1
|
Driver MD, Onck PR. Selective phase separation of transcription factors is driven by orthogonal molecular grammar. Nat Commun 2025; 16:3087. [PMID: 40164612 PMCID: PMC11958648 DOI: 10.1038/s41467-025-58445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
Protein production is critically dependent on gene transcription rates, which are regulated by RNA polymerase and a large collection of different transcription factors (TFs). How these transcription factors selectively address different genes is only partially known. Recent discoveries show that the differential condensation of separate TF families through phase separation may contribute to selectivity. Here we address this by conducting phase separation studies on six TFs from three different TF families with residue-scale coarse-grained molecular dynamics simulations. Our exploration of ternary TF phase diagrams reveals four dominant sticker motifs and two orthogonal driving forces that dictate the resultant condensate morphology, pointing to sequence-dependent orthogonal molecular grammar as a generic molecular mechanism that drives selective transcriptional condensation in gene expression.
Collapse
Affiliation(s)
- Mark D Driver
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9746AG, Groningen, Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9746AG, Groningen, Netherlands.
| |
Collapse
|
2
|
Mabe NW, Perry JA, Malone CF, Stegmaier K. Pharmacological targeting of the cancer epigenome. NATURE CANCER 2024; 5:844-865. [PMID: 38937652 PMCID: PMC11936478 DOI: 10.1038/s43018-024-00777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.
Collapse
Affiliation(s)
- Nathaniel W Mabe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer A Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Clare F Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Chen P, Mishra S, Prabha H, Sengupta S, Levy DL. Nuclear growth and import can be uncoupled. Mol Biol Cell 2024; 35:ar1. [PMID: 37903226 PMCID: PMC10881164 DOI: 10.1091/mbc.e23-04-0138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
What drives nuclear growth? Studying nuclei assembled in Xenopus egg extract and focusing on importin α/β-mediated nuclear import, we show that, while import is required for nuclear growth, nuclear growth and import can be uncoupled when chromatin structure is manipulated. Nuclei treated with micrococcal nuclease to fragment DNA grew slowly despite exhibiting little to no change in import rates. Nuclei assembled around axolotl chromatin with 20-fold more DNA than Xenopus grew larger but imported more slowly. Treating nuclei with reagents known to alter histone methylation or acetylation caused nuclei to grow less while still importing to a similar extent or to grow larger without significantly increasing import. Nuclear growth but not import was increased in live sea urchin embryos treated with the DNA methylator N-nitrosodimethylamine. These data suggest that nuclear import is not the primary driving force for nuclear growth. Instead, we observed that nuclear blebs expanded preferentially at sites of high chromatin density and lamin addition, whereas small Benzonase-treated nuclei lacking DNA exhibited reduced lamin incorporation into the nuclear envelope. In summary, we report experimental conditions where nuclear import is not sufficient to drive nuclear growth, hypothesizing that this uncoupling is a result of altered chromatin structure.
Collapse
Affiliation(s)
- Pan Chen
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Haritha Prabha
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
4
|
Parra AS, Johnston CA. Phase Separation as a Driver of Stem Cell Organization and Function during Development. J Dev Biol 2023; 11:45. [PMID: 38132713 PMCID: PMC10743522 DOI: 10.3390/jdb11040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.
