1
|
Hallou A, He R, Simons BD, Dumitrascu B. A computational pipeline for spatial mechano-transcriptomics. Nat Methods 2025; 22:737-750. [PMID: 40097810 PMCID: PMC11978512 DOI: 10.1038/s41592-025-02618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
Advances in spatial profiling technologies are providing insights into how molecular programs are influenced by local signaling and environmental cues. However, cell fate specification and tissue patterning involve the interplay of biochemical and mechanical feedback. Here we develop a computational framework that enables the joint statistical analysis of transcriptional and mechanical signals in the context of spatial transcriptomics. To illustrate the application and utility of the approach, we use spatial transcriptomics data from the developing mouse embryo to infer the forces acting on individual cells, and use these results to identify mechanical, morphometric and gene expression signatures that are predictive of tissue compartment boundaries. In addition, we use geoadditive structural equation modeling to identify gene modules that predict the mechanical behavior of cells in an unbiased manner. This computational framework is easily generalized to other spatial profiling contexts, providing a generic scheme for exploring the interplay of biomolecular and mechanical cues in tissues.
Collapse
Affiliation(s)
- Adrien Hallou
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
- Gurdon Institute, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Ruiyang He
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
- New York Genome Center, New York City, NY, USA.
- Irving Institute for Cancer Dynamics, Columbia University, New York City, NY, USA.
| | - Benjamin D Simons
- Gurdon Institute, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Bianca Dumitrascu
- Irving Institute for Cancer Dynamics, Columbia University, New York City, NY, USA.
- Department of Statistics, Columbia University, New York City, NY, USA.
| |
Collapse
|
2
|
Braat QJS, Storm C, Janssen LMC. Formation of motile cell clusters in heterogeneous model tumors: The role of cell-cell alignment. Phys Rev E 2024; 110:064401. [PMID: 39916223 DOI: 10.1103/physreve.110.064401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/16/2024] [Indexed: 05/07/2025]
Abstract
Circulating tumor cell clusters play an important role in the metastatic cascade. These clusters can acquire a migratory and more invasive phenotype, and coordinate their motion to migrate as a collective. Before such clusters can form by collectively detaching from a primary tumor, however, the cluster must first aggregate in the tumor interior. The mechanism of this cluster formation process is still poorly understood. One of the possible ways for cells to cluster is by aligning their direction of motion with their neighboring cells. This work aims to investigate the role of this cell-cell alignment interaction on the formation of motile cell clusters inside the bulk of a tumor using computer simulations. We employ a cellular Potts model in which we model a two-dimensional heterogeneous confluent layer containing both motile and nonmotile cells. Our results indicate that the degree of clustering is governed by two distinct processes: the formation of clusters due to the presence of cell-cell alignment interactions among motile cells, and the suppression of clustering due to the presence of the dynamic cellular environment (comprising the nonmotile cells). We find that the largest motile clusters are formed for intermediate alignment strengths, contrary to what is observed for motile cells in free space (that is, unimpeded by a dense cellular environment), in which case stronger cell-cell alignment always leads to larger clustering. Our findings suggest that the presence of a densely packed cellular environment and strong cell-cell alignment inhibits the formation of large migratory clusters within the primary tumor, providing physical insight into potential factors at play during the early stages of metastasis.
Collapse
Affiliation(s)
- Quirine J S Braat
- Eindhoven University of Technology, Department of Applied Physics and Science Education, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Cornelis Storm
- Eindhoven University of Technology, Department of Applied Physics and Science Education, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Eindhoven University of Technology, Institute for Complex Molecular Systems, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Liesbeth M C Janssen
- Eindhoven University of Technology, Department of Applied Physics and Science Education, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Eindhoven University of Technology, Institute for Complex Molecular Systems, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Gontarz J, Podgórski J. A Revised Abaqus ® Procedure for Fracture Path Simulation Based on the Material Effort Criterion. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3930. [PMID: 39203108 PMCID: PMC11355577 DOI: 10.3390/ma17163930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This paper presents the results of computer simulations of fracture in three laboratory tests: the three-point bending of a notched beam cut from sandstone, the pull-out test of a self-undercutting anchor fixed in sandstone, and the pull-out test of a bar embedded in concrete. Five material failure criteria were used: Rankine, Coulomb-Mohr, Drucker-Prager, Ottosen-Podgórski, and Hoek-Brown. These criteria were implemented in the Abaqus® FEA system to work with the crack propagation modeling method-extended finite element method (X-FEM). All criteria yielded similar force-displacement relationships and similar crack path shapes. The improved procedure gives significantly better, close-to-real crack propagation paths than can be obtained using the standard subroutines built into the Abaqus® system.
