1
|
Włodarczyk M, Maryńczak K, Burzyński J, Włodarczyk J, Basak J, Fichna J, Majsterek I, Ciesielski P, Spinelli A, Dziki Ł. The role of miRNAs in the pathogenesis, diagnosis, and treatment of colorectal cancer and colitis-associated cancer. Clin Exp Med 2025; 25:86. [PMID: 40091000 PMCID: PMC11911275 DOI: 10.1007/s10238-025-01582-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/01/2025] [Indexed: 03/19/2025]
Abstract
MicroRNAs (miRNAs) are a group of noncoding single-stranded RNA biomolecules that act in posttranscriptional regulation of gene expression. Their role in the development of inflammatory bowel disease (IBD), colitis-associated cancer (CAC), and colorectal cancer (CRC) is currently under investigation. A few miRNAs present promising results in terms of diagnostic or therapeutic use, for example, miR-21 increases in CRC and inflammation, while also being a possible target for cancer therapy; miR-301a increases in inflammation but only in patients with IBD; miR-31 increases in CRC, especially in advanced stages, namely III-IV in TNM scale; miR-200 family plays a role in carcinogenesis of CRC and other tumors; examined as a group, miR-31-5p, miR-223-3p, and let-7f-5p trigger and exacerbate CAC; miR-19a could potentially be used in therapy and prevention of both CRC and CAC. Here, we discuss available studies and outline future directions concerning the validity of using miRNAs in the diagnosis and/or therapy of IBD, CAC, and CRC. Extensive research confirms that miRNAs play an important role in the pathogenesis of CAC and CRC. Since the significantly altered expression of certain miRNAs is an early prognostic marker for the development of these diseases, miRNAs have the potential to serve as diagnostic tools, enabling quick and straightforward disease detection.
Collapse
Affiliation(s)
- Marcin Włodarczyk
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland.
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jacek Burzyński
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jakub Włodarczyk
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Justyna Basak
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Przemysław Ciesielski
- Department of General Surgery, Hospital of Our Lady of Perpetual Help in Wołomin, Wołomin, Poland
| | - Antonino Spinelli
- Colon and Rectal Surgery Division, Humanitas Clinical and Research Center, Milan, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Rozzano, Italy
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213, Lodz, Poland
| |
Collapse
|
2
|
Okamoto K, Nozawa H, Ozawa T, Yamamoto Y, Yokoyama Y, Emoto S, Murono K, Sasaki K, Fujishiro M, Ishihara S. Comparative microRNA signatures based on liquid biopsy to identify lymph node metastasis in T1 colorectal cancer patients undergoing upfront surgery or endoscopic resection. Cell Death Discov 2025; 11:67. [PMID: 39971948 PMCID: PMC11840149 DOI: 10.1038/s41420-025-02348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
After endoscopic resection of T1 colorectal cancer (CRC) with a high risk of lymph node metastasis (LNM), additional surgery is required. However, the actual frequency of LNM based on conventional risk factors is less than 16%. There is a need for biomarkers to identify T1 CRC carrying a high risk of metastasis to avoid unnecessary radical surgery. Based on the comparison of serum miRNA between stage I/II and stage III from a large-scale in silico dataset, we conducted a validation analysis of the selected miRNAs using plasma samples from LNM-positive and LNM-negative T1 CRC patients who underwent endoscopic treatment followed by radical surgery at our hospital. In the validation cohort, the three-miRNA classifiers (miR-195-5p, miR-221-3p, and miR-193b-3p) effectively identified LNM-positive T1 CRC patients who received upfront surgery with an area under the curve (AUC) value of 0.74. Moreover, in T1 CRC patients after endoscopic resection, miR-195-5p and miR-221-3p were able to predict LNM with an AUC of 0.74. Plasma miRNA signatures may serve as effective predictors for LNM in T1 CRC both before upfront surgery and after endoscopic resection.
Collapse
Affiliation(s)
- Kazuaki Okamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan.
- Department of Translational Molecular Medicine, Division of Molecular Oncology, Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| | - Hiroaki Nozawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Ozawa
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Yoko Yamamoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Yuichiro Yokoyama
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Shigenobu Emoto
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Koji Murono
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | - Kazuhito Sasaki
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| | | | - Soichiro Ishihara
- Department of Surgical Oncology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Moiz S, Saha B, Mondal V, Bishnu D, Das B, Bose B, Das S, Banerjee N, Dutta A, Chatterjee K, Goswami S, Mukhopadhyay S, Basu S. Differential Expression of miRNAs Between Young-Onset and Late-Onset Indian Colorectal Carcinoma Patients. Noncoding RNA 2025; 11:10. [PMID: 39997610 PMCID: PMC11858122 DOI: 10.3390/ncrna11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Reports indicate a worldwide increase in the incidence of Early-Onset Colorectal Carcinoma (EOCRC) (<50 years old). In an effort to understand the different modes of pathogenesis in early-onset CRC, colorectal tumors from EOCRC (<50 years old) and Late-Onset patients (LOCRC; >50 years old) were screened to eliminate microsatellite instability (MSI), nuclear β-catenin, and APC mutations, as these are known canonical factors in CRC pathogenesis. Small-RNA sequencing followed by comparative analysis revealed differential expression of 23 miRNAs (microRNAs) specific to EOCRC and 11 miRNAs specific to LOCRC. We validated the top 10 EOCRC DEMs in TCGA-COAD and TCGA-READ cohorts, followed by validation in additional EOCRC and LOCRC cohorts. Our integrated analysis revealed upregulation of hsa-miR-1247-3p and hsa-miR-148a-3p and downregulation of hsa-miR-326 between the two subsets. Experimentally validated targets of the above miRNAs were compared with differentially expressed genes in the TCGA dataset to identify targets with physiological significance in EOCRC development. Our analysis revealed metabolic reprogramming, downregulation of anoikis-regulating pathways, and changes in tissue morphogenesis, potentially leading to anchorage-independent growth and progression of epithelial-mesenchymal transition (EMT). Upregulated targets include proteins present in the basal part of intestinal epithelial cells and genes whose expression is known to correlate with invasion and poor prognosis.
Collapse
Affiliation(s)
- Sumaiya Moiz
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
| | - Barsha Saha
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India; (B.S.); (S.G.)
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Varsha Mondal
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | - Debarati Bishnu
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
| | - Biswajit Das
- Department of Histopathology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India; (B.D.); (N.B.); (A.D.); (K.C.)
| | - Bodhisattva Bose
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Rishikesh 249203, India;
- Department of General Surgery, Nil Ratan Sircar Medical College and Hospital, Kolkata 700014, India
| | - Soumen Das
- Department of Surgical Oncology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India;
| | - Nirmalya Banerjee
- Department of Histopathology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India; (B.D.); (N.B.); (A.D.); (K.C.)
- Department of Histopathology, Narayana Superspeciality Hospital, Kolkata 700099, India
| | - Amitava Dutta
- Department of Histopathology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India; (B.D.); (N.B.); (A.D.); (K.C.)
| | - Krishti Chatterjee
- Department of Histopathology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India; (B.D.); (N.B.); (A.D.); (K.C.)
- Department of Pathology, Neotia Bhagirathi Woman and Child Care Centre, Kolkata 700017, India
| | - Srikanta Goswami
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India; (B.S.); (S.G.)
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Soma Mukhopadhyay
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
| | - Sudarshana Basu
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
| |
Collapse
|
4
|
Ghorab RA, Fouad SH, Sherief AF, Taha RM, Hamdy M, Darwish MM, El-Sehsah EM, Taha SI. Circulating MiR-126 as a potential biomarker in Egyptian colorectal cancer patients: A case-control study. Innate Immun 2024:17534259241308661. [PMID: 39711476 DOI: 10.1177/17534259241308661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Globally, colorectal cancer (CRC) is among the most prevalent malignant tumors. It is characterized by unlimited proliferation, invasion, and metastasis. MicroRNA-126 (miR-126) has been shown in many studies to play a significant role in CRC, but data regarding its role in CRC Egyptian patients are limited. OBJECTIVES This case-control study aimed to investigate the miR-126 as a potential marker in CRC Egyptian patients and to correlate its expression levels with CRC tumor, node, metastasis (TNM) stage, distant metastasis, and tumor size. METHODS The study included 50 adult Egyptian participants (30 patients with CRC, 10 patients with colorectal adenoma as a pathological control, and 10 healthy controls). MiR-126 expression levels were detected using Real-Time Quantitative PCR (qPCR) along with the endogenous reference gene hsa-miR-103a in all participants. RESULTS MiR-126 expression was significantly decreased in CRC patients than both control groups. It was associated with advanced TNM stage (p = 0.001) and distant metastasis (p = 0.002). However, it was not correlated with tumor size (p = 0.980), carcinoembryonic antigen (CEA) (p = 0.397), and cancer antigen 19-9 (CA19-9) (p = 0.236). The best cut-off point of miR-126 to discriminate CRC from both controls was 0.7 and to discriminate metastatic CRC from non-metastatic CRC was 0.3. CONCLUSIONS Our results suggest that miR-126 could be used as an early marker for CRC detection among Egyptian patients and a good prognostic indicator associated with metastasis.
Collapse
Affiliation(s)
- Rasha Ahmed Ghorab
- Department of Clinical Pathology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Shaimaa H Fouad
- Department of Internal Medicine/Allergy and Clinical Immunology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Ahmed F Sherief
- Department of Tropical Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Rana M Taha
- Department of Geriatrics Medicine and Gerontology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa Hamdy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohammad M Darwish
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman M El-Sehsah
- Department of Medical Microbiology and Immunology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | - Sara I Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
5
|
Susanti R, Dafip M, Mustikaningtyas D, Putra A. Predictive action of oncomiR in suppressing TP53 signaling pathway in hypoxia-conditioned colon cancer cell line HCT-116. Cell Biol Int 2024; 48:1891-1905. [PMID: 39285519 DOI: 10.1002/cbin.12243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 08/31/2024] [Indexed: 11/15/2024]
Abstract
Hypoxia-induced heterogeneity in colorectal cancer (CRC) significantly impacts patient survival by promoting chemoresistance. These conditions alter the regulation of miRNAs, key regulators of crucial processes like proliferation, apoptosis, and invasion, leading to tumor progression. Despite their promising potential as diagnostic and therapeutic targets, the underlying mechanisms by which miRNAs influence hypoxia-mediated tumorigenesis remain largely unexplored. This study aims to elucidate the action of miRNAs in HCT-116 colorectal cancer stem cells (CSCs) under hypoxia, providing valuable insights into their role in tumor adaptation and progression. MiRNA expression was determined using Nanostring nCounter, and bioinformatic analysis was performed to explain the molecular pathway. A total of 50 miRNAs were obtained with an average count of ≥ 20 reads for comparative expression analysis. The results showed that hypoxia-affected 36 oncomiRs were increased in HCT-116, and 14 suppressor-miRs were increased in MSCs. The increase in miRNA expression occurred consistently from normoxia to hypoxia and significantly differed between mesenchymal stem cells (MSCs) and HCT-116. Furthermore, miR-16-5p and miR-29a-3p were dominant in regulating the p53 signaling pathway, which is thought to be related to the escape mechanism against hypoxia and maintaining cell proliferation. More research with a genome-transcriptome axis approach is needed to fully understand miRNAs' role in adapting CRC cells and MSCs to hypoxia. Further research could focus on developing specific biomarkers for diagnosis. In addition, anti-miR can be developed as a therapy to prevent cancer proliferation or inhibit the adaptation of cancer cells to hypoxia.