Collapse
|
5
|
Yavuz S, Kabbech H, van Staalduinen J, Linder S, van Cappellen W, Nigg A, Abraham T, Slotman J, Quevedo M, Poot R, Zwart W, van Royen M, Grosveld F, Smal I, Houtsmuller A. Compartmentalization of androgen receptors at endogenous genes in living cells. Nucleic Acids Res 2023; 51:10992-11009. [PMID: 37791849 PMCID: PMC10639085 DOI: 10.1093/nar/gkad803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
A wide range of nuclear proteins are involved in the spatio-temporal organization of the genome through diverse biological processes such as gene transcription and DNA replication. Upon stimulation by testosterone and translocation to the nucleus, multiple androgen receptors (ARs) accumulate in microscopically discernable foci which are irregularly distributed in the nucleus. Here, we investigated the formation and physical nature of these foci, by combining novel fluorescent labeling techniques to visualize a defined chromatin locus of AR-regulated genes-PTPRN2 or BANP-simultaneously with either AR foci or individual AR molecules. Quantitative colocalization analysis showed evidence of AR foci formation induced by R1881 at both PTPRN2 and BANP loci. Furthermore, single-particle tracking (SPT) revealed three distinct subdiffusive fractional Brownian motion (fBm) states: immobilized ARs were observed near the labeled genes likely as a consequence of DNA-binding, while the intermediate confined state showed a similar spatial behavior but with larger displacements, suggesting compartmentalization by liquid-liquid phase separation (LLPS), while freely mobile ARs were diffusing in the nuclear environment. All together, we show for the first time in living cells the presence of AR-regulated genes in AR foci.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hélène Kabbech
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jente van Staalduinen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Simon Linder
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wiggert A van Cappellen
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex L Nigg
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tsion E Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Johan A Slotman
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marti Quevedo
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wilbert Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank G Grosveld
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Adriaan B Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Chen P, Mishra S, Levy DL. Nuclear growth and import can be uncoupled. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537556. [PMID: 37131802 PMCID: PMC10153267 DOI: 10.1101/2023.04.19.537556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
What drives nuclear growth? Studying nuclei assembled in Xenopus egg extract and focusing on importin α/β-mediated nuclear import, we show that, while nuclear growth depends on nuclear import, nuclear growth and import can be uncoupled. Nuclei containing fragmented DNA grew slowly despite exhibiting normal import rates, suggesting nuclear import itself is insufficient to drive nuclear growth. Nuclei containing more DNA grew larger but imported more slowly. Altering chromatin modifications caused nuclei to grow less while still importing to the same extent or to grow larger without increasing nuclear import. Increasing heterochromatin in vivo in sea urchin embryos increased nuclear growth but not import. These data suggest that nuclear import is not the primary driving force for nuclear growth. Instead, live imaging showed that nuclear growth preferentially occurred at sites of high chromatin density and lamin addition, whereas small nuclei lacking DNA exhibited less lamin incorporation. Our hypothesized model is that lamin incorporation and nuclear growth are driven by chromatin mechanical properties, which depend on and can be tuned by nuclear import.
Collapse
Affiliation(s)
- Pan Chen
- Department of Biochemistry and Molecular Biology and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
7
|
Boeynaems S, Chong S, Gsponer J, Holt L, Milovanovic D, Mitrea DM, Mueller-Cajar O, Portz B, Reilly JF, Reinkemeier CD, Sabari BR, Sanulli S, Shorter J, Sontag E, Strader L, Stachowiak J, Weber SC, White M, Zhang H, Zweckstetter M, Elbaum-Garfinkle S, Kriwacki R. Phase Separation in Biology and Disease; Current Perspectives and Open Questions. J Mol Biol 2023; 435:167971. [PMID: 36690068 PMCID: PMC9970028 DOI: 10.1016/j.jmb.2023.167971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1-3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4-7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ∼25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Therapeutic Innovation Center (THINC), Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA and Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jörg Gsponer
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Liam Holt
- New York University School of Medicine, Institute for Systems Genetics, New York, NY 10016
| | - Drago Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | | | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | - Benjamin R. Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - Serena Sanulli
