1
|
Smirnov AV, Korablev AN, Serova IA, Yunusova AM, Muravyova AA, Valeev ES, Battulin NR. Studying concatenation of the Cas9-cleaved transgenes using barcodes. Vavilovskii Zhurnal Genet Selektsii 2025; 29:26-34. [PMID: 40144376 PMCID: PMC11933904 DOI: 10.18699/vjgb-25-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 03/28/2025] Open
Abstract
In pronuclear microinjection, the Cas9 endonuclease is employed to introduce in vivo DNA double-strand breaks at the genomic target locus or within the donor vector, thereby enhancing transgene integration. The manner by which Cas9 interacts with DNA repair factors during transgene end processing and integration is a topic of considerable interest and debate. In a previous study, we developed a barcode-based genetic system for the analysis of transgene recombination following pronuclear microinjection in mice. In this approach, the plasmid library is linearized with a restriction enzyme or a Cas9 RNP complex at the site between a pair of barcodes. A pool of barcoded molecules is injected into the pronucleus, resulting in the generation of multicopy concatemers. In the present report, we compared the effects of in vivo Cas9 cleavage (RNP+ experiment) and in vitro production of Cas9- linearized transgenes (RNP- experiment) on concatenation. In the RNP+ experiment, two transgenic single-copy embryos were identified. In the RNP- experiment, six positive embryos were identified, four of which exhibited lowcopy concatemers. Next-generation sequencing (NGS) analysis of the barcodes revealed that 53 % of the barcoded ends had switched their initial library pairs, indicating the involvement of the homologous recombination pathway. Out of the 20 transgene-transgene junctions examined, 11 exhibited no mutations and were presumably generated through re-ligation of Cas9-induced blunt ends. The majority of mutated junctions harbored asymmetrical deletions of 2-4 nucleotides, which were attributed to Cas9 end trimming. These findings suggest that Cas9-bound DNA may present obstacles to concatenation. Conversely, clean DNA ends were observed to be joined in a manner similar to restriction-digested ends, albeit with distinctive asymmetry. Future experiments utilizing in vivo CRISPR/ Cas cleavage will facilitate a deeper understanding of how CRISPR-endonucleases influence DNA repair processes.
Collapse
Affiliation(s)
- A V Smirnov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A N Korablev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I A Serova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A M Yunusova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - E S Valeev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N R Battulin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
2
|
Uchigashima M, Mikuni T. Single-cell synaptome mapping: its technical basis and applications in critical period plasticity research. Front Neural Circuits 2024; 18:1523614. [PMID: 39726910 PMCID: PMC11670323 DOI: 10.3389/fncir.2024.1523614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Our brain adapts to the environment by optimizing its function through experience-dependent cortical plasticity. This plasticity is transiently enhanced during a developmental stage, known as the "critical period," and subsequently maintained at lower levels throughout adulthood. Thus, understanding the mechanism underlying critical period plasticity is crucial for improving brain adaptability across the lifespan. Critical period plasticity relies on activity-dependent circuit remodeling through anatomical and functional changes at individual synapses. However, it remains challenging to identify the molecular signatures of synapses responsible for critical period plasticity and to understand how these plasticity-related synapses are spatiotemporally organized within a neuron. Recent advances in genetic tools and genome editing methodologies have enabled single-cell endogenous protein labeling in the brain, allowing for comprehensive molecular profiling of individual synapses within a neuron, namely "single-cell synaptome mapping." This promising approach can facilitate insights into the spatiotemporal organization of synapses that are sparse yet functionally important within single neurons. In this review, we introduce the basics of single-cell synaptome mapping and discuss its methodologies and applications to investigate the synaptic and cellular mechanisms underlying circuit remodeling during the critical period.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| | - Takayasu Mikuni
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
3
|
Liao H, Wu J, VanDusen NJ, Li Y, Zheng Y. CRISPR-Cas9-mediated homology-directed repair for precise gene editing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102344. [PMID: 39494147 PMCID: PMC11531618 DOI: 10.1016/j.omtn.2024.102344] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
CRISPR-Cas9-mediated homology-directed repair (HDR) is a versatile platform for creating precise site-specific DNA insertions, deletions, and substitutions. These precise edits are made possible through the use of exogenous donor templates that carry the desired sequence. CRISPR-Cas9-mediated HDR can be widely used to study protein functions, disease modeling, and gene therapy. However, HDR is limited by its low efficiency, especially in postmitotic cells. Here, we review CRISPR-Cas9-mediated HDR, with a focus on methodologies for boosting HDR efficiency, and applications of precise editing via HDR. First, we describe two common mechanisms of DNA repair, non-homologous end joining (NHEJ), and HDR, and discuss their impact on CRISPR-Cas9-mediated precise genome editing. Second, we discuss approaches for improving HDR efficiency through inhibition of the NHEJ pathway, activation of the HDR pathway, modification of donor templates, and delivery of Cas9/sgRNA reagents. Third, we summarize the applications of HDR for protein labeling in functional studies, disease modeling, and ex vivo and in vivo gene therapies. Finally, we discuss alternative precise editing platforms and their limitations, and describe potential avenues to improving CRISPR-Cas9-mediated HDR efficiency and fidelity in future research.