Collapse
Affiliation(s)
- R Susanti
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang, Semarang, Indonesia
| | - Muchamad Dafip
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang, Semarang, Indonesia
- Doctoral Program of Biotechnology, Postgraduate School, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Mustikaningtyas
- Department of Biology, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang, Semarang, Indonesia
| | - Agung Putra
- Department of Biomedical Science, Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
- Stem Cell and Cancer Research (SCCR), Faculty of Medicine, Universitas Islam Sultan Agung, Semarang, Indonesia
| |
Collapse
|
6
|
Chen Y, Chen B, Tu S, Yuan H. miR‑25‑3p serves as an oncogenic in colorectal cancer cells by regulating the ubiquitin ligase FBXW7 function. Oncol Rep 2024; 52:153. [PMID: 39329268 PMCID: PMC11450686 DOI: 10.3892/or.2024.8812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/12/2024] [Indexed: 09/28/2024] Open
Abstract
Accumulating evidence indicates that the dysregulation of microRNAs (miRNAs or miRs), is associated with human malignancies and suggests a casual role of miRNAs in tumor initiation and progression. Even though it has been discovered that a number of miRNAs play significant parts in the development of colorectal cancer (CRC), it is crucial to comprehend the regulatory functions that other miRNAs play in CRC. Based on GSE183437 and GSE156719 microarray data that were obtained from Gene Expression Omnibus database, candidate miRNAs were researched. The oncogenic effects of miR‑25‑3p in different malignancies have led to its selection for additional investigation in the present study. The expression of miR‑25‑3p was verified by reverse transcription‑quantitative PCR, and its correlation with clinicopathological characteristics in patients with CRC was then investigated. In vitro assays were conducted to investigate the influence of miR‑25‑3p on the proliferative and apoptotic behaviors of HCT116 and Caco‑2 cells. The present data revealed that miR‑25‑3p exhibited one of the most significant upregulations in CRC tissues and cell lines. The expression levels of miR‑25‑3p were found to be intimately correlated with tumor size, distant metastasis, tumor‑node‑metastasis stage, and shorter overall survival rate. In terms of functionality, the downregulation of miR‑25‑3p led to the inhibition of cellular proliferation and the enhancement of apoptosis in both HCT116 and Caco‑2 cell lines. The critical tumor suppressor F‑box and WD repeat containing domain 7 (FBXW7) was identified as a direct molecular target for miR‑25‑3p, with an inverse relationship observed between the two in neoplastic tissues. Subsequent studies demonstrated that the tumor suppressive effects of miR‑25‑3p inhibitor were effectively negated by the silencing of FBXW7. Moreover, the ability of FBXW7 to inhibit the expression of several oncogenes was deemed essential for countering the anticancer effects mediated by miR‑25‑3p downregulation. These findings posit miR‑25‑3p as a promising therapeutic target and prognostic indicator for CRC.
Collapse
Affiliation(s)
- Yanbin Chen
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Bingchen Chen
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shiliang Tu
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Hang Yuan
- General Surgery, Cancer Center, Department of Colorectal Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
7
|
Maawadh RM, Xu C, Ahmed R, Mushtaq N. Predicting Survival Among Colorectal Cancer Patients: Development and Validation of Polygenic Survival Score. Clin Exp Gastroenterol 2024; 17:317-329. [PMID: 39431218 PMCID: PMC11488504 DOI: 10.2147/ceg.s464324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Purpose Colorectal cancer is the second leading cause of cancer-related death in the United States. A multi-omics approach has contributed in identifying various cancer-specific mutations, epigenetic alterations, and cells response to chemotherapy. This study aimed to determine the factors associated with colorectal cancer survival and develop and validate a polygenic survival scoring system (PSS) using a multi-omics approach. Patients and Methods Data were obtained from the Cancer Genome Atlas (TCGA). Colon Adenocarcinoma (TCGA-COAD) data were used to develop a survival prediction model and PSS, whereas rectal adenocarcinoma (TCGA-READ) data were used to validate the PSS. Cox proportional hazards regression analysis was conducted to examine the association between the demographic characteristics, clinical variables, and mRNA gene expression. Results Overall accuracy of PSS was also evaluated. The median overall survival for TCGA-COAD patients was 7 years and for TCGA-READ patients was 5 years. The multivariate Cox proportional hazards model identified age, cancer stage, and expression of nine genes as predictors of colon cancer survival. Based on the median PSS of 0.38, 48% of TCGA-COAD patients had high mortality risk. Patients in the low risk group had significantly higher 5-year survival rates than those in the high group (p <0.0001). The PSS demonstrated a high overall accuracy in predicting colorectal cancer survival. Conclusion This study integrated clinical and transcriptome data to identify survival predictors in patients with colorectal cancer. PSS is an accurate and valid measure for estimating colorectal cancer survival. Thus, it can serve as an important tool for future colorectal cancer research.
Collapse
Affiliation(s)
- Rawan M Maawadh
- Clinical Laboratory Science Department, Prince Sultan Military College of Health Science, Dammam, Saudi Arabia
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rizwan Ahmed
- Department of General Medicine, Federal Government Polyclinic Hospital, Islamabad, Pakistan
| | - Nasir Mushtaq
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Family and Community Medicine, OU-TU School of Community Medicine, University of Oklahoma, Tulsa, OK, USA
| |
Collapse
|
8
|
Zhu Z, Xie Y, Yin M, Peng L, Zhu H. A novel m7G-related miRNA prognostic signature for predicting clinical outcome and immune microenvironment in colon cancer. J Cancer 2024; 15:6086-6102. [PMID: 39440054 PMCID: PMC11493006 DOI: 10.7150/jca.99173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background: Colon cancer (CC) is a highly prevalent malignancy worldwide, characterized by elevated mortality rates and poor prognosis. N7-methylguanosine (m7G) methylation is an emerging RNA modification type and involved in the development of many tumors. Despite this, the correlation between m7G-related miRNAs and CC remains to be elucidated. This research aimed to investigate the clinical significance of m7G-related miRNAs in predicting both the prognosis and tumor microenvironment (TME) of CC. Method: We retrieved transcriptome data and associated clinical information from a publicly accessible database. Using univariate Cox and LASSO regression analyses, we established a signature of m7G-related miRNAs. Additionally, we used CIBERSORT and ssGSEA algorithms to explore the association between the prognostic risk score and the TME in CC patients. By considering the risk signature and immune infiltration, we identified differentially expressed genes that contribute to the prognosis of CC. Finally, the expression patterns of prognostic miRNAs were verified using quantitative reverse transcriptase PCR (qRT-PCR) in cell lines. Results: We constructed a prognostic risk signature based on seven m7G-related miRNAs (miR-136-5p, miR-6887-3p, miR-195-5p, miR-149-3p, miR-4433a-5p, miR-31-5p, and miR-129-2-3p). Subsequently, we observed remarkable differences in patient outcomes between the high- and low-risk groups. The area under the curve (AUC) for 1-, 3-, and 5-year survivals in the ROC curve were 0.735, 0.707, and 0.632, respectively. Furthermore, our results showed that the risk score can serve as an independent prognostic biomarker for overall survival prediction. In terms of immune analysis, the results revealed a significant association between the risk signature and immune infiltration, as well as immune checkpoint expression. Finally, our study showed that CCDC160 and RLN3 is the gene most relevant to immune cells and function in CC. Conclusion: Our study conducted a comprehensive and systematic analysis of m7G-associated miRNAs to construct prognostic profiles of CC. We developed a prognostic risk model based on m7G-miRNAs, with the resulting risk scores demonstrating considerable potential as prognostic biomarkers. These findings provide substantial evidence for the critical role of m7G-related miRNAs in colon cancer and may offer new immunotherapeutic targets for patients with this disease.
Collapse
Affiliation(s)
| | | | | | - Lei Peng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Ellakwa DES, Mushtaq N, Khan S, Jabbar A, Abdelmalek MA, Wadan AHS, Ellakwa TE, Raza A. Molecular functions of microRNAs in colorectal cancer: recent roles in proliferation, angiogenesis, apoptosis, and chemoresistance. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5617-5630. [PMID: 38619588 DOI: 10.1007/s00210-024-03076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
MiRNAs (microRNAs) constitute a group of diminutive molecules of non-coding RNA intricately involved in regulating gene expression. This regulation is primarily accomplished through the binding of miRNAs to complementary sequences situated in the 3'-UTR of the messenger RNA (mRNA) target; as a result, they are degraded or repressed. The multifaceted biogenesis of miRNAs is characterized by a meticulously orchestrated sequence of events encompassing transcription, processing, transportation, and decay. Colorectal cancer stands as a pervasive and formidable ailment, afflicting millions across the globe. Colorectal cancer is not well diagnosed early, and metastasis rates are high, which results in low survival rates in advanced stages. The genesis and progression of colorectal cancer are subject to the influence of genetic and epigenetic factors, among which miRNAs play a pivotal role. When it comes to colorectal cancer, miRNAs have a dual character, depending on the genes they target, functioning as either tumor suppressors or oncogenes and the prevailing cellular milieu. Their impact extends to modulating critical facets of colorectal cancer pathogenesis, including proliferation, angiogenesis, apoptosis, chemoresistance, and radiotherapy response. The discernible potential of miRNAs which are used as biomarkers to diagnose colorectal cancer, prognosis, and treatment response has come to the forefront. Notably, miRNAs are easily found and detected readily in a variety of biological fluids, including saliva, blood, urine, and feces. This prominence is attributed to the inherent advantages of miRNAs over conventional biomarkers, including heightened stability, specificity, sensitivity, and accessibility. Various investigations have pinpointed miRNA signatures or panels capable of differentiating colorectal cancer patients from their healthy counterparts, predicting colorectal cancer stage and survival, and monitoring colorectal cancer recurrence and therapy response. Although there has been research on miRNAs in various diseases, there has been less research on miRNAs in cancer. Moreover, updated results of preclinical and clinical studies on miRNA biomarkers and drugs are required. Nevertheless, the integration of miRNAs as biomarkers for colorectal cancer is not devoid of challenges and limitations. These encompass the heterogeneity prevalent among colorectal cancer subtypes and stages, the variability in miRNA expression across different tissues and individuals, the absence of standardized methodologies for miRNA detection and quantification, and the imperative for validation through extensive clinical trials. Consequently, further research is imperative to conclusively establish the clinical utility and reliability of miRNAs as colorectal cancer biomarkers. MiR-21 demonstrates carcinogenic characteristics by targeting several tumor suppressor genes, which encourages cell division, invasion, and metastasis. On the other hand, by controlling the Wnt/β-catenin pathway, the tumor suppressor miRNA miR-34a prevents CRC cell proliferation, migration, and invasion. Furthermore, in colorectal cancer, the miR-200 family increases chemotherapy sensitivity while suppressing epithelial-mesenchymal transition (EMT). As an oncogene, the miR-17-92 cluster targets elements of the TGF-β signaling pathway to encourage the growth of CRC cells. Finally, miR-143/145, which is downregulated in CRC, influences apoptosis and the progression of the cell cycle. These miRNAs affect pathways like Wnt, TGF-β, PI3K-AKT, MAPK, and EMT, making them potential clinical biomarkers and therapeutic targets. This review summarizes recent research related to miRNAs, their role in tumor progression and metastasis, and their potential as biomarkers and therapeutic targets in colorectal cancer. In addition, we combined miRNAs' roles in tumorigenesis and development with the therapy of CRC patients, leading to novel perspectives on colorectal cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt.