- Department of Genetics, Stanford University, Palo Alto, CA 94304
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Sontag
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC 27708 USA
| | - Jeanne Stachowiak
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | | | | | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Shana Elbaum-Garfinkle
- Department of Biochemistry, The Graduate Center of the City University of New York, New York, NY and Structural Biology Initiative, Advanced Science Research Center, City University of New York, New York, NY
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee and Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee
| |
Collapse
|
8
|
Lin D, Xu W, Hong P, Wu C, Zhang Z, Zhang S, Xing L, Yang B, Zhou W, Xiao Q, Wang J, Wang C, He Y, Chen X, Cao X, Man J, Reheman A, Wu X, Hao X, Hu Z, Chen C, Cao Z, Yin R, Fu ZF, Zhou R, Teng Z, Li G, Cao G. Decoding the spatial chromatin organization and dynamic epigenetic landscapes of macrophage cells during differentiation and immune activation. Nat Commun 2022; 13:5857. [PMID: 36195603 PMCID: PMC9532393 DOI: 10.1038/s41467-022-33558-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Immunocytes dynamically reprogram their gene expression profiles during differentiation and immunoresponse. However, the underlying mechanism remains elusive. Here, we develop a single-cell Hi-C method and systematically delineate the 3D genome and dynamic epigenetic atlas of macrophages during these processes. We propose "degree of disorder" to measure genome organizational patterns inside topologically-associated domains, which is correlated with the chromatin epigenetic states, gene expression, and chromatin structure variability in individual cells. Furthermore, we identify that NF-κB initiates systematic chromatin conformation reorganization upon Mycobacterium tuberculosis infection. The integrated Hi-C, eQTL, and GWAS analysis depicts the atlas of the long-range target genes of mycobacterial disease susceptible loci. Among these, the SNP rs1873613 is located in the anchor of a dynamic chromatin loop with LRRK2, whose inhibitor AdoCbl could be an anti-tuberculosis drug candidate. Our study provides comprehensive resources for the 3D genome structure of immunocytes and sheds insights into the order of genome organization and the coordinated gene transcription during immunoresponse.
Collapse
Affiliation(s)
- Da Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ping Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Chengchao Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhihui Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siheng Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingyu Xing
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qin Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Jinyue Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Cong Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yu He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiangwei Man
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Aikebaier Reheman
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Xiaofeng Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xingjie Hao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, China
| | - Zimeng Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China
- College of Animal Sciences, Yangtze River University, Jingzhou, China
| | - Rong Yin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhen F Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Rong Zhou
- Dapartment of Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhaowei Teng
- The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, Huazhong Agricultural University, Wuhan, China.
- College of Informatics, Huazhong Agricultural University, Wuhan, China.
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- College of Bio-Medicine and Health, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
9
|
Yamamoto T, Yamazaki T, Hirose T. Triblock copolymer micelle model of spherical paraspeckles. Front Mol Biosci 2022; 9:925058. [PMID: 36072433 PMCID: PMC9441768 DOI: 10.3389/fmolb.2022.925058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Paraspeckles are nuclear bodies scaffolded by RNP complexes of NEAT1_2 RNA transcripts and multiple RNA-binding proteins. The assembly of paraspeckles is coupled with the transcription of NEAT1_2. Paraspeckles form the core-shell structure, where the two terminal regions of NEAT1_2 RNP complexes compose the shell of the paraspeckle and the middle regions of these complexes compose the core. We here construct a theoretical model of paraspeckles by taking into account the transcription of NEAT1_2 in an extension of the theory of block copolymer micelles. This theory predicts that the core-shell structure of a paraspeckle is assembled by the association of the middle region of NEAT1_2 RNP complexes due to the multivalent interactions between RBPs bound to these regions and by the relative affinity of the terminal regions of the complexes to the nucleoplasm. The latter affinity results in the effective repulsive interactions between terminal regions of the RNA complexes and limits the number of complexes composing the paraspeckle. In the wild type, the repulsive interaction between the middle and terminal block dominates the thermal fluctuation. However, the thermal fluctuation can be significant in a mutant, where a part of the terminal regions of NEAT1_2 is deleted, and distributes the shortened terminal regions randomly between the shell and the core, consistent with our recent experiments. With the upregulated transcription, the shortened terminal regions of NEAT1_2 in a deletion mutant is localized to the core to decrease the repulsive interaction between the terminal regions, while the structure does not change with the upregulation in the wild type. The robustness of the structure of paraspeckles in the wild type results from the polymeric nature of NEAT1_2 complexes.