Collapse
Affiliation(s)
- Hongyu Liao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Jiahao Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Nathan J. VanDusen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| | - Yanjiang Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041 China
| |
Collapse
|
4
|
Matsuzaki S, Sakuma T, Yamamoto T. REMOVER-PITCh: microhomology-assisted long-range gene replacement with highly multiplexed CRISPR-Cas9. In Vitro Cell Dev Biol Anim 2024; 60:697-707. [PMID: 38334880 PMCID: PMC11297102 DOI: 10.1007/s11626-024-00850-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
A variety of CRISPR-Cas9-based gene editing technologies have been developed, including gene insertion and gene replacement, and applied to the study and treatment of diseases. While numerous studies have been conducted to improve the efficiency of gene insertion and to expand the system in various ways, there have been relatively few reports on gene replacement technology; therefore, further improvements are still needed in this context. Here, we developed the REMOVER-PITCh system to establish an efficient long-range gene replacement method and demonstrated its utility at two genomic loci in human cultured cells. REMOVER-PITCh depends on microhomology-assisted gene insertion technology called PITCh with highly multiplexed CRISPR-Cas9. First, we achieved gene replacement of about 20-kb GUSB locus using this system. Second, by applying the previously established knock-in-enhancing platform, the LoAD system, along with REMOVER-PITCh, we achieved the replacement of a longer gene region of about 200 kb at the ARSB locus. Our REMOVER-PITCh system will make it possible to remove and incorporate a variety of sequences from and into the genome, respectively, which will facilitate the generation of various disease and humanized models.
Collapse
Affiliation(s)
- Shu Matsuzaki
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Drug Discovery Laboratory, Wakunaga Pharmaceutical Co., Ltd., 1624 Shimokotachi, Koda-Cho, Akitakata-Shi, Hiroshima, 739-1195, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| |
Collapse
|
5
|
Williams JA, Paez PA. Improving cell and gene therapy safety and performance using next-generation Nanoplasmid vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:494-503. [PMID: 37346980 PMCID: PMC10280095 DOI: 10.1016/j.omtn.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The cell and gene therapy industry has employed the same plasmid technology for decades in vaccination, cell and gene therapy, and as a raw material in viral vector and RNA production. While canonical plasmids contain antibiotic resistance markers in bacterial backbones greater than 2,000 base pairs, smaller backbones increase expression level and durability and reduce the cell-transfection-associated toxicity and transgene silencing that can occur with canonical plasmids. Therefore, the small backbone and antibiotic-free selection method of Nanoplasmid vectors have proven to be a transformative replacement in a wide variety of applications, offering a greater safety profile and efficiency than traditional plasmids. This review provides an overview of the Nanoplasmid technology and highlights its specific benefits for various applications with examples from recent publications.