| | - Nadia Mushtaq
- Department of Life Sciences, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sahrish Khan
- Center for Applied Molecular Biology (CAMB), University of Punjab, Lahore, Pakistan
| | - Abdul Jabbar
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | | | | - Takwa E Ellakwa
- Physical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ali Raza
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
10
|
Zhou H, Shen Y, Zheng G, Zhang B, Wang A, Zhang J, Hu H, Lin J, Liu S, Luan X, Zhang W. Integrating single-cell and spatial analysis reveals MUC1-mediated cellular crosstalk in mucinous colorectal adenocarcinoma. Clin Transl Med 2024; 14:e1701. [PMID: 38778448 PMCID: PMC11111627 DOI: 10.1002/ctm2.1701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Mucinous colorectal adenocarcinoma (MCA) is a distinct subtype of colorectal cancer (CRC) with the most aggressive pattern, but effective treatment of MCA remains a challenge due to its vague pathological characteristics. An in-depth understanding of transcriptional dynamics at the cellular level is critical for developing specialised MCA treatment strategies. METHODS We integrated single-cell RNA sequencing and spatial transcriptomics data to systematically profile the MCA tumor microenvironment (TME), particularly the interactome of stromal and immune cells. In addition, a three-dimensional bioprinting technique, canonical ex vivo co-culture system, and immunofluorescence staining were further applied to validate the cellular communication networks within the TME. RESULTS This study identified the crucial intercellular interactions that engaged in MCA pathogenesis. We found the increased infiltration of FGF7+/THBS1+ myofibroblasts in MCA tissues with decreased expression of genes associated with leukocyte-mediated immunity and T cell activation, suggesting a crucial role of these cells in regulating the immunosuppressive TME. In addition, MS4A4A+ macrophages that exhibit M2-phenotype were enriched in the tumoral niche and high expression of MS4A4A+ was associated with poor prognosis in the cohort data. The ligand-receptor-based intercellular communication analysis revealed the tight interaction of MUC1+ malignant cells and ZEB1+ endothelial cells, providing mechanistic information for MCA angiogenesis and molecular targets for subsequent translational applications. CONCLUSIONS Our study provides novel insights into communications among tumour cells with stromal and immune cells that are significantly enriched in the TME during MCA progression, presenting potential prognostic biomarkers and therapeutic strategies for MCA. KEY POINTS Tumour microenvironment profiling of MCA is developed. MUC1+ tumour cells interplay with FGF7+/THBS1+ myofibroblasts to promote MCA development. MS4A4A+ macrophages exhibit M2 phenotype in MCA. ZEB1+ endotheliocytes engage in EndMT process in MCA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Colorectal SurgeryChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Yiwen Shen
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guangyong Zheng
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Beibei Zhang
- Department of DermatologyTongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Anqi Wang
- Department of Colorectal SurgeryChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Jing Zhang
- Department of PathologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Hao Hu
- Department of PathologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jiayi Lin
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xin Luan
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- School of PharmacyNaval Medical UniversityShanghaiChina
| |
Collapse
|
11
|
Zhang S, Chen F, Zhang Y, Xu Y, Wang L, Wang X, Jia L, Chen Y, Xu Y, Zhang Z, Deng B. SERS detection platform based on a nucleic acid aptamer-functionalized Au nano-dodecahedron array for efficient simultaneous testing of colorectal cancer-associated microRNAs. BIOMEDICAL OPTICS EXPRESS 2024; 15:3366-3381. [PMID: 38855705 PMCID: PMC11161369 DOI: 10.1364/boe.520161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/23/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024]
Abstract
A surface-enhanced Raman scattering (SERS) detection platform was constructed based on Au nano-dodecahedrons (AuNDs) functionalized with nucleic acid aptamer-specific binding and self-assembly techniques. SERS labels were prepared by modifying Raman signaling molecules and complementary aptamer chains and were bound on the aptamer-functionalized AuNDs array. Using this protocol, the limits of detection (LODs) of miR-21 and miR-18a in the serum were 6.8 pM and 7.6 pM, respectively, and the detection time was 5 min. Additionally, miR-21 and miR-18a were detected in the serum of a mouse model of colorectal cancer. The results of this protocol were consistent with quantitative real-time polymerase chain reaction (qRT-PCR). This method provides an efficient and rapid method for the simultaneous testing of miRNAs, which has great potential clinical value for the early detection of colorectal cancer (CRC).
Collapse
Affiliation(s)
- Shuofeng Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Fengsong Chen
- Gastroenterology Department, Nantong Haimen People's Hospital, Nantong 226600, China
| | - Yanqing Zhang
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yemin Xu
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Lu Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Xiya Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Long Jia
- Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yong Chen
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Yongcheng Xu
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Zhengrong Zhang
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Bin Deng
- Department of Gastroenterology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 225001 Yangzhou, China
| |
Collapse
|
12
|
Bakhsh T, Alhazmi S, Farsi A, Yusuf AS, Alharthi A, Qahl SH, Alghamdi MA, Alzahrani FA, Elgaddar OH, Ibrahim MA, Bahieldin A. Molecular detection of exosomal miRNAs of blood serum for prognosis of colorectal cancer. Sci Rep 2024; 14:8902. [PMID: 38632250 PMCID: PMC11024162 DOI: 10.1038/s41598-024-58536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer affecting people. The discovery of new, non-invasive, specific, and sensitive molecular biomarkers for CRC may assist in the diagnosis and support therapeutic decision making. Exosomal miRNAs have been demonstrated in carcinogenesis and CRC development, which makes these miRNAs strong biomarkers for CRC. Deep sequencing allows a robust high-throughput informatics investigation of the types and abundance of exosomal miRNAs. Thus, exosomal miRNAs can be efficiently examined as diagnostic biomarkers for disease screening. In the present study, a number of 660 mature miRNAs were detected in patients diagnosed with CRC at different stages. Of which, 29 miRNAs were differentially expressed in CRC patients compared with healthy controls. Twenty-nine miRNAs with high abundance levels were further selected for subsequent analysis. These miRNAs were either highly up-regulated (e.g., let-7a-5p, let-7c-5p, let-7f-5p, let-7d-3p, miR-423-5p, miR-3184-5p, and miR-584) or down-regulated (e.g., miR-30a-5p, miR-99-5p, miR-150-5p, miR-26-5p and miR-204-5p). These miRNAs influence critical genes in CRC, leading to either tumor growth or suppression. Most of the reported diagnostic exosomal miRNAs were shown to be circulating in blood serum. The latter is a novel miRNA that was found in exosomal profile of blood serum. Some of the predicted target genes of highly expressed miRNAs participate in several cancer pathways, including CRC pathway. These target genes include tumor suppressor genes, oncogenes and DNA repair genes. Main focus was given to multiple critical signaling cross-talking pathways including transforming growth factor β (TGFβ) signaling pathways that are directly linked to CRC. In conclusion, we recommend further analysis in order to experimentally confirm exact relationships between selected differentially expressed miRNAs and their predicted target genes and downstream functional consequences.
Collapse
Affiliation(s)
- Tahani Bakhsh
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Safiah Alhazmi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jedaah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahad Medical Research Centre, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
- Central lab of biological Sciences, Faculty of Sciences, King Abdulaziz University, 80200, Jeddah, Saudi Arabia
| | - Ali Farsi
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abdulaziz S Yusuf
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, 21461, Jeddah, Saudi Arabia
| | - Amani Alharthi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, 11952, Majmaah, Saudi Arabia
| | - Safa H Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biochemistry, Faculty of science, Stem Cell Unit, King Fahad Center for Medical Research, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Ola H Elgaddar
- Department of Chemical Pathology, Alexandria University, Alexandria, Egypt
| | - Mohanad A Ibrahim
- Data Science Program, King Abdullah International Medical Research Center, 11481, Riyadh, Saudi Arabia
| | - Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Zhang J, Guo J, He R, Li J, Du B, Zhang Y, He R, Cheng H. Analysis of the differential expression of serum miR-21-5p, miR-135-5p, and miR-155-5p by Bifidobacterium triplex viable capsules during the perioperative stage of colorectal cancer. Int J Colorectal Dis 2024; 39:48. [PMID: 38584226 PMCID: PMC10999390 DOI: 10.1007/s00384-024-04617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
OBJECTIVE In this study, we investigated the impact of perioperative administration of Bifidobacterium triplex viable capsules on the serum levels of circulating miR-21-5p, miR-135-5p, and miR-155-5p in patients with colorectal cancer (CRC). The purpose of this study is to provide a foundation for future research on the use of Bifidobacterium triplex viable capsules to enhance postoperative recovery in patients with CRC. METHODS A total of 60 patients with primary CRC admitted to the Department of General Surgery at Shanxi Bethune Hospital between June 2020 and December 2020 were selected and randomly divided into two groups: 20 cases in the control group and 40 cases in the experimental group. The experimental group was administered oral Bifidobacterium triplex viable capsules during the perioperative period, while the control group was administered oral placebo. Before and after the perioperative period, the expression levels of miR-21-5p, miR-135-5p, and miR-155-5p were compared in the serum of both groups of patients. Furthermore, we established the prognostic value of these three miRNAs in CRC patients. RESULTS After surgery, the expression levels of miR-21-5p, miR-135-5p, and miR-155-5p decreased in both groups of patients (P < 0.05). Significantly greater differences were observed between miR-21-5p and miR-135-5p (P < 0.001). Expression levels of serum miR-21-5p (P = 0.020) and miR-135-5p (P = 0.023) decreased significantly more in the experimental group than in the control group. The levels of the above three miRNAs after surgery did not correlate with 3-year OS (HR = 4.21; 95% CI 0.37-47.48; log-rank P = 0.20) or 3-year DFS (HR = 1.57; 95% CI 0.32-7.66; log-rank P = 0.55) in two groups. CONCLUSION Radical surgery reduces the levels of serum miR-21-5p, miR-135-5p, and miR-155-5p expression in patients with CRC. The use of Bifidobacterium triplex viable capsules assists in achieving quicker perioperative recovery from radical surgery in CRC patients, and this underlying mechanism may be associated with the regulation of serum miR-21-5p, miR-135-5p, and miR-155-5p expression levels.
Collapse
Affiliation(s)
- Jing Zhang
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Ji Guo
- Second Department of General Surgery, Shanxi Provincial Integrated TCM And WM Hospital, Taiyuan, 030013, China
| | - Ruochong He
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Ji Li
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Bingyi Du
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Yi Zhang
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China
| | - Rongliang He
- Department of General Surgery, Xiaoyi People's Hospital of Shanxi Province, Luliang, 032300, China
| | - Haixia Cheng
- Department of General Surgery, Shanxi Bethune Hospital, Xiaodian District, No. 99 of Longcheng Street, Taiyuan, 030032, China.
| |
Collapse
|
14
|
Tran C, Dinh P. Potential diagnostic value of serum microRNAs for 19 cancer types: a meta-analysis of bioinformatics data. J Biomol Struct Dyn 2024:1-14. [PMID: 38487855 DOI: 10.1080/07391102.2024.2328744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 03/29/2025]
Abstract
Cancer is the second most common cause of mortality worldwide, accounting for almost 10 million deaths in 2020. These deaths were partly due to delayed diagnosis that led to deferred treatment. Therefore, new diagnostic methods are necessary to enhance the accuracy of noninvasive cancer detection. The present study developed a microRNA (miRNA)-based serum diagnostic marker for detecting a wide range of cancers. The study involved 61,019 serum samples from 19 different cancer types. A miRNA prediction model was established through bioinformatics analysis of serum samples from various cancer pathologies and qRT-PCR results from studies in PubMed aligned to the analysis criteria. R software v.4.1.1 with the limma data analysis package was used for single gene expression series data series, and batchNormalize and robustRankAggreg were used to predict the changes in miRNA expression in multiple datasets. GO and KEGG analyses showed that these miRNAs play a role in cancer-related biological signaling pathways. Finally, the diagnostic capability of these miRNA biomarkers was assessed using area under the curve analysis. The study predicted that 7 miRNAs were upregulated and 10 miRNAs were downregulated in 19 different types of cancer. Some miRNAs showed significant differential expression in a specific cancer type. Additionally, downstream genes regulated by miRNAs focused on many cancer-related molecular signaling pathways. In this review, we summarize the current understanding of miRNAs in various cancers, with a particular focus on their potential as future noninvasive diagnostic biomarkers. The emphasis is on their capacity for achieving high accuracy and cost savings compared to conventional biomarkers.
