally, we use our new genomic and transcriptomic tools to provide insights into genome-wide gene-expression changes of the gypsy moth after viral infection. Characterizing the immunological response of gypsy moths to virus infection may aid in the improvement of virus-based bioinsecticides currently used to control larval populations.
Collapse
|
28
|
Yang P, Yao D, Aweya JJ, Wang F, Ning P, Li S, Ma H, Zhang Y. c-Jun regulates the promoter of small subunit hemocyanin gene of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2019; 84:639-647. [PMID: 30366093 DOI: 10.1016/j.fsi.2018.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
Hemocyanin (HMC) is a respiratory glycoprotein, which also plays multifunctional non-specific innate immune defense functions in shrimp. However, the transcriptional regulatory mechanisms of the hemocyanin gene expression have not been reported. In the present study, we cloned a 4324 bp fragment of small subunit hemocyanin (HMCs) gene of Litopenaeus vannamei including the 5'-flanking region, from upstream 2475 bp to downstream 1849 bp (exon 1-intron 1-exon 2) by genome walking method. Four deletion constructs were then generated and their promoter activity assessed using the luciferase reporter system. Interestingly, we identified an alternative promoter (+1516/+1849 bp) located in exon 2, which has stronger promoter activity than the full-length or the other constructs. Bioinformatics analyses revealed that the alternative promoter region contains two conserved binding sites of the transcription factor c-Jun. Mutational analysis and electrophoretic mobility shift assay showed that Litopenaeus vannamei c-Jun (Lvc-Jun) binds to the region +1582/+1589 bp and +1831/+1837 bp of the alternative promoter. Furthermore, overexpression of Lvc-Jun significantly increased the alternative promoter activity, while co-transfection with dsRNA-Lvc-Jun significantly reduced the alternative promoter activity of HMCs. Taken together, our present data indicate that the transcription factor Lvc-Jun is essential for the transcriptional regulation of the HMCs gene expression.
Collapse
Affiliation(s)
- Peikui Yang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China; School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, 521041, China
| | - Defu Yao
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Fan Wang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Pei Ning
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Hongyu Ma
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China
| | - Yueling Zhang
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, 515063, China.
| |
Collapse
|
29
|
Gao GY, Ma J, Lu P, Jiang X, Chang C. RETRACTED: Ophiopogonin B induces the autophagy and apoptosis of colon cancer cells by activating JNK/c-Jun signaling pathway. Biomed Pharmacother 2018; 108:1208-1215. [PMID: 30372822 DOI: 10.1016/j.biopha.2018.06.172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 11/25/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. An Expression of Concern for this article was previously published while an investigation was conducted (see related editorial: https://doi.org/10.1016/j.biopha.2022.113812). This retraction notice supersedes the Expression of Concern published earlier. Concern was raised about the reliability of the flow cytometry data in Figure 3A, which appears to contain similar features to those found in other publications, as detailed here: https://pubpeer.com/publications/70E55DFEA82FAAB92C28CD2BB28F1C; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Independent analysis also identified suspected image duplications between the ‘Bcl-2’ blot in Figure 3G, and the ‘Beclin-1’ blot in Figure 4B, and within the immunofluorescence images in Figure 4A. The journal requested the corresponding author comment on these concerns and provide the associated raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Guang-Yi Gao
- Department of Traditional Chinese Medicine, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, No. 62, Huaihai South Road, 223002, Huai'an, Jiangsu, China.