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Japan
- *Correspondence: Tetsuya Yamamoto,
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| |
Collapse
|
10
|
Zhang M, Díaz-Celis C, Onoa B, Cañari-Chumpitaz C, Requejo KI, Liu J, Vien M, Nogales E, Ren G, Bustamante C. Molecular organization of the early stages of nucleosome phase separation visualized by cryo-electron tomography. Mol Cell 2022; 82:3000-3014.e9. [PMID: 35907400 DOI: 10.1016/j.molcel.2022.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022]
Abstract
It has been proposed that the intrinsic property of nucleosome arrays to undergo liquid-liquid phase separation (LLPS) in vitro is responsible for chromatin domain organization in vivo. However, understanding nucleosomal LLPS has been hindered by the challenge to characterize the structure of the resulting heterogeneous condensates. We used cryo-electron tomography and deep-learning-based 3D reconstruction/segmentation to determine the molecular organization of condensates at various stages of LLPS. We show that nucleosomal LLPS involves a two-step process: a spinodal decomposition process yielding irregular condensates, followed by their unfavorable conversion into more compact, spherical nuclei that grow into larger spherical aggregates through accretion of spinodal materials or by fusion with other spherical condensates. Histone H1 catalyzes more than 10-fold the spinodal-to-spherical conversion. We propose that this transition involves exposure of nucleosome hydrophobic surfaces causing modified inter-nucleosome interactions. These results suggest a physical mechanism by which chromatin may transition from interphase to metaphase structures.
Collapse
Affiliation(s)
- Meng Zhang
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - César Díaz-Celis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Bibiana Onoa
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | | | - Katherinne I Requejo
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Vien
- Department of Physics, University of California, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Carlos Bustamante
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, CA, USA; Department of Chemistry, University of California, Berkeley, CA, USA; Department of Physics, University of California, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Maccaroni K, La Torre M, Burla R, Saggio I. Phase Separation in the Nucleus and at the Nuclear Periphery during Post-Mitotic Nuclear Envelope Reformation. Cells 2022; 11:1749. [PMID: 35681444 PMCID: PMC9179440 DOI: 10.3390/cells11111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane-enclosed organelle compartmentalization is not the only way by which cell processes are spatially organized. Phase separation is emerging as a new driver in the organization of membrane-less compartments and biological processes. Liquid-liquid phase separation has been indicated as a new way to control the kinetics of molecular reactions and is based on weak multivalent interactions affecting the stoichiometry of the molecules involved. In the nucleus, liquid-liquid phase separation may represent an ancestral means of controlling genomic activity by forming discrete chromatin regions, regulating transcriptional activity, contributing to the assembly of DNA damage response foci, and controlling the organization of chromosomes. Liquid-liquid phase separation also contributes to chromatin function through its role in the reorganization of the nuclear periphery in the post-mitotic phase. Herein, we describe the basic principles regulating liquid-liquid phase separation, analyze examples of phase separation occurring in the nucleus, and dedicate attention to the implication of liquid-liquid phase separation in the reorganization of the nuclear periphery by the endosomal sorting complexes required for transport (ESCRT) machinery. Although some caution is warranted, current scientific knowledge allows for the hypothesis that many factors and processes in the cell are yet to be discovered which are functionally associated with phase separation.
Collapse
Affiliation(s)
- Klizia Maccaroni
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Mattia La Torre
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
| | - Romina Burla
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
| | - Isabella Saggio
- Department of Biology and Biotechnology, Sapienza University, 00185 Rome, Italy; (K.M.); (M.L.T.); (R.B.)
- CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
- Institute of Structural Biology, Nanyang Technological University, Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
12
|
Coordination of transcription, processing, and export of highly expressed RNAs by distinct biomolecular condensates. Emerg Top Life Sci 2021; 4:281-291. [PMID: 32338276 PMCID: PMC7733674 DOI: 10.1042/etls20190160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Genes under control of super-enhancers are expressed at extremely high levels and are frequently associated with nuclear speckles. Recent data suggest that the high concentration of unphosphorylated RNA polymerase II (Pol II) and Mediator recruited to super-enhancers create phase-separated condensates. Transcription initiates within or at the surface of these phase-separated droplets and the phosphorylation of Pol II, associated with transcription initiation and elongation, dissociates Pol II from these domains leading to engagement with nuclear speckles, which are enriched with RNA processing factors. The transitioning of Pol II from transcription initiation domains to RNA processing domains effectively co-ordinates transcription and processing of highly expressed RNAs which are then rapidly exported into the cytoplasm.
Collapse
|
13
|
Li W, Jiang H. Nuclear Protein Condensates and Their Properties in Regulation of Gene Expression. J Mol Biol 2021; 434:167151. [PMID: 34271007 DOI: 10.1016/j.jmb.2021.167151] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
Abstract
Our understanding of the spatiotemporal regulation of eukaryotic gene expression has recently been greatly stimulated by the findings that many of the regulators of chromatin, transcription, and RNA processing form biomolecular condensates often assembled through liquid-liquid phase separation. Increasing number of reports suggest that these condensates functionally regulate gene expression, largely by concentrating the relevant biomolecules in the liquid-like micro-compartments. However, it remains poorly understood how the physicochemical properties, especially the material properties, of the condensates regulate gene expression activity. In this review, we discuss current data on various nuclear condensates and their biophysical properties with the underlying molecular interactions, and how they may functionally impact gene expression at the level of chromatin organization and activities, transcription, and RNA processing.
Collapse
Affiliation(s)
- Wei Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
14
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
15
|
Razin SV, Gavrilov AA. Non-coding RNAs in chromatin folding and nuclear organization. Cell Mol Life Sci 2021; 78:5489-5504. [PMID: 34117518 PMCID: PMC11072467 DOI: 10.1007/s00018-021-03876-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
One of the most intriguing questions facing modern biology concerns how the genome directs the construction of cells, tissues, and whole organisms. It is tempting to suggest that the part of the genome that does not encode proteins contains architectural plans. We are still far from understanding how these plans work at the level of building tissues and the body as a whole. However, the results of recent studies demonstrate that at the cellular level, special non-coding RNAs serve as scaffolds for the construction of various intracellular structures. The term "architectural RNAs" was proposed to designate this subset of non-coding RNAs. In this review, we discuss the role of architectural RNAs in the construction of the cell nucleus and maintenance of the three-dimensional organization of the genome.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
- Faculty of Biology, M. V. Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
16
|
Scourzic L, Salataj E, Apostolou E. Deciphering the Complexity of 3D Chromatin Organization Driving Lymphopoiesis and Lymphoid Malignancies. Front Immunol 2021; 12:669881. [PMID: 34054841 PMCID: PMC8160312 DOI: 10.3389/fimmu.2021.669881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Proper lymphopoiesis and immune responses depend on the spatiotemporal control of multiple processes, including gene expression, DNA recombination and cell fate decisions. High-order 3D chromatin organization is increasingly appreciated as an important regulator of these processes and dysregulation of genomic architecture has been linked to various immune disorders, including lymphoid malignancies. In this review, we present the general principles of the 3D chromatin topology and its dynamic reorganization during various steps of B and T lymphocyte development and activation. We also discuss functional interconnections between architectural, epigenetic and transcriptional changes and introduce major key players of genomic organization in B/T lymphocytes. Finally, we present how alterations in architectural factors and/or 3D genome organization are linked to dysregulation of the lymphopoietic transcriptional program and ultimately to hematological malignancies.