Collapse
Affiliation(s)
- Jakub Gontarz
- Department of Civil Engineering and Architecture, Lublin University of Technology, 20-618 Lublin, Poland;
| | | |
Collapse
|
4
|
Xu J, Zheng B, Wang W, Zhou S. Ferroptosis: a novel strategy to overcome chemoresistance in gynecological malignancies. Front Cell Dev Biol 2024; 12:1417750. [PMID: 39045454 PMCID: PMC11263176 DOI: 10.3389/fcell.2024.1417750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Ferroptosis is an iron-dependent form of cell death, distinct from apoptosis, necrosis, and autophagy, and is characterized by altered iron homeostasis, reduced defense against oxidative stress, and increased lipid peroxidation. Extensive research has demonstrated that ferroptosis plays a crucial role in the treatment of gynecological malignancies, offering new strategies for cancer prevention and therapy. However, chemotherapy resistance poses an urgent challenge, significantly hindering therapeutic efficacy. Increasing evidence suggests that inducing ferroptosis can reverse tumor resistance to chemotherapy. This article reviews the mechanisms of ferroptosis and discusses its potential in reversing chemotherapy resistance in gynecological cancers. We summarized three critical pathways in regulating ferroptosis: the regulation of glutathione peroxidase 4 (GPX4), iron metabolism, and lipid peroxidation pathways, considering their prospects and challenges as strategies to reverse chemotherapy resistance. These studies provide a fresh perspective for future cancer treatment modalities.
Collapse
Affiliation(s)
- Jing Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Wang
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Prasanna CVS, Jolly MK, Bhat R. Spatial heterogeneity in tumor adhesion qualifies collective cell invasion. Biophys J 2024; 123:1635-1647. [PMID: 38725244 PMCID: PMC11214055 DOI: 10.1016/j.bpj.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Collective cell invasion (CCI), a canon of most invasive solid tumors, is an emergent property of the interactions between cancer cells and their surrounding extracellular matrix (ECM). However, tumor populations invariably consist of cells expressing variable levels of adhesive proteins that mediate such interactions, disallowing an intuitive understanding of how tumor invasiveness at a multicellular scale is influenced by spatial heterogeneity of cell-cell and cell-ECM adhesion. Here, we have used a Cellular Potts model-based multiscale computational framework that is constructed on the histopathological principles of glandular cancers. In earlier efforts on homogenous cancer cell populations, this framework revealed the relative ranges of interactions, including cell-cell and cell-ECM adhesion that drove collective, dispersed, and mixed multimodal invasion. Here, we constitute a tumor core of two separate cell subsets showing distinct intra- and inter-subset cell-cell or cell-ECM adhesion strengths. These two subsets of cells are arranged to varying extents of spatial intermingling, which we call the heterogeneity index (HI). We observe that low and high inter-subset cell adhesion favors invasion of high-HI and low-HI intermingled populations with distinct intra-subset cell-cell adhesion strengths, respectively. In addition, for explored values of cell-ECM adhesion strengths, populations with high HI values collectively invade better than those with lower HI values. We then asked how spatial invasion is regulated by progressively intermingled cellular subsets that are epithelial, i.e., showed high cell-cell but poor cell-ECM adhesion, and mesenchymal, i.e., with reversed adhesion strengths to the former. Here too, inter-subset adhesion plays an important role in contextualizing the proportionate relationship between HI and invasion. An exception to this relationship is seen for cases of heterogeneous cell-ECM adhesion where sub-maximal HI patterns with higher outer localization of cells with stronger ECM adhesion collectively invade better than their relatively higher-HI counterparts. Our simulations also reveal how adhesion heterogeneity qualifies collective invasion, when either cell-cell or cell-ECM adhesion type is varied but results in an invasive dispersion when both adhesion types are simultaneously altered.