Collapse
Affiliation(s)
- ChauMyThanh Tran
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - PhongSon Dinh
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| |
Collapse
|
15
|
Coleman D, Kuwada S. miRNA as a Biomarker for the Early Detection of Colorectal Cancer. Genes (Basel) 2024; 15:338. [PMID: 38540397 PMCID: PMC10969835 DOI: 10.3390/genes15030338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 06/14/2024] Open
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA segments that can be detected in a variety of clinical samples, including serum, stool, and urine. While miRNAs were initially known for their effect on post-translational gene expression, the last decade of research has shown them to be promising biomarkers for the detection of many types of cancer. This paper explores the use of miRNA detection as a tool for colorectal cancer (CRC) screening. We discuss the current state of miRNA detection, compare it to the existing CRC screening tools, and highlight the advantages and drawbacks of this approach from a clinical and logistical perspective. Our research finds that miRNA-based tests for CRC show great potential, but that widespread clinical adoption will be conditional on future research overcoming key hurdles.
Collapse
Affiliation(s)
- David Coleman
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA
| | - Scott Kuwada
- John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA
- University of Hawaii Cancer Center, 01 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
16
|
Sweed NM, Dawoud MHS, Aborehab NM, Ezzat SM. An approach for an enhanced anticancer activity of ferulic acid-loaded polymeric micelles via MicroRNA-221 mediated activation of TP53INP1 in caco-2 cell line. Sci Rep 2024; 14:2073. [PMID: 38267567 PMCID: PMC10808409 DOI: 10.1038/s41598-024-52143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
Ferulic acid (FA) has powerful antioxidant and antitumor activities, but it has low bioavailability owing to its poor water solubility. Our aim is to formulate polymeric mixed micelles loaded with FA to overcome its poor solubility and investigate its potential anticancer activity via miRNA-221/TP53INP1 axis-mediated autophagy in colon cancer. A D-optimal design with three factors was used for the optimization of polymeric mixed micelles by studying the effects of each of total Pluronics mixture (mg), Pluronic P123 percentage (%w/w), and drug amount (mg) on both entrapment efficiency (EE%) and particle size. The anticancer activity of FA and Tocopheryl polyethylene glycol 1000 succinate (TPGS) mixed micelles formula (O2) was assessed by MTT and flow cytometry. O2 showed an EE% of 99.89%, a particle size of 13.86 nm, and a zeta potential of - 6.02 mv. In-vitro drug release studies showed a notable increase in the release rate of FA from O2, as compared to the free FA. The (IC50) values for FA from O2 and free FA were calculated against different cell lines showing a prominent IC50 against Caco-2 (17.1 µg/ml, 191 µg/ml respectively). Flow cytometry showed that FA caused cell cycle arrest at the G2/M phase in Caco-2. RT-PCR showed that O2 significantly increased the mRNA expression level of Bax and CASP-3 (4.72 ± 0.17, 3.67 ± 0.14), respectively when compared to free FA (2.59 ± 0.13, 2.14 ± 0.15), while miRNA 221 levels were decreased by the treatment with O2 (0.58 ± 0.02) when compared to free FA treatment (0.79 ± 0.03). The gene expression of TP53INP1 was increased by the treatment with O2 compared to FA at P < 0.0001. FA-loaded TPGS mixed micelles showed promising results for enhancing the anticancer effect of FA against colorectal cancer, probably due to its enhanced solubility. Thus, FA-loaded TPGS mixed micelles could be a potential therapeutic agent for colorectal cancer by targeting miRNA-221/TP53INP1 axis-mediated autophagy.
Collapse
Affiliation(s)
- Nabila M Sweed
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Marwa H S Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
17
|
Sheikhnia F, Maghsoudi H, Majidinia M. The Critical Function of microRNAs in Developing Resistance against 5- Fluorouracil in Cancer Cells. Mini Rev Med Chem 2024; 24:601-617. [PMID: 37642002 DOI: 10.2174/1389557523666230825144150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 08/31/2023]
Abstract
Although there have been significant advancements in cancer treatment, resistance and recurrence in patients make it one of the leading causes of death worldwide. 5-fluorouracil (5-FU), an antimetabolite agent, is widely used in treating a broad range of human malignancies. The cytotoxic effects of 5-FU are mediated by the inhibition of thymidylate synthase (TYMS/TS), resulting in the suppression of essential biosynthetic activity, as well as the misincorporation of its metabolites into RNA and DNA. Despite its huge benefits in cancer therapy, the application of 5-FU in the clinic is restricted due to the occurrence of drug resistance. MicroRNAs (miRNAs) are small, non-coding RNAs that act as negative regulators in many gene expression processes. Research has shown that changes in miRNA play a role in cancer progression and drug resistance. This review examines the role of miRNAs in 5-FU drug resistance in cancers.
Collapse
Affiliation(s)
- Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
18
|
Heidarian S, Takbiri Osgoei L, Zare Karizi S, Amani J, Arbabian S. Signal-On Fluorescence Biosensor for Detection of miRNA-21 Based on ROX labeled Specific Stem-Loop Probe. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144368. [PMID: 39005737 PMCID: PMC11246647 DOI: 10.5812/ijpr-144368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 07/16/2024]
Abstract
Background The abnormal expression of microRNA (miRNA) influences RNA transcription and protein translation, leading to tumor progression and metastasis. Today, reliably identifying aberrant miRNA expression remains challenging, especially when employing quick, simple, and portable detection methods. Objectives This study aimed to diagnose and detect the miR-21 biomarker with high sensitivity and specificity. Methods Our detection approach involves immobilizing ROX dye-labeled single-stranded DNA probes (ROX-labeled ssDNA) onto MWCNTs to detect target miRNA-21. Initially, adsorbing ROX-labeled ssDNA onto MWCNTs causes fluorescence quenching of ROX. Subsequently, introducing its complementary DNA (cDNA) forms double-stranded DNA (dsDNA), which results in the desorption and release from MWCNTs, thus restoring ROX fluorescence. Results The study examined changes in fluorescence intensities before and after hybridization with miRNA-21. The fluorescence emission intensities responded linearly to increases in miR-21 concentration from 10-9 to 3.2 × 10-6 M. The developed fluorescence sensor exhibited a detection limit of 1.12 × 10-9 M. Conclusions This work demonstrates that using a nano-biosensor based on carbon nanotubes offers a highly sensitive method for the early detection of colorectal cancer (CRC), supplementing existing techniques.
Collapse
Affiliation(s)
- Somayeh Heidarian
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Laya Takbiri Osgoei
- Department of Microbiology, Faculty of Biological Science, North Tehran Branch. Islamic Azad University, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva, Branch, Islamic Azad University Pishva, Varamin, Iran
| | - Jafar Amani
- Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sedigheh Arbabian
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Huang SH, Hsieh HC, Shieh JM, Su WC, Wang YC. Downregulation of microRNA-326 enhances ZNF322A expression, transcriptional activity and tumorigenic effects in lung cancer. Biofactors 2024; 50:214-227. [PMID: 37647209 DOI: 10.1002/biof.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023]
Abstract
Zinc finger protein ZNF322A is an oncogenic transcription factor. Overexpression of ZNF322A activates pro-metastasis, cancer stemness, and neo-angiogenesis-related genes to enhance lung cancer progression. However, the upstream regulator of ZNF322A is not well defined. Dysregulation of microRNAs (miRNAs) can mediate cancer cell growth, migration, and invasion to promote tumorigenesis. Here, we uncover the mechanism of miRNA-mediated transcriptional regulation in ZNF322A-driven oncogenic events. ZNF322A harbors several putative miRNA-binding sites in the 3'-untranslated region (UTR). We validated that miR-326 downregulated ZNF322A-3'-UTR luciferase activity and mRNA expression. Furthermore, miR-326 suppressed the expression of ZNF322A-driven cancer-associated genes such as cyclin D1 and alpha-adducin. Reconstitution experiments by ectopic overexpression of ZNF322A abolished miR-326-suppressed cancer cell proliferation and cell migration capacity. Moreover, miR-326 attenuated ZNF322A-induced tumor growth and lung tumor metastasis in vivo. Clinically, the expression of miR-326 negatively correlated with ZNF322A mRNA expression in surgically resected tissues from 120 non-small cell lung cancer (NSCLC) patients. Multivariate Cox regression analysis demonstrated that NSCLC patients with low miR-326/high ZNF322A profile showed poor overall survival. Our results reveal that the deregulated expression of miR-326 leads to hyperactivation of ZNF322A-driven oncogenic signaling. Targeting the miR-326/ZNF322A axis would provide new therapeutic strategies for lung cancer patients.
Collapse
Affiliation(s)
- Shih-Hsuan Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Chia Hsieh
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Min Shieh
- Division of Chest Medicine, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
- The Center of General Education, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Wou-Chou Su
- Division of Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
20
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Bagheri R, Ghorbian M, Ghorbian S. Tumor circulating biomarkers in colorectal cancer. Cancer Treat Res Commun 2023; 38:100787. [PMID: 38194840 DOI: 10.1016/j.ctarc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024]
Abstract
CRC is a major global health concern and is responsible for a significant number of cancer-related deaths each year. The successful treatment of CRC becomes more difficult when it goes undetected until it has advanced to a later stage. Diagnostic biomarkers can play a critical role in the early detection of CRC, which leads to improved patient outcomes and increased survival rates. It is important to develop reliable biomarkers for the early detection of CRC to enable timely diagnosis and treatment. To date, CRC detection methods such as endoscopy, blood, and stool tests are imperfect and often only identify cases in the later stages of the disease. To overcome these limitations, researchers are turning to molecular biomarkers as a promising avenue for improving CRC detection. Diagnostic information can be provided more reliably through a noninvasive approach using biomarkers such as mRNA, circulating cell-free DNA, micro-RNA, long non-coding RNA, and proteins. These biomarkers can be found in blood, tissue, feces, and volatile organic compounds. The identification of molecular biomarkers with high sensitivity and specificity for early detection of CRC that are safe, cost-effective, and easily measurable remains a significant challenge for researchers. In this article, we will explore the latest advancements in blood-based diagnostic biomarkers for CRC and their potential impact on improving patient survival rates.
Collapse
Affiliation(s)
- Raana Bagheri
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Mohsen Ghorbian
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
22
|
Franz C, Jötten L, Wührl M, Hartmann S, Klupp F, Schmidt T, Schneider M. Protective effect of miR-18a in resected liver metastases of colorectal cancer and FOLFOX treatment. Cancer Rep (Hoboken) 2023; 6:e1899. [PMID: 37698257 PMCID: PMC10728504 DOI: 10.1002/cnr2.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Colorectal cancer ranks second in terms of cancer associated deaths worldwide, whereas miRNA play a pivotal role in the etiology of cancer and its metastases. AIMS Studying the expression and cellular function of miR-18a in metastatic colorectal cancer and association to progression-free survival. METHODS AND RESULTS Colorectal liver metastases (N = 123) and primary colorectal cancer (N = 27) where analyzed by RT-PCR and correlated with clinical follow up data. Invasion and migration assays were performed with the liver metastatic cell line LIM2099 after miR-18a knockdown. Cell viability under FOLFOX treatment and knockdown was measured. We found that the expression of miR-18a was increased 4.38-fold in liver metastases and 3.86-fold in colorectal tumor tissue compared to healthy liver tissue and colorectal mucosa, respectively (p ≤ .001). Patients with a high miR-18a expression in liver metastases had a progression-free survival (PFS) of 13.6 months versus 8.9 months in patients with low expression (N = 123; p = .024). In vitro migration of LIM2099 cells was reduced after miR-18a knockdown and cell viability was significantly increased after miR-18a knockdown and treatment with folinic acid or oxaliplatin. Subgroup analysis of PFS revealed significant benefits for patients with high miR-18a expression receiving 5-FU, folinic acid or oxaliplatin. CONCLUSIONS High expression of miR-18a in colorectal liver metastases might have a protective effect after resection of metastases and FOLFOX treatment regarding PFS.