Collapse
Affiliation(s)
- James A. Williams
- Research & Development, Aldevron, 4055 41st Avenue S, Fargo, ND 58104, USA
| | - Patrick A. Paez
- Research & Development, Aldevron, 4055 41st Avenue S, Fargo, ND 58104, USA
| |
Collapse
|
6
|
Tran NT, Lebedin M, Danner E, Kühn R, Rajewsky K, Chu VT. Application of a Spacer-nick Gene-targeting Approach to Repair Disease-causing Mutations with Increased Safety. Bio Protoc 2023; 13:e4661. [PMID: 37113334 PMCID: PMC10127048 DOI: 10.21769/bioprotoc.4661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/08/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
The CRISPR/Cas9 system is a powerful tool for gene repair that holds great potential for gene therapy to cure monogenic diseases. Despite intensive improvement, the safety of this system remains a major clinical concern. In contrast to Cas9 nuclease, Cas9 nickases with a pair of short-distance (38-68 bp) PAM-out single-guide RNAs (sgRNAs) preserve gene repair efficiency while strongly reducing off-target effects. However, this approach still leads to efficient unwanted on-target mutations that may cause tumorigenesis or abnormal hematopoiesis. We establish a precise and safe spacer-nick gene repair approach that combines Cas9D10A nickase with a pair of PAM-out sgRNAs at a distance of 200-350 bp. In combination with adeno-associated virus (AAV) serotype 6 donor templates, this approach leads to efficient gene repair with minimal unintended on- and off-target mutations in human hematopoietic stem and progenitor cells (HSPCs). Here, we provide detailed protocols to use the spacer-nick approach for gene repair and to assess the safety of this system in human HSPCs. The spacer-nick approach enables efficient gene correction for repair of disease-causing mutations with increased safety and suitability for gene therapy. Graphical overview.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Immune Regulation and Cancer, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Mikhail Lebedin
- Immune Mechanisms and Human Antibodies, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Eric Danner
- Genome Engineering & Disease Models, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ralf Kühn
- Genome Engineering & Disease Models, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Van Trung Chu
- Immune Regulation and Cancer, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Genome Engineering & Disease Models, Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
7
|
Dębczyński M, Mojsak D, Minarowski Ł, Maciejewska M, Lisowski P, Mróz RM. Genome-engineering technologies for modeling and treatment of cystic fibrosis. Adv Med Sci 2023; 68:111-120. [PMID: 36917892 DOI: 10.1016/j.advms.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/29/2022] [Accepted: 02/26/2023] [Indexed: 03/14/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by defects in the CF transmembrane conductance regulator (CFTR) protein. Due to the genetic nature of the disease, interventions in the genome can target any underlying alterations and potentially provide permanent disease resolution. The current development of gene-editing tools, such as designer nuclease technology capable of genome correction, holds great promise for both CF and other genetic diseases. In recent years, Cas9-based technologies have enabled the generation of genetically defined human stem cell and disease models based on induced pluripotent stem cells (iPSC). In this article, we outline the potential and possibilities of using CRISPR/Cas9-based gene-editing technology in CF modeling.
Collapse
Affiliation(s)
- Michał Dębczyński
- II Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland.
| | - Damian Mojsak
- II Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Łukasz Minarowski
- II Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Monika Maciejewska
- II Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| | - Paweł Lisowski
- II Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland; Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Magdalenka, Poland; Department of Psychiatry, Charité - Universitätmedizin Berlin, Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Robert M Mróz
- II Department of Lung Diseases and Tuberculosis, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
8
|
Wefers B, Wurst W, Kühn R. Gene Editing in Mouse Zygotes Using the CRISPR/Cas9 System. Methods Mol Biol 2023; 2631:207-230. [PMID: 36995669 DOI: 10.1007/978-1-0716-2990-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Engineering of the mouse germline is a key technology in biomedical research for studying the function of genes in health and disease. Since the first knockout mouse was described in 1989, gene targeting was based on recombination of vector encoded sequences in mouse embryonic stem cell lines and their introduction into preimplantation embryos to obtain germline chimeric mice. This approach has been replaced in 2013 by the application of the RNA-guided CRISPR/Cas9 nuclease system, which is introduced into zygotes and directly creates targeted modifications in the mouse genome. Upon the introduction of Cas9 nuclease and guide RNAs into one-cell embryos, sequence-specific double-strand breaks are created that are highly recombinogenic and processed by DNA repair enzymes. Gene editing commonly refers to the diversity of DSB repair products that include imprecise deletions or precise sequence modifications copied from repair template molecules. Since gene editing can now be easily applied directly in mouse zygotes, it has rapidly become the standard procedure for generating genetically engineered mice. This article covers the design of guide RNAs, knockout and knockin alleles, options for donor delivery, preparation of reagents, microinjection or electroporation of zygotes, and the genotyping of pups derived from gene editing projects.