Collapse
Affiliation(s)
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, India.
| | - Ramray Bhat
- Department of Bioengineering, Indian Institute of Science, Bangalore, India; Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
6
|
Balan D, Kampan NC, Plebanski M, Abd Aziz NH. Unlocking ovarian cancer heterogeneity: advancing immunotherapy through single-cell transcriptomics. Front Oncol 2024; 14:1388663. [PMID: 38873253 PMCID: PMC11169633 DOI: 10.3389/fonc.2024.1388663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Ovarian cancer, a highly fatal gynecological cancer, warrants the need for understanding its heterogeneity. The disease's prevalence and impact are underscored with statistics on mortality rates. Ovarian cancer is categorized into distinct morphological groups, each with its characteristics and prognosis. Despite standard treatments, survival rates remain low due to relapses and chemoresistance. Immune system involvement is evident in ovarian cancer's progression, although the tumor employs immune evasion mechanisms. Immunotherapy, particularly immune checkpoint blockade therapy, is promising, but ovarian cancer's heterogeneity limits its efficacy. Single-cell sequencing technology could be explored as a solution to dissect the heterogeneity within tumor-associated immune cell populations and tumor microenvironments. This cutting-edge technology has the potential to enhance diagnosis, prognosis, and personalized immunotherapy in ovarian cancer, reflecting its broader application in cancer research. The present review focuses on recent advancements and the challenges in applying single-cell transcriptomics to ovarian cancer.
Collapse
Affiliation(s)
- Dharvind Balan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Śliwa A, Szczerba A, Pięta PP, Białas P, Lorek J, Nowak-Markwitz E, Jankowska A. A Recipe for Successful Metastasis: Transition and Migratory Modes of Ovarian Cancer Cells. Cancers (Basel) 2024; 16:783. [PMID: 38398174 PMCID: PMC10886816 DOI: 10.3390/cancers16040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
One of the characteristic features of ovarian cancer is its early dissemination. Metastasis and the invasiveness of ovarian cancer are strongly dependent on the phenotypical and molecular determinants of cancer cells. Invasive cancer cells, circulating tumor cells, and cancer stem cells, which are responsible for the metastatic process, may all undergo different modes of transition, giving rise to mesenchymal, amoeboid, and redifferentiated epithelial cells. Such variability is the result of the changing needs of cancer cells, which strive to survive and colonize new organs. This would not be possible if not for the variety of migration modes adopted by the transformed cells. The most common type of metastasis in ovarian cancer is dissemination through the transcoelomic route, but transitions in ovarian cancer cells contribute greatly to hematogenous and lymphatic dissemination. This review aims to outline the transition modes of ovarian cancer cells and discuss the migratory capabilities of those cells in light of the known ovarian cancer metastasis routes.
Collapse
Affiliation(s)
- Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Paweł Piotr Pięta
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jakub Lorek
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| |
Collapse
|
8
|
Leggett SE, Brennan MC, Martinez S, Tien J, Nelson CM. Relatively Rare Populations of Invasive Cells Drive Progression of Heterogeneous Tumors. Cell Mol Bioeng 2024; 17:7-24. [PMID: 38435793 PMCID: PMC10902221 DOI: 10.1007/s12195-023-00792-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/19/2023] [Indexed: 03/05/2024] Open
Abstract
Introduction Breast tumors often display an astonishing degree of spatial and temporal heterogeneity, which are associated with cancer progression, drug resistance, and relapse. Triple-negative breast cancer (TNBC) is a particularly aggressive and heterogeneous subtype for which targeted therapies are scarce. Consequently, patients with TNBC have a poorer overall prognosis compared to other breast cancer patients. Within heterogeneous tumors, individual clonal subpopulations may exhibit differences in their rates of growth and degrees of invasiveness. We hypothesized that such phenotypic heterogeneity at the single-cell level may accelerate tumor progression by enhancing the overall growth and invasion of the entire tumor. Methods To test this hypothesis, we isolated and characterized clonal subpopulations with distinct morphologies and biomarker expression from the inherently heterogeneous 4T1 mouse mammary carcinoma cell line. We then leveraged a 3D microfluidic tumor model to reverse-engineer intratumoral heterogeneity and thus investigate how interactions between phenotypically distinct subpopulations affect tumor growth and invasion. Results We found that the growth and invasion of multiclonal tumors were largely dictated by the presence of cells with epithelial and mesenchymal traits, respectively. The latter accelerated overall tumor invasion, even when these cells comprised less than 1% of the initial population. Consistently, tumor progression was delayed by selectively targeting the mesenchymal subpopulation. Discussion This work reveals that highly invasive cells can dominate tumor phenotype and that specifically targeting these cells can slow the progression of heterogeneous tumors, which may help inform therapeutic approaches. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00792-w.