Collapse
Affiliation(s)
| | | | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
17
|
Harrison RES, Weng K, Wang Y, Peng Q. Phase Separation and Histone Epigenetics in Genome Regulation. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2021; 25:100892. [PMID: 33519290 PMCID: PMC7845916 DOI: 10.1016/j.cossms.2020.100892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-liquid phase separation is increasingly recognized as a phenomenon that affects cell behavior. For example, phase separation of transcription factors and coactivators has been shown to drive efficient transcription. For many years, phase separation of intracellular components has been observed; however, only recently have researchers been able to garner functional significance from such events. Inspired from recent literature that describes phase separation of chromatin in a histone-dependent manner, we review the role and effect of phase separation and histone epigenetics in regulating the genome and discuss how these phenomena can be leveraged to control cell behavior.
Collapse
Affiliation(s)
- Reed E. S. Harrison
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400044, P. R. China
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qin Peng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Bitman-Lotan E, Orian A. Nuclear organization and regulation of the differentiated state. Cell Mol Life Sci 2021; 78:3141-3158. [PMID: 33507327 PMCID: PMC8038961 DOI: 10.1007/s00018-020-03731-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022]
Abstract
Regulation of the differentiated identity requires active and continued supervision. Inability to maintain the differentiated state is a hallmark of aging and aging-related disease. To maintain cellular identity, a network of nuclear regulators is devoted to silencing previous and non-relevant gene programs. This network involves transcription factors, epigenetic regulators, and the localization of silent genes to heterochromatin. Together, identity supervisors mold and maintain the unique nuclear environment of the differentiated cell. This review describes recent discoveries regarding mechanisms and regulators that supervise the differentiated identity and protect from de-differentiation, tumorigenesis, and attenuate forced somatic cell reprograming. The review focuses on mechanisms involved in H3K9me3-decorated heterochromatin and the importance of nuclear lamins in cell identity. We outline how the biophysical properties of these factors are involved in self-compartmentalization of heterochromatin and cell identity. Finally, we discuss the relevance of these regulators to aging and age-related disease.
Collapse
Affiliation(s)
- Eliya Bitman-Lotan
- Rappaport Research Institute and Faculty of Medicine, The Rappaport Faculty of Medicine Technion-IIT, Technion Integrative Cancer Center (TICC), Technion-Israel Institute of Technology, Bat-Galim, 3109610, Haifa, Israel
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, The Rappaport Faculty of Medicine Technion-IIT, Technion Integrative Cancer Center (TICC), Technion-Israel Institute of Technology, Bat-Galim, 3109610, Haifa, Israel.
| |
Collapse
|
19
|
Uversky VN. Recent Developments in the Field of Intrinsically Disordered Proteins: Intrinsic Disorder-Based Emergence in Cellular Biology in Light of the Physiological and Pathological Liquid-Liquid Phase Transitions. Annu Rev Biophys 2021; 50:135-156. [PMID: 33503380 DOI: 10.1146/annurev-biophys-062920-063704] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review deals with two important concepts-protein intrinsic disorder and proteinaceous membrane-less organelles (PMLOs). The past 20 years have seen an upsurge of scientific interest in these phenomena. However, neither are new discoveries made in this century, but instead are timely reincarnations of old ideas that were mostly ignored by the scientific community for a long time. Merging these concepts in the form of the intrinsic disorder-based biological liquid-liquid phase separation provides a basis for understanding the molecular mechanisms of PMLO biogenesis.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA; .,Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Pushchino 142290, Moscow Region, Russia
| |
Collapse
|
20
|
Laghmach R, Potoyan DA. Liquid-liquid phase separation driven compartmentalization of reactive nucleoplasm. Phys Biol 2021; 18:015001. [PMID: 33113512 PMCID: PMC8201646 DOI: 10.1088/1478-3975/abc5ad] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nucleus of eukaryotic cells harbors active and out of equilibrium environments conducive to diverse gene regulatory processes. On a molecular scale, gene regulatory processes take place within hierarchically compartmentalized sub-nuclear bodies. While the impact of nuclear structure on gene regulation is widely appreciated, it has remained much less clear whether and how gene regulation is impacting nuclear order itself. Recently, the liquid-liquid phase separation emerged as a fundamental mechanism driving the formation of biomolecular condensates, including membrane-less organelles, chromatin territories, and transcriptional domains. The transience and environmental sensitivity of biomolecular condensation are strongly suggestive of kinetic gene-regulatory control of phase separation. To better understand kinetic aspects controlling biomolecular phase-separation, we have constructed a minimalist model of the reactive nucleoplasm. The model is based on the Cahn-Hilliard formulation of ternary protein-RNA-nucleoplasm components coupled to non-equilibrium and spatially dependent gene expression. We find a broad range of kinetic regimes through an extensive set of simulations where the interplay of phase separation and reactive timescales can generate heterogeneous multi-modal gene expression patterns. Furthermore, the significance of this finding is that heterogeneity of gene expression is linked directly with the heterogeneity of length-scales in phase-separated condensates.