Collapse
Affiliation(s)
- Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany.
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
- Technische Universität München-Weihenstephan, Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Neuherberg, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
9
|
Droogers WJ, Willems J, MacGillavry HD, de Jong APH. Duplex Labeling and Manipulation of Neuronal Proteins Using Sequential CRISPR/Cas9 Gene Editing. eNeuro 2022; 9:ENEURO.0056-22.2022. [PMID: 35851300 PMCID: PMC9333357 DOI: 10.1523/eneuro.0056-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/21/2022] Open
Abstract
CRISPR/Cas9-mediated knock-in methods enable the labeling of individual endogenous proteins to faithfully determine their spatiotemporal distribution in cells. However, reliable multiplexing of knock-in events in neurons remains challenging because of cross talk between editing events. To overcome this, we developed conditional activation of knock-in expression (CAKE), allowing efficient, flexible, and accurate multiplex genome editing in rat neurons. To diminish cross talk, CAKE is based on sequential, recombinase-driven guide RNA (gRNA) expression to control the timing of genomic integration of each donor sequence. We show that CAKE is broadly applicable to co-label various endogenous proteins, including cytoskeletal proteins, synaptic scaffolds, ion channels and neurotransmitter receptor subunits. To take full advantage of CAKE, we resolved the nanoscale co-distribution of endogenous synaptic proteins using super-resolution microscopy, demonstrating that their co-organization depends on synapse size. Finally, we introduced inducible dimerization modules, providing acute control over synaptic receptor dynamics in living neurons. These experiments highlight the potential of CAKE to reveal new biological insight. Altogether, CAKE is a versatile method for multiplex protein labeling that enables the detection, localization, and manipulation of endogenous proteins in neurons.Significance StatementAccurate localization and manipulation of endogenous proteins is essential to unravel neuronal function. While labeling of individual proteins is achievable with existing gene editing techniques, methods to label multiple proteins in neurons are limiting. We introduce a new CRISPR/Cas9 strategy, CAKE, achieving faithful duplex protein labeling using sequential editing of genes. We use CAKE to visualize the co-localization of essential neuronal proteins, including cytoskeleton components, ion channels and synaptic scaffolds. Using super-resolution microscopy, we demonstrate that the co-organization of synaptic scaffolds and neurotransmitter receptors scales with synapse size. Finally, we acutely modulate the dynamics of synaptic receptors using labeling with inducible dimerization domains. Thus, CAKE mediates accurate duplex endogenous protein labeling and manipulation to address biological questions in neurons.
Collapse
Affiliation(s)
- Wouter J Droogers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jelmer Willems
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Arthur P H de Jong
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Tran NT, Danner E, Li X, Graf R, Lebedin M, de la Rosa K, Kühn R, Rajewsky K, Chu VT. Precise CRISPR-Cas-mediated gene repair with minimal off-target and unintended on-target mutations in human hematopoietic stem cells. SCIENCE ADVANCES 2022; 8:eabm9106. [PMID: 35658035 PMCID: PMC9166625 DOI: 10.1126/sciadv.abm9106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/15/2022] [Indexed: 05/10/2023]
Abstract
While CRISPR-Cas9 is key for the development of gene therapy, its potential off-target mutations are still a major concern. Here, we establish a "spacer-nick" gene correction approach that combines the Cas9D10A nickase with a pair of PAM-out sgRNAs at a distance of 200 to 350 bp. In combination with adeno-associated virus (AAV) serotype 6 template delivery, our approach led to efficient HDR in human hematopoietic stem and progenitor cells (HSPCs including long-term HSCs) and T cells, with minimal NHEJ-mediated on-target mutations. Using spacer-nick, we developed an approach to repair disease-causing mutations occurring in the HBB, ELANE, IL7R, and PRF1 genes. We achieved gene correction efficiencies of 20 to 50% with minimal NHEJ-mediated on-target mutations. On the basis of in-depth off-target assessment, frequent unintended genetic alterations induced by classical CRISPR-Cas9 were significantly reduced or absent in the HSPCs treated with spacer-nick. Thus, the spacer-nick gene correction approach provides improved safety and suitability for gene therapy.