Collapse
Affiliation(s)
- Susan E. Leggett
- Department of Chemical & Biological Engineering, Princeton University, 303 Hoyt Laboratory, 25 William Street, Princeton, NJ 08544 USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - Molly C. Brennan
- Department of Chemical & Biological Engineering, Princeton University, 303 Hoyt Laboratory, 25 William Street, Princeton, NJ 08544 USA
| | - Sophia Martinez
- Department of Chemical & Biological Engineering, Princeton University, 303 Hoyt Laboratory, 25 William Street, Princeton, NJ 08544 USA
| | - Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, MA 02215 USA
| | - Celeste M. Nelson
- Department of Chemical & Biological Engineering, Princeton University, 303 Hoyt Laboratory, 25 William Street, Princeton, NJ 08544 USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| |
Collapse
|
9
|
Amiri A, Dietz C, Rapp A, Cardoso MC, Stark RW. The cyto-linker and scaffolding protein "plectin" mis-localization leads to softening of cancer cells. NANOSCALE 2023; 15:15008-15026. [PMID: 37668423 DOI: 10.1039/d3nr02226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Discovering tools to prevent cancer progression requires understanding the fundamental differences between normal and cancer cells. More than a decade ago, atomic force microscopy (AFM) revealed cancer cells' softer body compared to their healthy counterparts. Here, we investigated the mechanism underlying the softening of cancerous cells in comparison with their healthy counterparts based on AFM high resolution stiffness tomography and 3D confocal microscopy. We showed microtubules (MTs) network in invasive ductal carcinoma cell cytoskeleton is basally located and segmented for around 400 nm from the cell periphery. Additionally, the cytoskeleton scaffolding protein plectin exhibits a mis-localization from the cytoplasm to the surface of cells in the carcinoma which justifies the dissociation of the MT network from the cell's cortex. Furthermore, the assessment of MTs' persistence length using a worm-like-chain (WLC) model in high resolution AFM images showed lower persistence length of the single MTs in ductal carcinoma compared to that in the normal state. Overall, these tuned mechanics support the invasive cells to ascertain more flexibility under compressive forces in small deformations. These data provide new insights into the structural origins of cancer aids in progression.
Collapse
Affiliation(s)
- Anahid Amiri
- Physics of Surfaces, Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany.
| | - Christian Dietz
- Physics of Surfaces, Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany.
| | - Alexander Rapp
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Robert W Stark
- Physics of Surfaces, Institute of Materials Science, Technical University of Darmstadt, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany.
| |
Collapse
|
10
|
Kato T, Jenkins RP, Derzsi S, Tozluoglu M, Rullan A, Hooper S, Chaleil RAG, Joyce H, Fu X, Thavaraj S, Bates PA, Sahai E. Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth of squamous cell carcinoma. eLife 2023; 12:e76520. [PMID: 36892272 PMCID: PMC9998089 DOI: 10.7554/elife.76520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Cancers, such as squamous cell carcinoma, frequently invade as multicellular units. However, these invading units can be organised in a variety of ways, ranging from thin discontinuous strands to thick 'pushing' collectives. Here we employ an integrated experimental and computational approach to identify the factors that determine the mode of collective cancer cell invasion. We find that matrix proteolysis is linked to the formation of wide strands but has little effect on the maximum extent of invasion. Cell-cell junctions also favour wide strands, but our analysis also reveals a requirement for cell-cell junctions for efficient invasion in response to uniform directional cues. Unexpectedly, the ability to generate wide invasive strands is coupled to the ability to grow effectively when surrounded by extracellular matrix in three-dimensional assays. Combinatorial perturbation of both matrix proteolysis and cell-cell adhesion demonstrates that the most aggressive cancer behaviour, both in terms of invasion and growth, is achieved at high levels of cell-cell adhesion and high levels of proteolysis. Contrary to expectation, cells with canonical mesenchymal traits - no cell-cell junctions and high proteolysis - exhibit reduced growth and lymph node metastasis. Thus, we conclude that the ability of squamous cell carcinoma cells to invade effectively is also linked to their ability to generate space for proliferation in confined contexts. These data provide an explanation for the apparent advantage of retaining cell-cell junctions in squamous cell carcinomas.