Collapse
Affiliation(s)
- Rabia Laghmach
- Department of Chemistry, Iowa State University, Ames, IA 50011, United States of America. Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, United States of America. Bioinformatics and Computational Biology program, Iowa State University, Ames, IA 50011, United States of America
| | | |
Collapse
|
21
|
Nakamura M, Gao Y, Dominguez AA, Qi LS. CRISPR technologies for precise epigenome editing. Nat Cell Biol 2021; 23:11-22. [PMID: 33420494 DOI: 10.1038/s41556-020-00620-7] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/30/2020] [Indexed: 01/29/2023]
Abstract
The epigenome involves a complex set of cellular processes governing genomic activity. Dissecting this complexity necessitates the development of tools capable of specifically manipulating these processes. The repurposing of prokaryotic CRISPR systems has allowed for the development of diverse technologies for epigenome engineering. Here, we review the state of currently achievable epigenetic manipulations along with corresponding applications. With future optimization, CRISPR-based epigenomic editing stands as a set of powerful tools for understanding and controlling biological function.
Collapse
Affiliation(s)
- Muneaki Nakamura
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yuchen Gao
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Cancer Biology Program, Stanford University, Stanford, CA, USA.,Mammoth Biosciences, South San Francisco, CA, USA
| | - Antonia A Dominguez
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Sana Biotechnology, South San Francisco, CA, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA. .,Stanford ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
22
|
Pelham-Webb B, Murphy D, Apostolou E. Dynamic 3D Chromatin Reorganization during Establishment and Maintenance of Pluripotency. Stem Cell Reports 2020; 15:1176-1195. [PMID: 33242398 PMCID: PMC7724465 DOI: 10.1016/j.stemcr.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Higher-order chromatin structure is tightly linked to gene expression and therefore cell identity. In recent years, the chromatin landscape of pluripotent stem cells has become better characterized, and unique features at various architectural levels have been revealed. However, the mechanisms that govern establishment and maintenance of these topological characteristics and the temporal and functional relationships with transcriptional or epigenetic features are still areas of intense study. Here, we will discuss progress and limitations of our current understanding regarding how the 3D chromatin topology of pluripotent stem cells is established during somatic cell reprogramming and maintained during cell division. We will also discuss evidence and theories about the driving forces of topological reorganization and the functional links with key features and properties of pluripotent stem cell identity.
Collapse
Affiliation(s)
- Bobbie Pelham-Webb
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10021, USA
| | - Dylan Murphy
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Effie Apostolou
- Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
23
|
Yan P, Lu JY, Niu J, Gao J, Zhang MQ, Yin Y, Shen X. LncRNA Platr22 promotes super-enhancer activity and stem cell pluripotency. J Mol Cell Biol 2020; 13:295-313. [PMID: 33049031 PMCID: PMC8339366 DOI: 10.1093/jmcb/mjaa056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Super-enhancers (SEs) comprise large clusters of enhancers, which are co-occupied by multiple lineage-specific and master transcription factors, and play pivotal roles in regulating gene expression and cell fate determination. However, it is still largely unknown whether and how SEs are regulated by the noncoding portion of the genome. Here, through genome-wide analysis, we found that long noncoding RNA (lncRNA) genes preferentially lie next to SEs. In mouse embryonic stem cells (mESCs), depletion of SE-associated lncRNA transcripts dysregulated the activity of their nearby SEs. Specifically, we revealed a critical regulatory role of the lncRNA gene Platr22 in modulating the activity of a nearby SE and the expression of the nearby pluripotency regulator ZFP281. Through these regulatory events, Platr22 contributes to pluripotency maintenance and proper differentiation of mESCs. Mechanistically, Platr22 transcripts coat chromatin near the SE region and interact with DDX5 and hnRNP-L. DDX5 further recruits p300 and other factors related to active transcription. We propose that these factors assemble into a transcription hub, thus promoting an open and active epigenetic chromatin state. Our study highlights an unanticipated role for a class of lncRNAs in epigenetically controlling the activity and vulnerability to perturbation of nearby SEs for cell fate determination.