| | - Jun Ma
- Department of Oncology, Huai'an Hospital of Chinese Medicine, The Affiliated Huai'an Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Peng Lu
- Department of Pharmacy, Huai'an Maternity and Child Healthcare Hospital Affiliated to Yangzhou University Medical Academy, Huai'an, Jiangsu, China
| | - Xuan Jiang
- Department of Oncology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Cheng Chang
- Internal Medicine of Traditional Chinese Medicine, Nanjing Jianzhong Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
APLP2 Modulates JNK-Dependent Cell Migration in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7469714. [PMID: 30155482 PMCID: PMC6093063 DOI: 10.1155/2018/7469714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 01/03/2023]
Abstract
Amyloid precursor-like protein 2 (APLP2) belongs to the APP family and is widely expressed in human cells. Though previous studies have suggested a role of APLP2 in cancer progression, the exact role of APLP2 in cell migration remains elusive. Here in this report, we show that ectopic expression of APLP2 in Drosophila induces cell migration which is mediated by JNK signaling, as loss of JNK suppresses while gain of JNK enhances such phenotype. APLP2 is able to activate JNK signaling by phosphorylation of JNK, which triggers the expression of matrix metalloproteinase MMP1 required for basement membranes degradation to promote cell migration. The data presented here unraveled an in vivo role of APLP2 in JNK-mediated cell migration.
Collapse
|
31
|
Yu S, Zhang G, Jin LH. A high-sugar diet affects cellular and humoral immune responses in Drosophila. Exp Cell Res 2018; 368:215-224. [DOI: 10.1016/j.yexcr.2018.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 10/17/2022]
|
32
|
Ran R, Li T, Liu X, Ni H, Li W, Meng F. RNA interference-mediated silencing of genes involved in the immune responses of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Olethreutidae). PeerJ 2018; 6:e4931. [PMID: 29910977 PMCID: PMC6003399 DOI: 10.7717/peerj.4931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/17/2018] [Indexed: 02/03/2023] Open
Abstract
RNA interference (RNAi) technology may be useful for developing new crop protection strategies against the soybean pod borer (SPB; Leguminivora glycinivorella), which is a critical soybean pest in northeastern Asia. Immune-related genes have been recently identified as potential RNAi targets for controlling insects. However, little is known about these genes or mechanisms underlying their expression in the SPB. In this study, we completed a transcriptome-wide analysis of SPB immune-related genes. We identified 41 genes associated with SPB microbial recognition proteins, immune-related effectors or signalling molecules in immune response pathways (e.g., Toll and immune deficiency pathways). Eleven of these genes were selected for a double-stranded RNA artificial feeding assay. The down-regulated expression levels of LgToll-5-1a and LgPGRP-LB2a resulted in relatively high larval mortality rates and abnormal development. Our data represent a comprehensive genetic resource for immune-related SPB genes, and may contribute to the elucidation of the mechanism regulating innate immunity in Lepidoptera species. Furthermore, two immune-related SPB genes were identified as potential RNAi targets, which may be used in the development of RNAi-mediated SPB control methods.
Collapse
Affiliation(s)
- Ruixue Ran
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianyu Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xinxin Liu
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hejia Ni
- Colleges of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Fanli Meng
- Key Laboratory of Soybean Biology in the Chinese Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetics & Breeding for Soybean in Northeast China, Ministry of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
33
|
Serpin Facilitates Tumor-Suppressive Cell Competition by Blocking Toll-Mediated Yki Activation in Drosophila. Curr Biol 2018; 28:1756-1767.e6. [DOI: 10.1016/j.cub.2018.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 11/23/2022]
|
34
|
Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development. Development 2018; 145:145/9/dev156018. [DOI: 10.1242/dev.156018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ABSTRACT
The membrane receptor Toll and the related Toll-like receptors (TLRs) are best known for their universal function in innate immunity. However, Toll/TLRs were initially discovered in a developmental context, and recent studies have revealed that Toll/TLRs carry out previously unanticipated functions in development, regulating cell fate, cell number, neural circuit connectivity and synaptogenesis. Furthermore, knowledge of their molecular mechanisms of action is expanding and has highlighted that Toll/TLRs function beyond the canonical NF-κB pathway to regulate cell-to-cell communication and signalling at the synapse. Here, we provide an overview of Toll/TLR signalling and discuss how this signalling pathway regulates various aspects of development across species.