Collapse
Affiliation(s)
- Takuya Kato
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Department of Pathology, Kitasato UniversitySagamiharaJapan
| | - Robert P Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Stefanie Derzsi
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Hoffman La-RocheBaselSwitzerland
| | - Melda Tozluoglu
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Antonio Rullan
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Institute of Cancer ResearchLondonUnited Kingdom
| | - Steven Hooper
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Raphaël AG Chaleil
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Holly Joyce
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Xiao Fu
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Selvam Thavaraj
- Centre for Oral, Clinical and Translational Sciences, King's College LondonLondonUnited Kingdom
| | - Paul A Bates
- Biomolecular Modelling Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| |
Collapse
|
11
|
Schwager SC, Young KM, Hapach LA, Carlson CM, Mosier JA, McArdle TJ, Wang W, Schunk C, Jayathilake AL, Bates ME, Bordeleau F, Antonyak MA, Cerione RA, Reinhart-King CA. Weakly migratory metastatic breast cancer cells activate fibroblasts via microvesicle-Tg2 to facilitate dissemination and metastasis. eLife 2022; 11:e74433. [PMID: 36475545 PMCID: PMC9767463 DOI: 10.7554/elife.74433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Katherine M Young
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Lauren A Hapach
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
- Department of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Caroline M Carlson
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | | | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Curtis Schunk
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | | | - Madison E Bates
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology division), UniversitéLaval Cancer Research Center and Faculty of Medicine, Université LavalQuébeccCanada
| | - Marc A Antonyak
- Department of Biomedical Science, Cornell UniversityIthacaUnited States
| | - Richard A Cerione
- Department of Biomedical Science, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
12
|
Reddy GA, Katira P. Differences in cell death and division rules can alter tissue rigidity and fluidization. SOFT MATTER 2022; 18:3713-3724. [PMID: 35502875 DOI: 10.1039/d2sm00174h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tissue mechanical properties such as rigidity and fluidity, and changes in these properties driven by jamming-unjamming transitions (UJT), have come under recent highlight as mechanical markers of health and disease in various biological processes including cancer. However, most analyses of these mechanical properties and UJT have sidestepped the effect of cellular death and division in these systems. Cellular apoptosis (programmed cell death) and mitosis (cell division) can drive significant changes in tissue properties. The balance between the two is crucial in maintaining tissue function, and an imbalance between the two is seen in situations such as cancer progression, wound healing and necrosis. In this work we investigate the impact of cell death and division on tissue mechanical properties, by incorporating specific mechanosensitive triggers of cell death and division based on the size and geometry of the cell within in silico models of tissue dynamics. Specifically, we look at cell migration, tissue response to external stress, tissue extrusion propensity and self-organization of different cell types within the tissue, as a function of cell death and division and the rules that trigger these events. We find that not only do cell death and division events significantly alter tissue mechanics when compared to systems without these events, but that the choice of triggers driving these cell death and division events also alters the predicted tissue mechanics and overall system behavior.
Collapse
Affiliation(s)
- Gudur Ashrith Reddy
- Mechanical Engineering Department, San Diego State University, San Diego, CA, USA.
- Department of Bioengineering, University of California - San Diego, San Diego, CA, USA
| | - Parag Katira
- Mechanical Engineering Department, San Diego State University, San Diego, CA, USA.