Collapse
Affiliation(s)
- Clemens Franz
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Laila Jötten
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Wührl
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sibylle Hartmann
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Fee Klupp
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Lu X, Li Y, Li Y, Zhang X, Shi J, Feng H, Yu Z, Gao Y. Prognostic and predictive biomarkers for anti-EGFR monoclonal antibody therapy in RAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2023; 23:1117. [PMID: 37974093 PMCID: PMC10655341 DOI: 10.1186/s12885-023-11600-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND RAS mutations affect prognosis in patients with metastatic colorectal cancer (mCRC) and have been identified as strong negative predictive markers for anti-epidermal growth factor receptor monoclonal antibody (anti-EGFR mAb) therapy, but many tumors containing wild-type RAS genes still do not respond to these therapies. Some additional biomarkers may have prognostic or predictive roles, but conclusions remain controversial. METHODS We performed a meta-analysis and systematic review of randomized controlled trials comparing anti-EGFR mAb therapy with alternative therapy that investigated the prognostic and predictive impact of additional biomarkers in RAS wild-type (wt) mCRC patients. Hazard ratios (HRs) and 95% confidence intervals (CIs) for progression-free survival (PFS) and overall survival (OS) and odds ratios (ORs) for objective response rate (ORR) were calculated. The prognostic value of biomarkers was investigated by separately pooling HR and OR for different treatment groups in an individual study. The predictive value was assessed by pooling study interactions between treatment effects and biomarker subgroups. RESULTS Thirty publications reporting on eighteen trials were selected, including a total of 13,507 patients. In prognostic analysis, BRAF mutations were associated with poorer PFS [HRs = 3.76 (2.47-5.73) and 2.69 (1.82-3.98)] and OS [HRs = 2.66 (1.95-3.65) and 2.45 (1.55-3.88)] in both the experimental and control arms; low miR-31-3p expression appeared to have longer PFS and OS. In terms of predictive effect, a lack of response to anti-EGFR therapy was observed in patients with BRAF mutant tumors (Pinteraction < 0.01 for PFS). Patients with tumors with any mutation in the KRAS/NRAS/BRAF/PIK3CA gene also showed similar results compared with all wild-type tumors (Pinteraction for PFS, OS, and ORR were < 0.01, < 0.01 and 0.01, respectively). While low miR-31-3p expression could predict PFS (Pinteraction = 0.01) and OS (Pinteraction = 0.04) benefit. The prognostic and predictive value regarding PIK3CA mutations, PTEN mutations or deletions, EGFR, EREG/AREG, HER2, HER3, and HER4 expression remains uncertain. CONCLUSIONS In RAS wt mCRC patients receiving EGFR-targeted therapy, BRAF mutation is a powerful prognostic and therapy-predictive biomarker, with no effect found for PIK3CA mutation, PTEN mutation or deletion, but the combined biomarker KRAS/NRAS/BRAF/PIK3CA mutations predict resistance to anti-EGFR therapy. Low miR-31-3p expression may have positive prognostic and therapy predictive effects. Evidence on the prognostic and predictive roles of EGFR and its ligands, and HER2/3/4 is insufficient.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuyao Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Li
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Shi
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
24
|
Khalili E, Afgar A, Rajabpour A, Aghaee-Bakhtiari SH, Jamialahmadi K, Teimoori-Toolabi L. MiR-548c-3p through suppressing Tyms and Abcg2 increases the sensitivity of colorectal cancer cells to 5-fluorouracil. Heliyon 2023; 9:e21775. [PMID: 38045156 PMCID: PMC10692789 DOI: 10.1016/j.heliyon.2023.e21775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Background Colorectal cancer, is one of most prevalent the cancer in the world. 5-Fluorouracil is a standard chemotherapeutic drug while the acquisition of resistance to 5-Fluorouracil is one of the problems during treatment. In this study, we aimed to find the miRNAs that modulate the expression of Tyms and Abcg2 as resistance-inducing genes in the resistant cell lines to 5-Fluorouracil. Methods 5-Fluorouracil-resistant HCT116 and SW480 cell lines were generated by consecutive treatment of cells with 5-Fluorouracil. This resistance induction was validated by MTT assays. The expression of the Tyms and Abcg2 gene and miR-548c-3p were studied by quantitative real-time PCR in the cell lines. Results We hypothesized that miR-548c-3p is targeting Tyms and Abcg2 simultaneously. Increased expression Tyms gene in the two most resistant cell lines derived from HCT116 and all resistant cell lines derived from SW480 except one were seen. Increased expression of Abcg2 was observed in the most resistant HCT116-derived cell line and all resistant cell lines, derived from SW480. In all resistant cell lines, the expression of miR-548c-3p was decreased. Conclusion It can be concluded downregulation of miR548c-3p is in line with Tyms and Abcg2 overexpression in resistant cell lines to 5-Fluorouracil.
Collapse
Affiliation(s)
- Elham Khalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Rajabpour
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran
| |
Collapse
|
25
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
26
|
Hameed NAA, Shaker OG, Hasona NA. LINC00641/miR-378a and Their Cross-Talk with TNF-α/IFN-γ as Potential Biomarkers in Ulcerative Colitis and Crohn's Diseases. J Interferon Cytokine Res 2023; 43:531-537. [PMID: 37956249 DOI: 10.1089/jir.2023.0097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
The most well-known forms of inflammatory bowel disease (IBD) that affect the entire gastrointestinal tract are ulcerative colitis (UC) and Crohn's disease (CD). The serum profile of inflammatory biomarkers and noncoding RNA and their role in the propagation of the inflammatory process remains controversial. Thus, this study was designed to examine the relationship between hematological profile, C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), and the expression of LINC00641 and miR-378a in individuals with IBDs. In addition, we elucidated the correlation between the expression of LINC00641 and miR-378a and the biochemical variables analyzed. This retrospective study analyzed 94 unrelated participants. Group I included healthy controls, Group II consisted of participants diagnosed with UC, and Group III consisted of participants diagnosed with CD. Patients with IBDs experienced significant elevations in CRP, total leukocyte count, platelets, erythrocyte sedimentation rate, TNF-α, and INF-γ. However, participants with IBD had lower hemoglobin and albumin levels than healthy control participants. Moreover, the expression levels of LINC00641 and miR-378a were elevated in participants with IBD, with a significant difference between participants with IBD and healthy controls. The most striking observation was a clear association between serum LINC00641 and miR-378a levels and the biochemical variables assessed. This study demonstrated a positive correlation between the expression of LINC00641/miR-378a and TNF-α in patients with UC and CD patients. This study suggests that LINC00641 and miR-378a are prospective biomarkers and noninvasive screening tools for IBDs, which may help predict the progression of complications.
Collapse
Affiliation(s)
- Nour A Abdel Hameed
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nabil A Hasona
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
27
|
Martino E, Balestrieri A, Aragona F, Bifulco G, Mele L, Campanile G, Balestrieri ML, D’Onofrio N. MiR-148a-3p Promotes Colorectal Cancer Cell Ferroptosis by Targeting SLC7A11. Cancers (Basel) 2023; 15:4342. [PMID: 37686618 PMCID: PMC10486764 DOI: 10.3390/cancers15174342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Ferroptosis, an iron-dependent form of cell death, and dysregulated microRNA (miRNA) expression correlate with colorectal cancer (CRC) development and progression. The tumor suppressor ability of miR-148a-3p has been reported for several cancers. Nevertheless, the role of miR-148a-3p in CRC remains largely undetermined. Here, we aim at investigating the molecular mechanisms and regulatory targets of miR-148a-3p in the CRC cell death mechanism(s). To this end, miR-148a-3p expression was evaluated in SW480 and SW620 cells and normal colon epithelial CCD 841 CoN cells with quantitative real-time polymerase chain reaction (qRT-PCR). Data reported a reduction of miR-148a-3p expression in SW480 and SW620 cells compared to non-tumor cells (p < 0.05). Overexpression of miR-148a selectively inhibited CRC cell viability (p < 0.001), while weakly affecting normal CCD 841 CoN cell survival (p < 0.05). At the cellular level, miR-148a-3p mimics promoted apoptotic cell death via caspase-3 activation (p < 0.001), accumulation of mitochondrial reactive oxygen species (ROS) (p < 0.001), and membrane depolarization (p < 0.001). Moreover, miR-148a-3p overexpression induced lipid peroxidation (p < 0.01), GPX4 downregulation (p < 0.01), and ferroptosis (p < 0.01), as revealed by intracellular and mitochondrial iron accumulation and ACSL4/TFRC/Ferritin modulation. In addition, levels of SLC7A11 mRNA and protein, the cellular targets of miR-148a-3p predicted by bioinformatic tools, were suppressed by miR-148a-3p's overexpression. On the contrary, the downregulation of miR-148a-3p boosted SLC7A11 gene expression and suppressed ferroptosis. Together, these in vitro findings reveal that miR-148a-3p can function as a tumor suppressor in CRC by targeting SLC7A11 and activating ferroptosis, opening new perspectives for the rationale of therapeutic strategies through targeting the miR-148a-3p/SLC7A11 pathway.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (E.M.); (N.D.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Francesca Aragona
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.A.); (G.B.); (G.C.)
| | - Giovanna Bifulco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.A.); (G.B.); (G.C.)
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138 Naples, Italy;
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; (F.A.); (G.B.); (G.C.)
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (E.M.); (N.D.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138 Naples, Italy; (E.M.); (N.D.)
| |
Collapse
|
28
|
Xiong B, Huang Q, Zheng H, Lin S, Xu J. Recent advances microRNAs and metabolic reprogramming in colorectal cancer research. Front Oncol 2023; 13:1165862. [PMID: 37576895 PMCID: PMC10415904 DOI: 10.3389/fonc.2023.1165862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/07/2023] [Indexed: 08/15/2023] Open
Abstract
Colorectal cancer (CRC) is a cancer with the highest incidence and mortality. Alteration of gene expression is the main pathophysiological mechanism of CRC, which results in disturbed signaling pathways and cellular metabolic processes. MicroRNAs are involved in almost all pathophysiological processes and are correlative with colorectal cancer metabolism, proliferation, and chemotherapy resistance. Metabolic reprogramming, an important feature of cancer, is strongly correlative with the development and prognosis of cancers, including colorectal cancer. MicroRNAs can target enzymes involved in metabolic processes, thus playing a regulatory role in tumor metabolism. The disorder of the signaling pathway is another characteristic of tumor, which induces the occurrence and proliferation of tumors, and is closely correlative with the prognosis and chemotherapy resistance of tumor patients. MicroRNAs can target the components of the signaling pathways to regulate their transduction. Understanding the function of microRNAs in the occurrence and proliferation of CRC provides novel insights into the optimal treatment strategies, prognosis, and development of diagnosis in CRC. This article reviews the relationship between CRC and microRNA expression and hopes to provide new options for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiaoyi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Huida Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jianhua Xu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
29
|
Pös O, Styk J, Buglyó G, Zeman M, Lukyova L, Bernatova K, Hrckova Turnova E, Rendek T, Csók Á, Repiska V, Nagy B, Szemes T. Cross-Kingdom Interaction of miRNAs and Gut Microbiota with Non-Invasive Diagnostic and Therapeutic Implications in Colorectal Cancer. Int J Mol Sci 2023; 24:10520. [PMID: 37445698 DOI: 10.3390/ijms241310520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) has one of the highest incidences among all types of malignant diseases, affecting millions of people worldwide. It shows slow progression, making it preventable. However, this is not the case due to shortcomings in its diagnostic and management procedure and a lack of effective non-invasive biomarkers for screening. Here, we discuss CRC-associated microRNAs (miRNAs) and gut microbial species with potential as CRC diagnostic and therapy biomarkers. We provide rich evidence of cross-kingdom miRNA-mediated interactions between the host and gut microbiome. miRNAs have emerged with the ability to shape the composition and dynamics of gut microbiota. Intestinal microbes can uptake miRNAs, which in turn influence microbial growth and provide the ability to regulate the abundance of various microbial species. In the context of CRC, targeting miRNAs could aid in manipulating the balance of the microbiota. Our findings suggest the need for correlation analysis between the composition of the gut microbiome and the miRNA expression profile.