Collapse
Affiliation(s)
- Niki Anthoney
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Istvan Foldi
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Alicia Hidalgo
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
35
|
Wei G, Sun L, Li R, Li L, Xu J, Ma F. Dynamic miRNA-mRNA regulations are essential for maintaining Drosophila immune homeostasis during Micrococcus luteus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:210-224. [PMID: 29198775 DOI: 10.1016/j.dci.2017.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/15/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Pathogen bacteria infections can lead to dynamic changes of microRNA (miRNA) and mRNA expression profiles, which may control synergistically the outcome of immune responses. To reveal the role of dynamic miRNA-mRNA regulation in Drosophila innate immune responses, we have detailedly analyzed the paired miRNA and mRNA expression profiles at three time points during Drosophila adult males with Micrococcus luteus (M. luteus) infection using RNA- and small RNA-seq data. Our results demonstrate that differentially expressed miRNAs and mRNAs represent extensively dynamic changes over three time points during Drosophila with M. luteus infection. The pathway enrichment analysis indicates that differentially expressed genes are involved in diverse signaling pathways, including Toll and Imd as well as orther signaling pathways at three time points during Drosophila with M. luteus infection. Remarkably, the dynamic change of miRNA expression is delayed by compared to mRNA expression change over three time points, implying that the "time" parameter should be considered when the function of miRNA/mRNA is further studied. In particular, the dynamic miRNA-mRNA regulatory networks have shown that miRNAs may synergistically regulate gene expressions of different signaling pathways to promote or inhibit innate immune responses and maintain homeostasis in Drosophila, and some new regulators involved in Drosophila innate immune response have been identified. Our findings strongly suggest that miRNA regulation is a key mechanism involved in fine-tuning cooperatively gene expressions of diverse signaling pathways to maintain innate immune response and homeostasis in Drosophila. Taken together, the present study reveals a novel role of dynamic miRNA-mRNA regulation in immune response to bacteria infection, and provides a new insight into the underlying molecular regulatory mechanism of Drosophila innate immune responses.
Collapse
Affiliation(s)
- Guanyun Wei
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Lianjie Sun
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Lei Li
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; Laboratory of Intelligent Computation, School of Computer Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiao Xu
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics, Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
36
|
Modelling Cooperative Tumorigenesis in Drosophila. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4258387. [PMID: 29693007 PMCID: PMC5859872 DOI: 10.1155/2018/4258387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/21/2018] [Indexed: 12/13/2022]
Abstract
The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.
Collapse
|
37
|
Abstract
The proto-oncogene Myc is well known for its roles in promoting cell growth, proliferation and apoptosis. However, in this study, we found from a genetic screen that Myc inhibits, rather than promotes, cell death triggered by c-Jun N-terminal kinase (JNK) signaling in Drosophila. Firstly, expression of Drosophila Myc (dMyc) suppresses, whereas loss of dMyc enhances, ectopically activated JNK signaling-induced cell death. Secondly, dMyc impedes physiologically activated JNK pathway-mediated cell death. Thirdly, loss of dMyc triggers JNK pathway activation and JNK-dependent cell death. Finally, the mammalian cMyc gene, when expressed in Drosophila, impedes activated JNK signaling-induced cell death. Thus, besides its well-studied apoptosis promoting function, Myc also antagonizes JNK-mediated cell death in Drosophila, and this function is likely conserved from fly to human.
