1
|
Czajewski I, Swain B, Xu J, McDowall L, Ferenbach AT, van Aalten DMF. Rescuable sleep and synaptogenesis phenotypes in a Drosophila model of O-GlcNAc transferase intellectual disability. eLife 2024; 13:e90376. [PMID: 39535175 PMCID: PMC11623933 DOI: 10.7554/elife.90376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.
Collapse
Affiliation(s)
- Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Bijayalaxmi Swain
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Jiawei Xu
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Laurin McDowall
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Andrew T Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| | - Daan MF van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of DundeeDundeeUnited Kingdom
- Section of Neurobiology and DANDRITE, Department of Molecular Biology and Genetics, Aarhus UniversityAarhusDenmark
| |
Collapse
|
2
|
Perez-Miller S, Gomez K, Khanna R. Peptide and Peptidomimetic Inhibitors Targeting the Interaction of Collapsin Response Mediator Protein 2 with the N-Type Calcium Channel for Pain Relief. ACS Pharmacol Transl Sci 2024; 7:1916-1936. [PMID: 39022365 PMCID: PMC11249630 DOI: 10.1021/acsptsci.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Ion channels serve pleiotropic functions. Often found in complexes, their activities and functions are sculpted by auxiliary proteins. We discovered that collapsin response mediator protein 2 (CRMP2) is a binding partner and regulator of the N-type voltage-gated calcium channel (CaV2.2), a genetically validated contributor to chronic pain. Herein, we trace the discovery of a new peptidomimetic modulator of this interaction, starting from the identification and development of CBD3, a CRMP2-derived CaV binding domain peptide. CBD3 uncouples CRMP2-CaV2.2 binding to decrease CaV2.2 surface localization and calcium currents. These changes occur at presynaptic sites of nociceptive neurons and indeed, CBD3 ameliorates chronic pain in preclinical models. In pursuit of a CBD3 peptidomimetic, we exploited a unique approach to identify a dipeptide with low conformational flexibility and high solvent accessibility that anchors binding to CaV2.2. From a pharmacophore screen, we obtained CBD3063, a small-molecule that recapitulated CBD3's activity, reversing nociceptive behaviors in rodents of both sexes without sensory, affective, or cognitive effects. By disrupting the CRMP2-CaV2.2 interaction, CBD3063 exerts these effects indirectly through modulating CaV2.2 trafficking, supporting CRMP2 as an auxiliary subunit of CaV2.2. The parent peptide CBD3 was also found by us and others to have neuroprotective properties at postsynaptic sites, through N-methyl-d-aspartate receptor and plasmalemmal Na+/Ca2+ exchanger 3, potentially acting as an auxiliary subunit for these pathways as well. Our new compound is poised to address several open questions regarding CRMP2's role in regulating the CaV2.2 pathways to treat pain with the potential added benefit of neuroprotection.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Kimberly Gomez
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
| | - Rajesh Khanna
- Department
of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, ARB R5-234, Gainesville, Florida 32610-0267, United States
- Pain
and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Murray M, Davidson L, Ferenbach AT, Lefeber D, van Aalten DMF. Neuroectoderm phenotypes in a human stem cell model of O-GlcNAc transferase associated with intellectual disability. Mol Genet Metab 2024; 142:108492. [PMID: 38759397 DOI: 10.1016/j.ymgme.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Pathogenic variants in the O-GlcNAc transferase gene (OGT) have been associated with a congenital disorder of glycosylation (OGT-CDG), presenting with intellectual disability which may be of neuroectodermal origin. To test the hypothesis that pathology is linked to defects in differentiation during early embryogenesis, we developed an OGT-CDG induced pluripotent stem cell line together with isogenic control generated by CRISPR/Cas9 gene-editing. Although the OGT-CDG variant leads to a significant decrease in OGT and O-GlcNAcase protein levels, there were no changes in differentiation potential or stemness. However, differentiation into ectoderm resulted in significant differences in O-GlcNAc homeostasis. Further differentiation to neuronal stem cells revealed differences in morphology between patient and control lines, accompanied by disruption of the O-GlcNAc pathway. This suggests a critical role for O-GlcNAcylation in early neuroectoderm architecture, with robust compensatory mechanisms in the earliest stages of stem cell differentiation.