Collapse
Affiliation(s)
- Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Jakub Styk
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Michal Zeman
- Comenius University Science Park, 841 04 Bratislava, Slovakia
| | - Lydia Lukyova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Kamila Bernatova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Slovgen Ltd., 841 04 Bratislava, Slovakia
| | - Tomas Rendek
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|
30
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Exosomes in metastasis of colorectal cancers: Friends or foes? World J Gastrointest Oncol 2023; 15:731-756. [PMID: 37275444 PMCID: PMC10237026 DOI: 10.4251/wjgo.v15.i5.731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer worldwide, threaten human health and quality of life. With multidisciplinary, including surgery, chemotherapy and/or radiotherapy, patients with an early diagnosis of CRC can have a good prognosis. However, metastasis in CRC patients is the main risk factor causing cancer-related death. To elucidate the underlying molecular mechanisms of CRC metastasis is the difficult and research focus on the investigation of the CRC mechanism. On the other hand, the tumor microenvironment (TME) has been confirmed as having an essential role in the tumorigenesis and metastasis of malignancies, including CRCs. Among the different factors in the TME, exosomes as extracellular vesicles, function as bridges in the communication between cancer cells and different components of the TME to promote the progression and metastasis of CRC. MicroRNAs packaged in exosomes can be derived from different sources and transported into the TME to perform oncogenic or tumor-suppressor roles accordingly. This article focuses on CRC exosomes and illustrates their role in regulating the metastasis of CRC, especially through the packaging of miRNAs, to evoke exosomes as novel biomarkers for their impact on the metastasis of CRC progression.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
31
|
Chan FKL, Wong MCS, Chan AT, East JE, Chiu HM, Makharia GK, Weller D, Ooi CJ, Limsrivilai J, Saito Y, Hang DV, Emery JD, Makmun D, Wu K, Ali RAR, Ng SC. Joint Asian Pacific Association of Gastroenterology (APAGE)-Asian Pacific Society of Digestive Endoscopy (APSDE) clinical practice guidelines on the use of non-invasive biomarkers for diagnosis of colorectal neoplasia. Gut 2023:gutjnl-2023-329429. [PMID: 37019620 DOI: 10.1136/gutjnl-2023-329429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
Screening for colorectal cancer (CRC) is effective in reducing CRC related mortality. Current screening methods include endoscopy based and biomarker based approaches. This guideline is a joint official statement of the Asian Pacific Association of Gastroenterology (APAGE) and the Asian Pacific Society of Digestive Endoscopy (APSDE), developed in response to the increasing use of, and accumulating supportive evidence for the role of, non-invasive biomarkers for the diagnosis of CRC and its precursor lesions. A systematic review of 678 publications and a two stage Delphi consensus process involving 16 clinicians in various disciplines was undertaken to develop 32 evidence based and expert opinion based recommendations for the use of faecal immunochemical tests, faecal based tumour biomarkers or microbial biomarkers, and blood based tumour biomarkers for the detection of CRC and adenoma. Comprehensive up-to-date guidance is provided on indications, patient selection and strengths and limitations of each screening tool. Future research to inform clinical applications are discussed alongside objective measurement of research priorities. This joint APAGE-APSDE practice guideline is intended to provide an up-to-date guide to assist clinicians worldwide in utilising non-invasive biomarkers for CRC screening; it has particular salience for clinicians in the Asia-Pacific region.
Collapse
Affiliation(s)
- Francis K L Chan
- Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Martin C S Wong
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
- Centre for Health Education and Health Promotion, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - James E East
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Oxford NIHR Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Division of Gastroenterology and Hepatology, Mayo Clinic Healthcare, London, UK
| | - Han-Mo Chiu
- Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Govind K Makharia
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical Sciences, New Delhi, India
| | - David Weller
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK
| | | | - Julajak Limsrivilai
- Internal Medicine, Mahidol University Faculty of Medicine Siriraj Hospital, Bangkok, Thailand
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Dao V Hang
- Hanoi Medical University, Hanoi, Vietnam
| | - Jon D Emery
- Department of General Practice, The University of Melbourne Faculty of Medicine Dentistry and Health Sciences, Melbourne, Victoria, Australia
| | | | - Kaichun Wu
- Xijing Hospital of Digestive Diseases, Xijing Hospital, Xian, China
| | | | - Siew C Ng
- Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
32
|
Farouk S, El-Shenawy R, Khairy AM, Bader El-Din NG. Overexpression of miRNA 26a and 26b with MMP-9 are valuable diagnostic biomarkers for colorectal cancer patients. Biomark Med 2023; 17:159-169. [PMID: 37097025 DOI: 10.2217/bmm-2022-0861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/23/2023] [Indexed: 04/26/2023] Open
Abstract
Background: The key role of miRNA expression in incidence and progression of colorectal cancer (CLC) have been developed over the last decade. Materials & methods: A total of 153 subjects were enrolled into two phases: 14 selected miRNAs were first evaluated in 50 subjects, then miR-26a and miR-26b relative expression were further evaluated in 103 subjects and their target protein MMP-9 was measured. Results: miR-26a and -26b showed highly significant overexpression. Both miR-26a and -26b (p < 0.001) had high diagnostic efficacy for CRC. There was a significant increase in serum MMP-9 protein in CRC patients with positive correlation with miR-26a and -26b expression levels (p < 0.001). Conclusion: miRNA 26a and 26b with MMP-9 can be used as diagnostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Sally Farouk
- Department of Microbial Biotechnology, National Research Centre, Dokki, 12622, Egypt
| | - Reem El-Shenawy
- Department of Microbial Biotechnology, National Research Centre, Dokki, 12622, Egypt
| | - Ahmed M Khairy
- Department of Endemic Medicine, Faculty of Medicine, Cairo University, Giza, 11562, Egypt
| | - Noha G Bader El-Din
- Department of Microbial Biotechnology, National Research Centre, Dokki, 12622, Egypt
| |
Collapse
|
33
|
Farc O, Budisan L, Berindan-Neagoe I, Braicu C, Zanoaga O, Zaharie F, Cristea V. A Group of Tumor-Suppressive micro-RNAs Changes Expression Coordinately in Colon Cancer. Curr Issues Mol Biol 2023; 45:975-989. [PMID: 36826008 PMCID: PMC9955927 DOI: 10.3390/cimb45020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) are molecules with a role in the post-transcriptional regulation of messenger RNA, being involved in a wide range of biological and pathological processes. In the present study, we aim to characterize the behavior of a few miRNAs with roles in the cell cycle and differentiation of colon cancer (CC) cells. The present work considers miRNAs as reflections of the complex cellular processes in which they are generated, their observed variations being used to characterize the molecular networks in which they are part and through which cell proliferation is achieved. Tumoral and adjacent normal tissue samples were obtained from 40 CC patients, and the expression of miR-29a, miR-146a, miR-215 and miR-449 were determined by qRT-PCR analysis. Subsequent bioinformatic analysis was performed to highlight the transcription factors (TFs) network that regulate the miRNAs and functionally characterizes this network. There was a significant decrease in the expression of all miRNAs in tumor tissue. All miRNAs were positively correlated with each other. The analysis of the TF network showed tightly connected functional modules related to the cell cycle and associated processes. The four miRNAs are downregulated in CC; they are strongly correlated, showing coherence within the cellular network that regulates them and highlighting possible approach strategies.
Collapse
Affiliation(s)
- Ovidiu Farc
- Immunology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Liviuta Budisan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Oana Zanoaga
- Research Center for Functional Genomics, Biomedicine and Translational Medicine “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Florin Zaharie
- Surgical Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Victor Cristea
- Immunology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| |
Collapse
|
34
|
Mirza S, Bhadresha K, Mughal MJ, McCabe M, Shahbazi R, Ruff P, Penny C. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet? Front Oncol 2023; 12:1023565. [PMID: 36686736 PMCID: PMC9853908 DOI: 10.3389/fonc.2022.1023565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with nearly half of patients detected in the advanced stages. This is due to the fact that symptoms associated with CRC often do not appear until the cancer has reached an advanced stage. This suggests that CRC is a cancer with a slow progression, making it curable and preventive if detected in its early stage. Therefore, there is an urgent clinical need to improve CRC early detection and personalize therapy for patients with this cancer. Recently, liquid biopsy as a non-invasive or nominally invasive approach has attracted considerable interest for its real-time disease monitoring capability through repeated sample analysis. Several studies in CRC have revealed the potential for liquid biopsy application in a real clinical setting using circulating RNA/miRNA, circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still remains a challenge since there are currently no promising results with high specificity and specificity that might be employed as optimal circulatory biomarkers. Therefore, in this review, we conferred the plausible role of less explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which may allow researchers to develop improved strategies to unravel unfulfilled clinical requirements in CRC patients. Moreover, we have also discussed immunotherapy approaches to improve the prognosis of MSI (Microsatellite Instability) CRC patients using neoantigens and immune cells in the tumor microenvironment (TME) as a liquid biopsy approach in detail.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kinjal Bhadresha
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| | - Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Clement Penny,
| |
Collapse
|
35
|
Yang Y, Meng WJ, Wang ZQ. MicroRNAs (miRNAs): Novel potential therapeutic targets in colorectal cancer. Front Oncol 2022; 12:1054846. [PMID: 36591525 PMCID: PMC9794577 DOI: 10.3389/fonc.2022.1054846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) is the most common malignant tumor and one of the most lethal malignant tumors in the world. Despite treatment with a combination of surgery, radiotherapy, and/or systemic treatment, including chemotherapy and targeted therapy, the prognosis of patients with advanced CRC remains poor. Therefore, there is an urgent need to explore novel therapeutic strategies and targets for the treatment of CRC. MicroRNAs (miRNAs/miRs) are a class of short noncoding RNAs (approximately 22 nucleotides) involved in posttranscriptional gene expression regulation. The dysregulation of its expression is recognized as a key regulator related to the development, progression and metastasis of CRC. In recent years, a number of miRNAs have been identified as regulators of drug resistance in CRC, and some have gained attention as potential targets to overcome the drug resistance of CRC. In this review, we introduce the miRNAs and the diverse mechanisms of miRNAs in CRC and summarize the potential targeted therapies of CRC based on the miRNAs.
Collapse
|
36
|
Villanueva JW, Kwong L, Han T, Martinez SA, Shanahan MT, Kanke M, Dow LE, Danko CG, Sethupathy P. Comprehensive microRNA analysis across genome-edited colorectal cancer organoid models reveals miR-24 as a candidate regulator of cell survival. BMC Genomics 2022; 23:792. [DOI: 10.1186/s12864-022-09018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
AbstractSomatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across different combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.