Collapse
Affiliation(s)
- Jiuhong Huang
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Feng
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinhong Chen
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wenzhe Li
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Lei Xue
- Institute of Intervention Vessel, Shanghai 10th People's Hospital, Shanghai Key Laboratory of Signaling and Diseases Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
38
|
Louradour I, Sharma A, Morin-Poulard I, Letourneau M, Vincent A, Crozatier M, Vanzo N. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism. eLife 2017; 6:25496. [PMID: 29091025 PMCID: PMC5681226 DOI: 10.7554/elife.25496] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem/progenitor cells in the adult mammalian bone marrow ensure blood cell renewal. Their cellular microenvironment, called 'niche', regulates hematopoiesis both under homeostatic and immune stress conditions. In the Drosophila hematopoietic organ, the lymph gland, the posterior signaling center (PSC) acts as a niche to regulate the hematopoietic response to immune stress such as wasp parasitism. This response relies on the differentiation of lamellocytes, a cryptic cell type, dedicated to pathogen encapsulation and killing. Here, we establish that Toll/NF-κB pathway activation in the PSC in response to wasp parasitism non-cell autonomously induces the lymph gland immune response. Our data further establish a regulatory network where co-activation of Toll/NF-κB and EGFR signaling by ROS levels in the PSC/niche controls lymph gland hematopoiesis under parasitism. Whether a similar regulatory network operates in mammals to control emergency hematopoiesis is an open question.
Collapse
Affiliation(s)
- Isabelle Louradour
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anurag Sharma
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Ismael Morin-Poulard
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Manon Letourneau
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Nathalie Vanzo
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
39
|
Abstract
Cell death is a fundamental progress that regulates cell number, tissue homeostasis and organ size in development. The c-Jun N-terminal kinase (JNK) pathway has been evolutionarily conserved from fly to human, and plays essential roles in regulating cell death. To characterize additional genes that regulate JNK signaling, we performed a genetic screen in Drosophila and identified dGLYAT, a novel gene whose function was previously unknown, as a modulator of JNK-mediated cell death. We found that loss of dGLYAT suppressed JNK activation and cell death triggered by over-expression of Egr or Hep, or depletion of puc or lgl in development, suggesting dGLYAT regulates both ectopic and physiological functions of JNK pathway. Furthermore, we showed that loss of dGLYAT inhibits JNK-mediated ROS production, suggesting dGLYAT regulates multiple functions of JNK signaling in vivo.
Collapse
|
40
|
Foldi I, Anthoney N, Harrison N, Gangloff M, Verstak B, Nallasivan MP, AlAhmed S, Zhu B, Phizacklea M, Losada-Perez M, Moreira M, Gay NJ, Hidalgo A. Three-tier regulation of cell number plasticity by neurotrophins and Tolls in Drosophila. J Cell Biol 2017; 216:1421-1438. [PMID: 28373203 PMCID: PMC5412559 DOI: 10.1083/jcb.201607098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/20/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
A three-tier mechanism involving distinct neurotrophin family ligand forms, different Toll receptors, and different adaptors regulates both cell survival and death. This rich mechanism confers cell number plasticity and could underlie structural plasticity in the nervous system and structural integrity, homeostasis, and regeneration in wider contexts. Cell number plasticity is coupled to circuitry in the nervous system, adjusting cell mass to functional requirements. In mammals, this is achieved by neurotrophin (NT) ligands, which promote cell survival via their Trk and p75NTR receptors and cell death via p75NTR and Sortilin. Drosophila NTs (DNTs) bind Toll receptors instead to promote neuronal survival, but whether they can also regulate cell death is unknown. In this study, we show that DNTs and Tolls can switch from promoting cell survival to death in the central nervous system (CNS) via a three-tier mechanism. First, DNT cleavage patterns result in alternative signaling outcomes. Second, different Tolls can preferentially promote cell survival or death. Third, distinct adaptors downstream of Tolls can drive either apoptosis or cell survival. Toll-6 promotes cell survival via MyD88–NF-κB and cell death via Wek-Sarm-JNK. The distribution of adaptors changes in space and time and may segregate to distinct neural circuits. This novel mechanism for CNS cell plasticity may operate in wider contexts.