Collapse
Affiliation(s)
- Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lindsay Davidson
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Andrew T Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark
| | - Dirk Lefeber
- Department of Neurology, Department of Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, NL, the Netherlands
| | - Daan M F van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, DK, Denmark.
| |
Collapse
|
4
|
Kim DY, Park J, Han IO. Hexosamine biosynthetic pathway and O-GlcNAc cycling of glucose metabolism in brain function and disease. Am J Physiol Cell Physiol 2023; 325:C981-C998. [PMID: 37602414 DOI: 10.1152/ajpcell.00191.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Impaired brain glucose metabolism is considered a hallmark of brain dysfunction and neurodegeneration. Disruption of the hexosamine biosynthetic pathway (HBP) and subsequent O-linked N-acetylglucosamine (O-GlcNAc) cycling has been identified as an emerging link between altered glucose metabolism and defects in the brain. Myriads of cytosolic and nuclear proteins in the nervous system are modified at serine or threonine residues with a single N-acetylglucosamine (O-GlcNAc) molecule by O-GlcNAc transferase (OGT), which can be removed by β-N-acetylglucosaminidase (O-GlcNAcase, OGA). Homeostatic regulation of O-GlcNAc cycling is important for the maintenance of normal brain activity. Although significant evidence linking dysregulated HBP metabolism and aberrant O-GlcNAc cycling to induction or progression of neuronal diseases has been obtained, the issue of whether altered O-GlcNAcylation is causal in brain pathogenesis remains uncertain. Elucidation of the specific functions and regulatory mechanisms of individual O-GlcNAcylated neuronal proteins in both normal and diseased states may facilitate the identification of novel therapeutic targets for various neuronal disorders. The information presented in this review highlights the importance of HBP/O-GlcNAcylation in the neuronal system and summarizes the roles and potential mechanisms of O-GlcNAcylated neuronal proteins in maintaining normal brain function and initiation and progression of neurological diseases.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
5
|
Zou L, Zhang D, Ha CM, Wende AR, Chatham JC. Best practices in assessing cardiac protein O-GlcNAcylation by immunoblot. Am J Physiol Heart Circ Physiol 2023; 325:H601-H616. [PMID: 37539459 PMCID: PMC10642998 DOI: 10.1152/ajpheart.00104.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The modification of serine and threonine amino acids of proteins by O-linked N-acetylglucosamine (O-GlcNAc) regulates the activity, stability, function, and subcellular localization of proteins. Dysregulation of O-GlcNAc homeostasis is well established as a hallmark of various cardiac diseases, including cardiac hypertrophy, heart failure, complications associated with diabetes, and responses to acute injuries such as oxidative stress and ischemia-reperfusion. Given the limited availability of site-specific O-GlcNAc antibodies, studies of changes in O-GlcNAcylation in the heart frequently use pan-O-GlcNAc antibodies for semiquantitative evaluation of overall O-GlcNAc levels. However, there is a high degree of variability in many published cardiac O-GlcNAc blots. For example, many blots often have regions that lack O-GlcNAc positive staining of proteins either below 50 or above 100 kDa. In some O-GlcNAc blots, only a few protein bands are detected, while in others, intense bands around 75 kDa dominate the gel due to nonspecific IgM band staining, making it difficult to visualize less intense bands. Therefore, the goal of this study was to develop a modifiable protocol that optimizes O-GlcNAc positive banding of proteins in cardiac tissue extracts. We showed that O-GlcNAc blots using CTD110.6 antibody of proteins ranging from <30 to ∼450 kDa could be obtained while also limiting nonspecific staining. We also show that some myofilament proteins are recognized by the CTD110.6 antibody. Therefore, by protocol optimization using the widely available CTD110.6 antibody, we found that it is possible to obtain pan-O-GlcNAc blots of cardiac tissue, which minimizes common limitations associated with this technique.NEW & NOTEWORTHY The post-translational modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is recognized as mediating cardiac pathophysiology. However, there is considerable variability in the quality of O-GlcNAc immunoblots used to evaluate changes in cardiac O-GlcNAc levels. Here we show that with relatively minor changes to a commonly used protocol it is possible to minimize the intensity of nonspecific bands while also reproducibly generating O-GlcNAc immunoblots covering a range of molecular weights from <30 to ∼450 kDa.