Collapse
|
37
|
Lu T, Zheng C, Fan Z. Cardamonin suppressed the migration, invasion, epithelial mesenchymal transition (EMT) and lung metastasis of colorectal cancer cells by down-regulating ADRB2 expression. PHARMACEUTICAL BIOLOGY 2022; 60:1011-1021. [PMID: 35645356 PMCID: PMC9154753 DOI: 10.1080/13880209.2022.2069823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Cardamonin (CDN) can suppress cell growth in colorectal cancer (CRC), a common digestive malignancy. OBJECTIVE We explored the effect and mechanism of CDN on metastatic CRC. MATERIALS AND METHODS Two cell lines (HT29 and HCT116) were initially treated with CDN at different concentrations (5, 10 and 20 μmol/L) or 50 μmol/L propranolol (positive control) for 24 or 48 h. Then, the two cell lines were separately transfected with siADRB2 and ADRB2 overexpression plasmids, and further treated with 10 μmol/L CDN for 24 h. The cell viability, migration and invasion were determined by cell counting kit-8 (CCK-8), wound healing and transwell assays, respectively. The levels of ADRB2, matrix metalloprotease (MMP)-2, MMP-9, E-cadherin and N-cadherin were measured by Western blotting or/and RT-qPCR. A CRC metastasis model was established to evaluate the antimetastatic potential of CDN (25 mg/kg). RESULTS ADRB2 (3.2-fold change; p < 0.001) was highly expressed in CRC tissues. CDN at 10 μmol/L suppressed viability (69% and 70%), migration (33% and 66%), invasion (43% and 72%) and ADRB2 expression (2.2- and 2.84-fold change) in HT29 and HCT116 cells (p < 0.001). CDN at 10 μmol/L inhibited MMP-2, MMP-9 and N-cadherin expression but promoted E-cadherin expression in CRC cells (p < 0.001). Importantly, the effect of CDN on CRC cells was impaired by ADRB2 overexpression, but further enhanced by ADRB2 down-regulation (p < 0.01). Additionally, ADRB2 overexpression reversed the inhibitory effect of CDN on metastatic lung nodules (p < 0.05). Discussion and conclusions: CDN is a potential candidate for the treatment of metastatic CRC in clinical practice.
Collapse
Affiliation(s)
- Ting Lu
- Proctology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunju Zheng
- Proctology Department, Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Zhimin Fan
- Proctology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
38
|
Upregulation of miR-22-3p contributes to plumbagin-mediated inhibition of Wnt signaling in human colorectal cancer cells. Chem Biol Interact 2022; 368:110224. [DOI: 10.1016/j.cbi.2022.110224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/14/2022] [Accepted: 10/13/2022] [Indexed: 11/22/2022]
|
39
|
Rafiee R, Razmara E, Motavaf M, Mossahebi-Mohammadi M, Khajehsharifi S, Rouhollah F, Babashah S. Circulating serum miR-1246 and miR-1229 as diagnostic biomarkers in colorectal carcinoma. J Cancer Res Ther 2022; 18:S383-S390. [PMID: 36510992 DOI: 10.4103/jcrt.jcrt_752_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Colorectal cancer (CRC) is one of the most common cancers worldwide. Although colonoscopy is considered as the "Gold Standard" technique to detect CRC, its application is invasive and cost incurred. Thus, noninvasive or minimally invasive approaches are of utmost importance. The aberrant expression of some microRNAs (miRNAs, miRs) has been suggested in association with CRC pathogenesis. This study aimed to validate if circulating serum miR-1229 and miR-1246 are diagnostic biomarkers for CRC. Materials and Methods Serum samples were isolated from 45 CRC patients and also 45 healthy controls (HC). The expression levels of circulating serum-derived miR-1229 and miR-1246 were evaluated by quantitative real-time polymerase chain reaction. Receiver operating characteristic (ROC) curves were constructed to evaluate the CRC diagnostic accuracy of selected miRNAs. Furthermore, the association of candidate miRNAs and clinicopathological characteristics were evaluated. Functional enrichment of the candidate miRNAs was applied using in silico tools. Results The expression of miR-1229 and miR-1246 was significantly higher in CRC patients than HC (P < 0.0001) and also was found in association with lymph node metastasis (P < 0.05). We demonstrated a significant up-regulation of serum-derived miR-1246 in advanced tumor-node-metastasis stage III of CRC patients (P < 0.05). Areas under the ROC curve of miR-1229 and miR-1246 were 0.81 and 0.84, respectively (P < 0.0001). Conclusion We confirmed the capability of circulating serum miR-1229 and miR-1246 as novel diagnostic biomarkers for CRC.
Collapse
Affiliation(s)
- Reihaneh Rafiee
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, TarbiatModares University, Tehran, Iran
| | - Mahsa Motavaf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Fatemeh Rouhollah
- Department of Cellular and Molecular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
40
|
Lin S, Wang S, Zhang Z, Lu Y, Yang M, Chen P, Chen L, Wang M. MiRNA-6089 inhibits rheumatoid arthritis fibroblast-like synoviocytes proliferation and induces apoptosis by targeting CCR4. Arch Physiol Biochem 2022; 128:1426-1433. [PMID: 32552050 DOI: 10.1080/13813455.2020.1773862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several studies have suggested that fibroblast-like synoviocytes (FLSs) and miRNAs are implicated in the pathogenesis of rheumatoid arthritis (RA). This study was aimed to evaluate the function of miR-6089 in the regulation of RA-FLSs. The levels of miR-6089 were detected to be significantly lower in the synovial tissues and FLSs of RA than in the healthy synovial tissues and FLSs. The miR-6089 up-regulation in RA-FLSs significantly inhibited the proliferation and promoted cell apoptosis accompany with an increase protein expression of cleaved-Caspase-3, -8 and -9. Furthermore, CCR4 was determined to target miR-6089 directly, and its expression was significantly increased in the synovial tissues of RA than in the healthy synovial tissues. The overexpression of CCR4 reversed the effect of miR-6089 on proliferation and apoptosis in RA-FLSs effectively. In conclusion, our study suggests that the miR-6089 may be a potential target for prevention and treatment of RA.
Collapse
Affiliation(s)
- Suxian Lin
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Shengnan Wang
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Zhiyong Zhang
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Yang Lu
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Meilv Yang
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Ping Chen
- Department of Rheumatology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Lianguo Chen
- Department of Pharmacy, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| | - Mudan Wang
- Department of Nephrology, The Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, China
| |
Collapse
|
41
|
Zhang Y, Liu WS, Zhang XY, Tong HX, Yang H, Liu WF, Fan J, Zhou J, Hu J. Low expression of exosomal miR-150 predicts poor prognosis in colorectal cancer patients after surgical resections. Carcinogenesis 2022; 43:930-940. [PMID: 35767307 DOI: 10.1093/carcin/bgac059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/13/2023] Open
Abstract
Liver metastasis is a leading indicator of poor prognosis in patients with colorectal cancer (CRC). Exosomal intercellular communication has been reported to play an important role in cancer invasion and metastasis. Here, we characterized exosomal miRNAs underlying liver metastasis in CRC patients (Cohort 1, n = 30) using miRNA arrays. Exosomal miR-150 was found to be downregulated in CRC patients with liver metastases compared to those without (P = 0.025, fold change [FC] = 2.01). These results were then validated using another independent cohort of CRC patients (Cohort 2, n = 64). Patients with low expression of exosomal miR-150 had significantly shorter overall survival (OS) time (33.3 months versus 43.3 months, P = 0.002). In addition, the low expression of exosomal miR-150 was significantly correlated with advanced tumor node metastasis staging (P = 0.013), higher CA199 level (P = 0.018), and the presence of liver metastasis (P = 0.048). Multivariate analysis showed that low expression of exosomal miR-150 (P = 0.035) and liver metastasis (P < 0.001) were independent prognostic factors for overall survival. In vivo and in vitro studies showed that the viability and invasion of CRC cells were both significantly suppressed by ExomiR-150. Target-prediction assessment and dual-luciferase reporter assay indicated that FTO (the fat mass and obesity-associated gene) was a direct target for miR-150. This study first demonstrated that exosomal miR-150 may be a potential prognostic factor and treatment target for CRC.
Collapse
Affiliation(s)
- Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Shuai Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiang-Yu Zhang
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Han-Xing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Yang
- Department of General Surgery, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wei-Feng Liu
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jia Fan
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Zhou
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Hu
- Liver Cancer Institution, Fudan University, Shanghai, China.,Department of Liver Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
42
|
Xiong Q, Zhang Y, Li J, Zhu Q. Small Non-Coding RNAs in Human Cancer. Genes (Basel) 2022; 13:genes13112072. [PMID: 36360311 PMCID: PMC9690286 DOI: 10.3390/genes13112072] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Small non-coding RNAs are widespread in the biological world and have been extensively explored over the past decades. Their fundamental roles in human health and disease are increasingly appreciated. Furthermore, a growing number of studies have investigated the functions of small non-coding RNAs in cancer initiation and progression. In this review, we provide an overview of the biogenesis of small non-coding RNAs with a focus on microRNAs, PIWI-interacting RNAs, and a new class of tRNA-derived small RNAs. We discuss their biological functions in human cancer and highlight their clinical application as molecular biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Qunli Xiong
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junjun Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
43
|
Sur D, Advani S, Braithwaite D. MicroRNA panels as diagnostic biomarkers for colorectal cancer: A systematic review and meta-analysis. Front Med (Lausanne) 2022; 9:915226. [PMID: 36419785 PMCID: PMC9676370 DOI: 10.3389/fmed.2022.915226] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Background Circulating microRNAs (miRNA) have emerged as promising diagnostic biomarkers for several diseases, including cancer. However, the diagnostic accuracy of miRNA panels in colorectal cancer (CRC) remains inconsistent and there is still lack of meta-analyses to determine whether miRNA panels can serve as robust biomarkers for CRC diagnosis. Methods This study performed a systematic review and meta-analysis to evaluate the clinical utility of miRNA panels as potential biomarkers for the diagnosis of CRC. The investigation systematically searched PubMed, Medline, Web of Science, Cochrane Library, and Google Scholar (21-year span, between 2000 and 2021) to retrieve articles reporting the diagnostic role of miRNA panels in detecting CRC. Diagnostic meta-analysis of miRNA panels used diverse evaluation indicators, including sensitivity, specificity, Positive Likelihood Ratio (PLR), Negative Likelihood Ratio (NLR), Diagnostic Odds Ratio (DOR), and the area under the curve (AUC) values. Results Among the 313 articles identified, 20 studies met the inclusion criteria. The pooled estimates of miRNA panels for the diagnosis of CRC were 0.85 (95% CI: 0.84-0.86), 0.79 (95% CI: 0.78-0.80), 4.06 (95% CI: 3.89-4.23), 0.20 (95% CI: 0.19-0.20), 22.50 (95% CI: 20.81-24.32) for sensitivity, specificity, PLR, NLR, and DOR, respectively. Moreover, the summary receiver operating characteristics (SROC) curve revealed an AUC value of 0.915 (95% CI: 0.914-0.916), suggesting an outstanding diagnostic accuracy for overall miRNA panels. Subgroup and meta-regression analyses demonstrated that miRNA panels have the highest diagnostic accuracy within serum samples, rather than in other sample-types - with a sensitivity, specificity, PLR, NLR, DOR, and AUC of 0.87, 0.86, 7.33, 0.13, 55.29, and 0.943, respectively. Sensitivity analysis revealed that DOR values did not differ markedly, which indicates that the meta-analysis had strong reliability. Furthermore, this study demonstrated no proof of publication bias for DOR values analyzed using Egger's regression test (P > 0.05) and funnel plot. Interestingly, miR-15b, miR-21 and miR-31 presented the best diagnostic accuracy values for CRC with sensitivity, specificity, PLR, NLR, DOR, and AUC values of 0.95, 0.94, 17.19, 0.05, 324.81, and 0.948, respectively. Conclusion This study's findings indicated that miRNA panels, particularly serum-derived miRNA panels, can serve as powerful and promising biomarkers for early CRC screening. Systematic review registration [www.crd.york.ac.uk/prospero], identifier [CRD42021268172].