Collapse
Affiliation(s)
- Pixi Yan
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - J Yuyang Lu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Niu
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Juntao Gao
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Michael Q Zhang
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Yafei Yin
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohua Shen
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Frank L, Rippe K. Repetitive RNAs as Regulators of Chromatin-Associated Subcompartment Formation by Phase Separation. J Mol Biol 2020; 432:4270-4286. [DOI: 10.1016/j.jmb.2020.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022]
|
25
|
Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200222. [PMID: 32742689 PMCID: PMC7353975 DOI: 10.1098/rsos.200222] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.
Collapse
|
26
|
Yamamoto T, Yamazaki T, Hirose T. Phase separation driven by production of architectural RNA transcripts. SOFT MATTER 2020; 16:4692-4698. [PMID: 32396591 DOI: 10.1039/c9sm02458a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We here use an extension of the Flory-Huggins theory to predict that phase separation is driven by the production of architectural RNA (arcRNA) at a DNA locus with a constant rate. The arcRNA molecules diffuse in the nucleoplasm and show attractive interactions via proteins that are bound to the arcRNA. Our theory predicts that when the Flory interaction parameter is larger than the value at the critical point, the volume fraction of arcRNA jumps between the two values corresponding to the volume fraction of the two coexisting phases at equilibrium at a distance from the DNA locus due to the local equilibrium condition. The distance defines the radius of the condensate that is assembled by the phase separation. When the interaction parameter is large, the volume of the condensates is proportional to the production rate of arcRNA and inversely proportional to the degradation rate of arcRNA. These results imply that most arcRNA molecules are degraded before they diffuse out from the condensates due to the strong segregation of arcRNA.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan.
| | | | | |
Collapse
|
27
|
Erdel F. Biophysical mechanisms of chromatin patterning. Curr Opin Genet Dev 2020; 61:62-68. [DOI: 10.1016/j.gde.2020.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023]
|
28
|
Guh CY, Hsieh YH, Chu HP. Functions and properties of nuclear lncRNAs-from systematically mapping the interactomes of lncRNAs. J Biomed Sci 2020; 27:44. [PMID: 32183863 PMCID: PMC7079490 DOI: 10.1186/s12929-020-00640-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Protein and DNA have been considered as the major components of chromatin. But beyond that, an increasing number of studies show that RNA occupies a large amount of chromatin and acts as a regulator of nuclear architecture. A significant fraction of long non-coding RNAs (lncRNAs) prefers to stay in the nucleus and cooperate with protein complexes to modulate epigenetic regulation, phase separation, compartment formation, and nuclear organization. An RNA strand also can invade into double-stranded DNA to form RNA:DNA hybrids (R-loops) in living cells, contributing to the regulation of gene expression and genomic instability. In this review, we discuss how nuclear lncRNAs orchestrate cellular processes through their interactions with proteins and DNA and summarize the recent genome-wide techniques to study the functions of lncRNAs by revealing their interactomes in vivo.
Collapse
Affiliation(s)
- Chia-Yu Guh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China
| | - Yu-Hung Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China
| | - Hsueh-Ping Chu
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan, Republic of China.
| |
Collapse
|