Collapse
Affiliation(s)
- Luyun Zou
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Dingguo Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Chae-Myeong Ha
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
6
|
Yu E, Zhang E, Lv X, Yan L, Lin Z, Siaw-Debrah F, Zhang Y, Yang S, Ruan L, Zhuge Q, Ni H. LDC7559 Exerts Neuroprotective Effects by Inhibiting GSDMD-dependent Pyroptosis of Microglia in Mice with Traumatic Brain Injury. J Neurotrauma 2022; 40:742-757. [PMID: 35920115 DOI: 10.1089/neu.2021.0318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pyroptosis is considered one of a critical factor in the recovery of neurological function following traumatic brain injury. Brain injury activates a molecular signaling cascade associated with pyroptosis and inflammation, including NLRP3, inflammatory cytokines, caspase-1, gasdermin D (GSDMD), and other pyroptosis-related proteins. In this study, we explored the neuroprotective effects of LDC7559, a GSDMD inhibitor. Briefly, LDC7559, siRNA-GSDMD (si-GSDMD), or equal solvent was administrated to mice with a lipopolysaccharide + nigericin (LPS + Nig) model in vitro or with controlled cortical impact brain injury. The findings revealed that inflammation and pyroptosis levels were decreased by LDC7559 or si-GSDMD treatment both in vitro and in vivo. Immunofluorescence staining, brain water content, hematoxylin and eosin staining, and behavioral investigations suggested that LDC7559 or si-GSDMD inhibited microglial proliferation, ameliorated cerebral edema, reduced brain tissue loss, and promoted brain function recovery. Taken together, LDC7559 may inhibit pyroptosis and reduce inflammation by inhibiting GSDMD, thereby promoting the recovery of neurological function.
Collapse
Affiliation(s)
- Enxing Yu
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,Ningbo City First Hospital, Department of Plastic and Reconstructive Surgery, Ningbo, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery,, Wenzhou, Zhejiang, China;
| | - Erjia Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China;
| | - Xinhuang Lv
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China;
| | - Lin Yan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Zhongxiao Lin
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Felix Siaw-Debrah
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,Korle Bu Teaching Hospital, Department of Neurosurgery, Korlebu teaching hospital, Accra, Greater Accra, Ghana;
| | - Ying Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Su Yang
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Linhui Ruan
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Qichuan Zhuge
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| | - Haoqi Ni
- The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Wenzhou, Zhejiang, China.,The First Affiliated Hospital of Wenzhou Medical University, Department of Neurosurgery, Wenzhou, Zhejiang, China;
| |
Collapse
|
7
|
Fenckova M, Muha V, Mariappa D, Catinozzi M, Czajewski I, Blok LER, Ferenbach AT, Storkebaum E, Schenck A, van Aalten DMF. Intellectual disability-associated disruption of O-GlcNAc cycling impairs habituation learning in Drosophila. PLoS Genet 2022; 18:e1010159. [PMID: 35500025 PMCID: PMC9140282 DOI: 10.1371/journal.pgen.1010159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/27/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
O-GlcNAcylation is a reversible co-/post-translational modification involved in a multitude of cellular processes. The addition and removal of the O-GlcNAc modification is controlled by two conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase (OGA). Mutations in OGT have recently been discovered to cause a novel Congenital Disorder of Glycosylation (OGT-CDG) that is characterized by intellectual disability. The mechanisms by which OGT-CDG mutations affect cognition remain unclear. We manipulated O-GlcNAc transferase and O-GlcNAc hydrolase activity in Drosophila and demonstrate an important role of O-GlcNAcylation in habituation learning and synaptic development at the larval neuromuscular junction. Introduction of patient-specific missense mutations into Drosophila O-GlcNAc transferase using CRISPR/Cas9 gene editing leads to deficits in locomotor function and habituation learning. The habituation deficit can be corrected by blocking O-GlcNAc hydrolysis, indicating that OGT-CDG mutations affect cognition-relevant habituation via reduced protein O-GlcNAcylation. This study establishes a critical role for O-GlcNAc cycling and disrupted O-GlcNAc transferase activity in cognitive dysfunction, and suggests that blocking O-GlcNAc hydrolysis is a potential strategy to treat OGT-CDG.