Collapse
Affiliation(s)
- Ngoc Tung Tran
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Eric Danner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| | - Xun Li
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Robin Graf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Mikhail Lebedin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Mechanisms and Human Antibodies, Berlin, Germany
| | - Kathrin de la Rosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Mechanisms and Human Antibodies, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
| | - Van Trung Chu
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Genome Engineering & Disease Models, Berlin, Germany
| |
Collapse
|
11
|
Boutin J, Cappellen D, Rosier J, Amintas S, Dabernat S, Bedel A, Moreau-Gaudry F. ON-target Adverse Events of CRISPR-Cas9 Nuclease: More Chaotic than Expected. CRISPR J 2022; 5:19-30. [DOI: 10.1089/crispr.2021.0120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Julian Boutin
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - David Cappellen
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Tumor Biology and Tumor Bank Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Juliette Rosier
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
| | - Samuel Amintas
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Tumor Biology and Tumor Bank Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Sandrine Dabernat
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Aurélie Bedel
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Bordeaux University, Bordeaux, France
- INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France
- Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| |
Collapse
|
12
|
Smirnov A, Battulin N. Concatenation of Transgenic DNA: Random or Orchestrated? Genes (Basel) 2021; 12:genes12121969. [PMID: 34946918 PMCID: PMC8701086 DOI: 10.3390/genes12121969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/18/2022] Open
Abstract
Generation of transgenic organisms by pronuclear microinjection has become a routine procedure. However, while the process of DNA integration in the genome is well understood, we still do not know much about the recombination between transgene molecules that happens in the first moments after DNA injection. Most of the time, injected molecules are joined together in head-to-tail tandem repeats-the so-called concatemers. In this review, we focused on the possible concatenation mechanisms and how they could be studied with genetic reporters tracking individual copies in concatemers. We also discuss various features of concatemers, including palindromic junctions and repeat-induced gene silencing (RIGS). Finally, we speculate how cooperation of DNA repair pathways creates a multicopy concatenated insert.
Collapse
Affiliation(s)
- Alexander Smirnov
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman Battulin
- Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Institute of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
13
|
Čermák T. Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Res 2021; 30:353-379. [PMID: 34086167 DOI: 10.1007/s11248-021-00253-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Until recently, our ability to generate allelic diversity in plants was limited to introduction of variants from domesticated and wild species by breeding via uncontrolled recombination or the use of chemical and physical mutagens-processes that are lengthy and costly or lack specificity, respectively. Gene editing provides a faster and more precise way to create new variation, although its application in plants has been dominated by the creation of short insertion and deletion mutations leading to loss of gene function, mostly due to the dependence of editing outcomes on DNA repair pathway choices intrinsic to higher eukaryotes. Other types of edits such as point mutations and precise and pre-designed targeted sequence insertions have rarely been implemented, despite providing means to modulate the expression of target genes or to engineer the function and stability of their protein products. Several advancements have been developed in recent years to facilitate custom editing by regulation of repair pathway choices or by taking advantage of alternative types of DNA repair. We have seen the advent of novel gene editing tools that are independent of DNA double-strand break repair, and methods completely independent of host DNA repair processes are being increasingly explored. With the aim to provide a comprehensive review of the state-of-the-art methodology for allele replacement in plants, I discuss the adoption of these improvements for plant genome engineering.
Collapse
|