- Computational Science Research Center, San Diego State University, San Diego, CA, USA
| |
Collapse
|
13
|
Mukherjee M, Levine H. Cluster size distribution of cells disseminating from a primary tumor. PLoS Comput Biol 2021; 17:e1009011. [PMID: 34758019 PMCID: PMC8608333 DOI: 10.1371/journal.pcbi.1009011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/22/2021] [Accepted: 10/25/2021] [Indexed: 01/06/2023] Open
Abstract
The first stage of the metastatic cascade often involves motile cells emerging from a primary tumor either as single cells or as clusters. These cells enter the circulation, transit to other parts of the body and finally are responsible for growth of secondary tumors in distant organs. The mode of dissemination is believed to depend on the EMT nature (epithelial, hybrid or mesenchymal) of the cells. Here, we calculate the cluster size distribution of these migrating cells, using a mechanistic computational model, in presence of different degree of EMT-ness of the cells; EMT is treated as given rise to changes in their active motile forces (μ) and cell-medium surface tension (Γ). We find that, for (μ > μmin, Γ > 1), when the cells are hybrid in nature, the mean cluster size, N¯∼Γ2.0/μ2.8, where μmin increases with increase in Γ. For Γ ≤ 0, N¯=1, the cells behave as completely mesenchymal. In presence of spectrum of hybrid states with different degree of EMT-ness (motility) in primary tumor, the cells which are relatively more mesenchymal (higher μ) in nature, form larger clusters, whereas the smaller clusters are relatively more epithelial (lower μ). Moreover, the heterogeneity in μ is comparatively higher for smaller clusters with respect to that for larger clusters. We also observe that more extended cell shapes promote the formation of smaller clusters. Overall, this study establishes a framework which connects the nature and size of migrating clusters disseminating from a primary tumor with the phenotypic composition of the tumor, and can lead to the better understanding of metastasis. In the process of metastasis, tumor cells disseminate from the primary tumor either as single cells or multicellular clusters. These clusters are potential contributor to the initiation of secondary tumor in distant organs. Our computational model captures the size distribution of migrating clusters depending on the adhesion and motility of the cells (which determine the degree of their EMT nature). Furthermore, we investigate the effect of heterogeneity of cell types in the primary tumor on the resultant heterogeneity of cell types in clusters of different sizes. We believe that the understanding the formation and nature of these clusters, dangerous actors in the deadly aspect of cancer progression, will be useful for improving prognostic methods and eventually better treatments.
Collapse
Affiliation(s)
- Mrinmoy Mukherjee
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, United States of America
- * E-mail:
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, United States of America
- Depts. of Physics and Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Rai A, Greening DW, Xu R, Suwakulsiri W, Simpson RJ. Exosomes Derived from the Human Primary Colorectal Cancer Cell Line SW480 Orchestrate Fibroblast-Led Cancer Invasion. Proteomics 2021; 20:e2000016. [PMID: 32438511 DOI: 10.1002/pmic.202000016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/14/2020] [Indexed: 12/11/2022]
Abstract
In localized tumors, basement membrane (BM) prevents invasive outgrowth of tumor cells into surrounding tissues. When carcinomas become invasive, cancer cells either degrade BM or reprogram stromal fibroblasts to breach BM barrier and lead invasion of cancer cells into surrounding tissues in a process called fibroblast-led invasion. However, tumor-derived factors orchestrating fibroblast-led invasion remain poorly understood. Here it is shown that although early-stage primary colorectal adenocarcinoma (SW480) cells are themselves unable to invade Matrigel matrix, they secrete exosomes that reprogram normal fibroblasts to acquire de novo capacity to invade matrix and lead invasion of SW480 cells. Strikingly, cancer cells follow leading fibroblasts as collective epithelial-clusters, thereby circumventing need for epithelial to mesenchymal transition, a key event associated with invasion. Moreover, acquisition of pro-invasive phenotype by fibroblasts treated with SW480-derived exosomes relied on exosome-mediated MAPK pathway activation. Mass spectrometry-based protein profiling reveals that cancer exosomes upregulate fibroblasts proteins implicated in focal adhesion (ITGA2/A6/AV, ITGB1/B4/B5, EGFR, CRK), regulators of actin cytoskeleton (RAC1, ARF1, ARPC3, CYFIP1, NCKAP1, ICAM1, ERM complex), and signalling pathways (MAPK, Rap1, RAC1, Ras) important in pro-invasive remodeling of extracellular matrix. Blocking tumor exosome-mediated signaling to fibroblasts therefore represents an attractive therapeutic strategy in restraining tumors by perturbing stroma-driven invasive outgrowth.