Collapse
Affiliation(s)
- Michaela Fenckova
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Villo Muha
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Daniel Mariappa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Ignacy Czajewski
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Laura E. R. Blok
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andrew T. Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daan M. F. van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
8
|
Fahie K, Narayanan B, Zahra F, Reeves R, Fernandes SM, Hart GW, Zachara NE. Detection and Analysis of Proteins Modified by O-Linked N-Acetylglucosamine. Curr Protoc 2021; 1:e129. [PMID: 34004049 DOI: 10.1002/cpz1.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
O-GlcNAc is a common post-translational modification of nuclear, mitochondrial, and cytoplasmic proteins that regulates normal physiology and the cell stress response. Dysregulation of O-GlcNAc cycling is implicated in the etiology of type II diabetes, heart failure, hypertension, and Alzheimer's disease, as well as cardioprotection. These protocols cover simple and comprehensive techniques for detecting proteins modified by O-GlcNAc and studying the enzymes that add or remove O-GlcNAc. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Increasing the stoichiometry of O-GlcNAc on proteins before analysis Basic Protocol 2: Detection of proteins modified by O-GlcNAc using antibodies Basic Protocol 3: Detection of proteins modified by O-GlcNAc using the lectin sWGA Support Protocol 1: Control for O-linked glycosylation Basic Protocol 4: Detection and enrichment of proteins using WGA-agarose Support Protocol 2: Digestion of proteins with hexosaminidase Alternate Protocol: Detection of proteins modified by O-GlcNAc using galactosyltransferase Support Protocol 3: Autogalactosylation of galactosyltransferase Support Protocol 4: Assay of galactosyltransferase activity Basic Protocol 5: Characterization of labeled glycans by β-elimination and chromatography Basic Protocol 6: Detection of O-GlcNAc in 96-well plates Basic Protocol 7: Assay for OGT activity Support Protocol 5: Desalting of O-GlcNAc transferase Basic Protocol 8: Assay for O-GlcNAcase activity.
Collapse
Affiliation(s)
- Kamau Fahie
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Fiddia Zahra
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Russell Reeves
- The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Current address: Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Steve M Fernandes
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gerald W Hart
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Natasha E Zachara
- The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Zhang Q, Huang Q, Yao L, Liu W, Ruan J, Nong Y, Chen Y, Fan L, Wei J, Wang S, Sun L, Li H, Zhang Y, Zhang X, Liu F. Gestational Folic Acid Administration Alleviated Maternal Postpartum Emotional and Cognitive Dysfunction in Mice. Front Pharmacol 2021; 12:701009. [PMID: 34177603 PMCID: PMC8226135 DOI: 10.3389/fphar.2021.701009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022] Open
Abstract
Gestational folic acid (FA) supplementation has been widely recognized for its benefits in preventing offspring defects, but its effect on postpartum females has not yet been adequately assessed. The occurrence of emotional and cognitive dysfunction is common in postpartum women, and its treatment remains limited. Considering the promising results of FA in various psychiatric disorders both in human and redents, we tested the effect of gestational FA administration on postpartum psychiatric behavioral phenotypes and the implicated brain-related mechanisms in a murine model. FA was administered orally in both the hormone-stimulated-pregnancy (HSP) model and pregnant mice at doses of 1 and 5 mg/kg. Postpartum behavioral results showed that the disorders of cognitive performance, depressive, and anxiety-related behaviors were all alleviated in the 5 mg/kg FA group. However, the general development of their offspring remained unaffected. Immunofluorescence and immunoblot results revealed that FA pretreatment significantly activated the maternal hippocampal BDNF-related pathway. Morphological studies have confirmed that FA promotes hippocampal neurogenesis. Moreover, synaptic plasticity and synaptic transmission are enhanced. All of these hippocampal changes play critical roles in rescuing neuronal function and behaviors. Thus, our data suggest that gestational FA administration has a therapeutic effect that improves cognition and reduces depression and anxiety in a murine postpartum model. This may be developed as a preventive and adjuvant therapeutic option for pregnant women.