Collapse
Affiliation(s)
- Istvan Foldi
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Niki Anthoney
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Neale Harrison
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Brett Verstak
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | | | - Samaher AlAhmed
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Bangfu Zhu
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Mark Phizacklea
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Maria Losada-Perez
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Marta Moreira
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| | - Nicholas J Gay
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, England, UK
| | - Alicia Hidalgo
- NeuroDevelopment Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, England, UK
| |
Collapse
|
41
|
Yuan K, Yuan FH, Weng SP, He JG, Chen YH. Identification and functional characterization of a novel Spätzle gene in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:46-57. [PMID: 27884706 DOI: 10.1016/j.dci.2016.11.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Shrimp innate immunity is the first line of resistance against pathogenic bacteria. The Toll-like receptor (TLR)-NF-κB pathway is vital in this immunity process. In this study, a novel Spätzle gene (LvSpz4) of Litopenaeus vannamei was cloned and functionally characterized. The open reading frame of LvSpz4 was 918 bp, which encoded a putative protein with 305 amino acids. LvSpz4 was most expressed in the gills of L. vannamei. This expression was induced by Vibrio alginolyticus or Staphylococcus aureus infection or lipopolysaccharide stimulation. The reporter gene assay showed that LvSpz4 could activate the promoters of Pen4, Drs, AttA, Mtk, and white spot syndrome virus immediate early gene1 in Drosophila Schneider 2 (S2) cells. Knockdown LvSpz4 increased the cumulative mortality of L. vannamei upon V. alginolyticus infection. The unfolded protein response (UPR) induced the expression of LvSpz4 in L. vannamei. Moreover, the promoter of LvSpz4 was activated by L. vannamei X-Box binding protein 1 and activating transcription factor 4 in S2 cells. These results suggested that LvSpz4 was involved in L. vannamei innate immunity and caused the crosstalk between the TLR-NF-κB pathway and UPR.
Collapse
Affiliation(s)
- Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, South China Sea Bio-Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol, MOE Key Laboratory of Aquatic Product Safety, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
42
|
Liu D, Shaukat Z, Saint RB, Gregory SL. Chromosomal instability triggers cell death via local signalling through the innate immune receptor Toll. Oncotarget 2016; 6:38552-65. [PMID: 26462024 PMCID: PMC4770720 DOI: 10.18632/oncotarget.6035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/08/2015] [Indexed: 01/29/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and has been implicated in cancer initiation, progression and the development of resistance to traditional cancer therapy. Here we identify a new property of CIN cells, showing that inducing CIN in proliferating Drosophila larval tissue leads to the activation of innate immune signalling in CIN cells. Manipulation of this immune pathway strongly affects the survival of CIN cells, primarily via JNK, which responds to both Toll and TNFα/Eiger. This pathway also activates Mmp1, which recruits hemocytes to the CIN tissue to provide local amplification of the immune response that is needed for effective elimination of CIN cells.
Collapse
Affiliation(s)
- Dawei Liu
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Zeeshan Shaukat
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Robert B Saint
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Stephen L Gregory
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
43
|
Abstract
The Wnt/β-catenin signaling is an evolutionarily conserved pathway that regulates a wide range of physiological functions, including embryogenesis, organ maintenance, cell proliferation and cell fate decision. Dysregulation of Wnt/β-catenin signaling has been implicated in various cancers, but its role in cell death has not yet been fully elucidated. Here we show that activation of Wg signaling induces cell death in Drosophila eyes and wings, which depends on dFoxO, a transcription factor known to be involved in cell death. In addition, dFoxO is required for ectopic and endogenous Wg signaling to regulate wing patterning. Moreover, dFoxO is necessary for activated Wg signaling-induced target genes expression. Furthermore, Arm is reciprocally required for dFoxO-induced cell death. Finally, dFoxO physically interacts with Arm both in vitro and in vivo. Thus, we have characterized a previously unknown role of dFoxO in promoting Wg signaling, and that a dFoxO-Arm complex is likely involved in their mutual functions, e.g. cell death.
Collapse
|
44
|
|