Collapse
Affiliation(s)
- Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă” Cluj-Napoca, Cluj-Napoca, Romania,11th Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Haţieganu”, Cluj-Napoca, Romania,*Correspondence: Daniel Sur,
| | - Shailesh Advani
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States,Terasaki Institute of Biomedical Innovation, Los Angeles, CA, United States
| | - Dejana Braithwaite
- Department of Epidemiology, University of Florida College of Public Health and Health Professions, Gainesville, FL, United States,University of Florida Health Cancer Center, Gainesville, FL, United States,Department of Aging and Geriatric Research, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
44
|
Beni FA, Kazemi M, Dianat-Moghadam H, Behjati M. MicroRNAs regulating Wnt signaling pathway in colorectal cancer: biological implications and clinical potentials. Funct Integr Genomics 2022; 22:1073-1088. [DOI: 10.1007/s10142-022-00908-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
|
45
|
Liang C, Yang JB, Lin XY, Xie BL, Xu YX, Lin S, Xu TW. Recent advances in the diagnostic and therapeutic roles of microRNAs in colorectal cancer progression and metastasis. Front Oncol 2022; 12:911856. [PMID: 36313731 PMCID: PMC9607901 DOI: 10.3389/fonc.2022.911856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy in the world and one of the leading causes of cancer death; its incidence is still increasing in most countries. The early diagnostic accuracy of CRC is low, and the metastasis rate is high, resulting in a low survival rate of advanced patients. MicroRNAs (miRNAs) are a small class of noncoding RNAs that can inhibit mRNA translation and trigger mRNA degradation, and can affect a variety of cellular and molecular targets. Numerous studies have shown that miRNAs are related to tumour progression, immune system activity, anticancer drug resistance, and the tumour microenvironment. Dysregulation of miRNAs occurs in a variety of malignancies, including CRC. In this review, we summarize the recent research progress of miRNAs, their roles in tumour progression and metastasis, and their clinical value as potential biomarkers or therapeutic targets for CRC. Furthermore, we combined the roles of miRNAs in tumorigenesis and development with the therapeutic strategies of CRC patients, which will provide new ideas for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Chen Liang
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jing-Bo Yang
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xin-Yi Lin
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Bi-Lan Xie
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Xian Xu
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Tian-Wen Xu, ; Shu Lin,
| | - Tian-Wen Xu
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Tian-Wen Xu, ; Shu Lin,
| |
Collapse
|
46
|
Zhai S, Li X, Wu Y, Shi X, Ji B, Qiu C. Identifying potential microRNA biomarkers for colon cancer and colorectal cancer through bound nuclear norm regularization. Front Genet 2022; 13:980437. [PMID: 36313468 PMCID: PMC9614659 DOI: 10.3389/fgene.2022.980437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Colon cancer and colorectal cancer are two common cancer-related deaths worldwide. Identification of potential biomarkers for the two cancers can help us to evaluate their initiation, progression and therapeutic response. In this study, we propose a new microRNA-disease association identification method, BNNRMDA, to discover potential microRNA biomarkers for the two cancers. BNNRMDA better combines disease semantic similarity and Gaussian Association Profile Kernel (GAPK) similarity, microRNA function similarity and GAPK similarity, and the bound nuclear norm regularization model. Compared to other five classical microRNA-disease association identification methods (MIDPE, MIDP, RLSMDA, GRNMF, AND LPLNS), BNNRMDA obtains the highest AUC of 0.9071, demonstrating its strong microRNA-disease association identification performance. BNNRMDA is applied to discover possible microRNA biomarkers for colon cancer and colorectal cancer. The results show that all 73 known microRNAs associated with colon cancer in the HMDD database have the highest association scores with colon cancer and are ranked as top 73. Among 137 known microRNAs associated with colorectal cancer in the HMDD database, 129 microRNAs have the highest association scores with colorectal cancer and are ranked as top 129. In addition, we predict that hsa-miR-103a could be a potential biomarker of colon cancer and hsa-mir-193b and hsa-mir-7days could be potential biomarkers of colorectal cancer.
Collapse
Affiliation(s)
- Shengyong Zhai
- Department of General Surgery, Weifang People’s Hospital, Shandong, China
| | - Xiaoling Li
- The Second Department of Oncology, Beidahuang Industry Group General Hospital, Harbin, China,Heilongjiang Second Cancer Hospital, Harbin, China
| | - Yan Wu
- Geneis Beijing Co., Ltd., Beijing, China
| | - Xiaoli Shi
- Geneis Beijing Co., Ltd., Beijing, China
| | - Binbin Ji
- Geneis Beijing Co., Ltd., Beijing, China
| | - Chun Qiu
- Department of Oncology, Hainan General Hospital, Haikou, China,*Correspondence: Chun Qiu,
| |
Collapse
|
47
|
Zhang W, Jiang Z, Tang D. The value of exosome-derived noncoding RNAs in colorectal cancer proliferation, metastasis, and clinical applications. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2305-2318. [PMID: 35921060 DOI: 10.1007/s12094-022-02908-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world today, and its incidence and mortality rates are increasing every year. The ease of proliferation and metastasis of CRC has long been an important reason for its high mortality rate. Exosomes serve as key mediators that mediate communication between tumor cells and various other cells. Non-coding RNAs (ncRNAs) have been shown to play a key role in apoptosis, immunosuppression and proliferation metastasis in cancer. ncRNAs are loaded on exosomes and initiate the onset of metastasis by promoting epithelial-mesenchymal transition (EMT) at the primary site of the tumor. Meanwhile, exosome-derived ncRNAs construct a pre-metastatic niche (PMN) for CRC metastasis by forming an inflammatory microenvironment in distant organs, immunosuppression, and promoting angiogenesis and remodeling of the extracellular matrix. Here, we summarize the specific mechanisms associated with exosome-derived ncRNAs promoting local invasion and metastasis in CRC. Finally, we focus on their value for clinical application in future CRC diagnosis and treatment.
Collapse
Affiliation(s)
- Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Northern Jiangsu Province Hospital, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
48
|
Identification of a Genomic Instability-Related Long Noncoding RNA Prognostic Model in Colorectal Cancer Based on Bioinformatic Analysis. DISEASE MARKERS 2022; 2022:4556585. [PMID: 35711569 PMCID: PMC9197617 DOI: 10.1155/2022/4556585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
Abstract
Background. In recent years, a growing body of research has revealed that long noncoding RNAs (lncRNAs) participate in regulating genomic instability. Materials and Methods. We obtained RNA expression profiles, somatic mutation profiles, clinical information, and pathological features of colorectal cancer (CRC) from The Cancer Genome Atlas project. We divided the cohort into two groups based on mutation frequency and identified genomic instability-related lncRNAs (GI-lncRNAs) using R software. We further analyzed the function of identified GI-lncRNAs and established a prognostic model through Cox regression. Using the established prognostic model, we divided the cohort into the high- and low-risk groups and further verified the prognostic differences between the two groups as well as the predictive power of prognosis-related lncRNAs in the genomic instability of CRC. Results. We identified a total of 143 GI-lncRNAs that were differentially expressed between the higher mutation frequency group and the lower mutation frequency group. According to Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses, a series of cancer-associated terms were enriched. We further constructed a prognostic model that included five GI-lncRNAs (lncRNA PTPRD-AS1, lncRNA AC009237.14, lncRNA LINC00543, lncRNA AP003555.1, and lncRNA AL109615.3). We confirmed that the expression of the five GI-lncRNAs was associated with prognosis and the mutation of critical genes in the CRC patient cohort. Conclusions. The present research further confirmed the vital function of GI-lncRNAs in the genomic instability of CRC. The five GI-lncRNAs identified in our study are potential biomarkers and need to be studied in more depth.
Collapse
|
49
|
Nersisyan SA. Isoforms of miR-148a and miR-203a are putative suppressors of colorectal cancer. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2022. [DOI: 10.24075/brsmu.2022.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MicroRNAs are short non-coding molecules which regulate translation in a gene-specific manner. MicroRNA isoforms that differ by few extra or missing nucleotides at the 5'-terminus (5'-isomiR) show strikingly different target specificity. This study aimed to identify functional roles of 5′-isomiR in colorectal cancers. Transcriptomic targets of microRNA isoforms were predicted using bioinformatics tools miRDB and TargetScan. The sets of putative targets identified for 5′-isomiR were integrated with mRNA and microRNA sequencing data for primary colorectal tumors retrieved from The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) database. The network of interactions among miRNA, their targets and transcription factors was built using the miRGTF-net algorithm. The results indicate that microRNA isoforms highly expressed in colorectal cancer and differing by a single nucleotide position at the 5'-terminus have ≤ 30% common targets. The regulatory network of interactions enables identification of the most engaged microRNA isoforms. Anti-correlated expression levels of canonical microRNA hsa-miR-148a-3p and its putative targets including CSF1, ETS1, FLT1, ITGA5, MEIS1, MITF and RUNX2 proliferation regulators suggest an anti-tumor role for this molecule. The canonical microRNA hsa-miR-203a-3p|0 and its 5′-isoform bind different sets of anti-correlated putative targets, although both of them interact with genes involved in the epithelial-mesenchymal transition: SNAI2 and TNC.
Collapse
Affiliation(s)
- SA Nersisyan
- National Research University Higher School of Economics (HSE), Moscow, Russia
| |
Collapse
|
50
|
Furuke H, Konishi H, Arita T, Kataoka S, Shibamoto J, Takabatake K, Takaki W, Shimizu H, Yamamoto Y, Morimura R, Komatsu S, Shiozaki A, Ikoma H, Otsuji E. miR‑4730 suppresses the progression of liver cancer by targeting the high mobility group A1 pathway. Int J Mol Med 2022; 49:83. [PMID: 35485281 PMCID: PMC9106373 DOI: 10.3892/ijmm.2022.5139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
As liver cancer (LC) is the sixth most commonly diagnosed malignancy, it is necessary to elucidate the molecular mechanisms responsible for LC progression. MicroRNAs (miRNAs/miRs) play crucial roles in tumor progression by regulating target gene expression. The present study assessed miRNA-4730 expression and function in LC. The effects of miR-4730 overexpression were examined in LC cell lines, and the target genes of miR-4730 were evaluated using microarray analysis and TargetScan data. In addition, the association between miR-4730 expression in tissue samples and the prognosis of 70 patients with LC was evaluated. miR-4730 expression was suppressed in LC tissues and cell lines. miR-4730 overexpression suppressed cell proliferation and cell cycle progression and promoted apoptosis. High mobility group A1 (HMGA1) was revealed as the direct target of miR-4730 using luciferase reporter assay, and the inhibition of downstream integrin-linked kinase (ILK) expression and Akt or glycogen synthase kinase 3β (GSK3β) phosphorylation was confirmed. The lower expression of miR-4730 in tissue samples was significantly associated with a worse recurrence-free survival of patients with LC. On the whole, miR-4730 suppressed tumor progression by directly targeting HMGA1 and inhibiting the ILK/Akt/GSK3β pathway. miR-4730 thus has potential for use as a prognostic marker and may prove to be a therapeutic target for miRNA-based therapies.
Collapse
Affiliation(s)
- Hirotaka Furuke
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Satoshi Kataoka
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Jun Shibamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Kazuya Takabatake
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Wataru Takaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| |
Collapse
|