Collapse
Affiliation(s)
- Qianyu Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qianwen Huang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Li Yao
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Wenjuan Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jianxing Ruan
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yingqi Nong
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ye Chen
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Lin Fan
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jinyan Wei
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Songlu Wang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Li Sun
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Hao Li
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yan Zhang
- Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xiqian Zhang
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| | - Fenghua Liu
- Department of Reproductive Health and Infertility, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
10
|
Kim EJ. Advances in Strategies and Tools Available for Interrogation of Protein O-GlcNAcylation. Chembiochem 2021; 22:3010-3026. [PMID: 34101962 DOI: 10.1002/cbic.202100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Indexed: 11/08/2022]
Abstract
The attachment of a single O-linked β-N-acetylglucosamine (O-GlcNAc) to serine and threonine residues of numerous proteins in the nucleus, cytoplasm, and mitochondria is a reversible post-translational modification (PTM) and plays an important role as a regulator of various cellular processes in both healthy and disease states. Advances in strategies and tools that allow for the detection of dynamic O-GlcNAcylation on cellular proteins have helped to enhance our initial and ongoing understanding of its dynamic effects on cellular stimuli and given insights into its link to the pathogenesis of several chronic diseases. Furthermore, chemical genetic strategies and related tools have been successfully applied to a myriad of biological systems with a new level of spatiotemporal and molecular precision. These strategies have started to be used in studying and controlling O-GlcNAcylation both in vivo and in vitro. In this minireview, overviews of recent advances in molecular tools being applied to the detection and identification of O-GlcNAcylation on cellular proteins as well as on individual proteins are provided. In addition, chemical genetic strategies that have already been applied or are potentially usable in O-GlcNAc functional are also discussed.
Collapse
Affiliation(s)
- Eun Ju Kim
- Daegu University, Gyeongsan-Si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
11
|
Studies on CRMP2 SUMOylation-deficient transgenic mice identify sex-specific Nav1.7 regulation in the pathogenesis of chronic neuropathic pain. Pain 2021; 161:2629-2651. [PMID: 32569093 DOI: 10.1097/j.pain.0000000000001951] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sodium channel Nav1.7 is a master regulator of nociceptive input into the central nervous system. Mutations in this channel can result in painful conditions and produce insensitivity to pain. Despite being recognized as a "poster child" for nociceptive signaling and human pain, targeting Nav1.7 has not yet produced a clinical drug. Recent work has illuminated the Nav1.7 interactome, offering insights into the regulation of these channels and identifying potentially new druggable targets. Among the regulators of Nav1.7 is the cytosolic collapsin response mediator protein 2 (CRMP2). CRMP2, modified at lysine 374 (K374) by addition of a small ubiquitin-like modifier (SUMO), bound Nav1.7 to regulate its membrane localization and function. Corollary to this, preventing CRMP2 SUMOylation was sufficient to reverse mechanical allodynia in rats with neuropathic pain. Notably, loss of CRMP2 SUMOylation did not compromise other innate functions of CRMP2. To further elucidate the in vivo role of CRMP2 SUMOylation in pain, we generated CRMP2 K374A knock-in (CRMP2) mice in which Lys374 was replaced with Ala. CRMP2 mice had reduced Nav1.7 membrane localization and function in female, but not male, sensory neurons. Behavioral appraisal of CRMP2 mice demonstrated no changes in depressive or repetitive, compulsive-like behaviors and a decrease in noxious thermal sensitivity. No changes were observed in CRMP2 mice to inflammatory, acute, or visceral pain. By contrast, in a neuropathic model, CRMP2 mice failed to develop persistent mechanical allodynia. Our study suggests that CRMP2 SUMOylation-dependent control of peripheral Nav1.7 is a hallmark of chronic, but not physiological, neuropathic pain.
Collapse
|
12
|
Yang ZH, Zhang GM, Chen CY, He J, Chen CJ. Prenatal exposure to koumine results in cognitive deficits and increased anxiety-like behavior in mice offspring. J Chem Neuroanat 2020; 111:101888. [PMID: 33212191 DOI: 10.1016/j.jchemneu.2020.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 11/20/2022]
Abstract
Koumine (KM) is a major alkaloid monomer in the traditional Chinese medicine herb Gelsemium elegans Benth that has exhibited therapeutic potential in clinical applications. However, the pharmacological toxicological mechanism of this drug has not been fully explored. The purpose of this study was to evaluate the impacts of KM administration at a therapeutic dose in offspring. On gestational day 0, mice were injected with KM once daily for 4 consecutive days. Male and female offspring were subjected to behavioral tests and neuropathological analyses from postnatal day 60. Prenatal KM exposure resulted in cognitive and memory impairments in the Morris water maze, Y-maze test, and novel object recognition test. The open field test and elevated plus maze test indicated that prenatal KM exposure induced anxiety-like behavior in offspring. Electrophysiological experiments demonstrated that KM exposure inhibited hippocampal long-term potentiation. Immunostaining for neurogenesis markers DCX and BrdU demonstrated that KM suppressed adult neurogenesis in the subgranular zone of the dentate gyrus. In addition, prenatal KM exposure induced a significant reduction in dendritic spine density in hippocampal neurons. Synaptic formation-related proteins were decreased in the KM group based on western blot. No sex differences in the effects of KM were observed. Collectively, our results indicate that prenatal KA exposure has detrimental neural effects on offspring. This study provides a preliminary preclinical toxicological assessment of the safety of KM use during pregnancy.
Collapse
Affiliation(s)
- Zhen-Hua Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Jiangmen Wuyi Hospital of TCM, Jiangmen 529000, China
| | - Gui-Mei Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Heshan Hospital of TCM, Heshan 529700, China
| | | | - Ji He
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou 543002, China
| | - Chao-Jie Chen
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
13
|
Gorelik A, van Aalten DMF. Tools for functional dissection of site-specific O-GlcNAcylation. RSC Chem Biol 2020; 1:98-109. [PMID: 34458751 PMCID: PMC8386111 DOI: 10.1039/d0cb00052c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Protein O-GlcNAcylation is an abundant post-translational modification of intracellular proteins with the monosaccharide N-acetylglucosamine covalently tethered to serines and threonines. Modification of proteins with O-GlcNAc is required for metazoan embryo development and maintains cellular homeostasis through effects on transcription, signalling and stress response. While disruption of O-GlcNAc homeostasis can have detrimental impact on cell physiology and cause various diseases, little is known about the functions of individual O-GlcNAc sites. Most of the sites are modified sub-stoichiometrically which is a major challenge to the dissection of O-GlcNAc function. Here, we discuss the application, advantages and limitations of the currently available tools and technologies utilised to dissect the function of O-GlcNAc on individual proteins and sites in vitro and in vivo. Additionally, we provide a perspective on future developments required to decipher the protein- and site-specific roles of this essential sugar modification.
Collapse
Affiliation(s)
- Andrii Gorelik
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
| | - Daan M F van Aalten
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee Dundee UK
- Institute for Molecular Precision Medicine, Xiangya Hospital, Central South University Changsha China
| |
Collapse
|
14
|
Hou ST. The regulatory and enzymatic functions of CRMPs in neuritogenesis, synaptic plasticity, and gene transcription. Neurochem Int 2020; 139:104795. [PMID: 32652266 DOI: 10.1016/j.neuint.2020.104795] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are ubiquitously expressed in neurons from worms to humans. A cardinal feature of CRMPs is to mediate growth cone collapse in response to Semaphorin-3A signaling through interactions with cytoskeletal proteins. These are critical regulatory roles that CRMPs play during neuritogenesis and neural network formation. Through post-translational modifications, such as phosphorylation, O-GlcNAcylation, SUMOylation, and proteolytic cleavage, CRMPs participate in synaptic plasticity by modulating NMDA receptors, L- and N-type voltage-gated calcium channels (VGCCs), thus affecting neurotransmitter release. CRMPs also possess histone deacetylase (HDAC) activity, which deacetylates histone H4 during neuronal death. Calcium-dependent proteolytic cleavage of CRMPs results in the truncation of CRMPs, producing a large 54 kD fragment (p54). Translocation of the p54 fragment into the nucleus leads to deacetylation of nuclear histone H4 and de-repression of transcription factor E2F1 expression. Increased expression of E2F1 elevates the expression of genes in cell cycle and death. These new and exciting studies lead to the realization that CRMPs are multifunctional proteins with both regulatory and enzymatic functions. Increasing numbers of studies associate these functions of CRMPs with the development of mental and neurological disorders, such as schizophrenia, Alzheimer's diseases, brain trauma, and stroke. This review focuses on new evidence showing the regulatory and enzymatic functions of CRMPs and highlights recent understandings of CRMPs' roles in neurological diseases.
Collapse
Affiliation(s)
- Sheng-Tao Hou
- Brain Research Centre and Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen, Guangdong Province, 518055, PR China; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|