Collapse
Affiliation(s)
- Alin Rai
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - David W Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Wittaya Suwakulsiri
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
15
|
Xu H, Liang XL, Liu XG, Chen NP. The landscape of PD-L1 expression and somatic mutations in hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:1132-1140. [PMID: 34295562 DOI: 10.21037/jgo-21-251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver, and becoming the third-leading cause of cancer-related mortality worldwide. Despite the immune checkpoint inhibitors and molecular targeted therapies have shown preferable efficacy in HCC, large number of HCC patients do not respond effectively to anti-PD-1 reagents. Besides, the accumulation of genetic mutations in cancer cells may lead to the therapy resistant. Hence, there are clinical gaps between genetic and transcriptomic biomarkers for the HCC treatment. Methods To investigate the genetic mapping of liver cancer, targeted deep sequencing (TDS) and bioinformatics analysis were performed on hepatocellular carcinoma (HCC) tumor tissues and matched blood samples. Furthermore, copy number variants (CNVs) and Tumor mutation burden (TMB) were calculated. Immunohistochemistry was applied to determine the PD-L1 expression in HCC tumor tissues. Clinical characteristic, PD-L1 expression, and the TMB were analyzed in 32 HCC patients. Results This study indicated that the PD-L1 positive patients exhibited a lower TMB compared to the PD-L1 negative group, and PD-L1 positive patients were more likely to suffer from aggressive clinicopathologic features than PD-L1 negative patients. We also verified the top 30 mutated genes, including TP53, CTNNB1, KMT2D, AXIN1, ALK, and NOTCH1, in our dataset. Our results indicated that PD-L1 positive patients possessed more tumors with vascular invasion and advanced CCLC stage. Moreover, PD-L1 positive patients exhibited a lower TMB compared to the PD-L1 negative group. Conclusions These findings could improve our understanding of the effects of immune checkpoint therapies on prognosis, and could facilitate the monitoring of somatic mutations in HCC.
Collapse
Affiliation(s)
- Hao Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Lu Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiao-Guang Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Nian-Ping Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
16
|
Wu JS, Jiang J, Chen BJ, Wang K, Tang YL, Liang XH. Plasticity of cancer cell invasion: Patterns and mechanisms. Transl Oncol 2020; 14:100899. [PMID: 33080522 PMCID: PMC7573380 DOI: 10.1016/j.tranon.2020.100899] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cell migration and invasion are integral components of metastatic disease, which is the major cause of death in cancer patients. Cancer cells can disseminate and migrate via several alternative mechanisms including amoeboid cell migration, mesenchymal cell migration, and collective cell migration. These diverse movement strategies display certain specific and distinct hallmarks in cell-cell junctions, actin cytoskeleton, matrix adhesion, and protease activity. During tumor progression, cells pass through complex microenvironments and adapt their migration strategies by reversible mesenchymal-amoeboid and individual-collective transitions. This plasticity in motility patterns enables cancer cells disseminate further and thus limit the efficiency of anti-metastasis therapies. In this review, we discuss the modes and mechanisms of cancer cell migration and focus on the plasticity of tumor cell movement as well as potential emerging therapeutic options for reducing cancer cell invasion.
Collapse
Affiliation(s)
- Jia-Shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bing-Jun Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
17
|
Mitchel JA, Das A, O'Sullivan MJ, Stancil IT, DeCamp SJ, Koehler S, Ocaña OH, Butler JP, Fredberg JJ, Nieto MA, Bi D, Park JA. In primary airway epithelial cells, the unjamming transition is distinct from the epithelial-to-mesenchymal transition. Nat Commun 2020; 11:5053. [PMID: 33028821 PMCID: PMC7542457 DOI: 10.1038/s41467-020-18841-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) and the unjamming transition (UJT) each comprises a gateway to cellular migration, plasticity and remodeling, but the extent to which these core programs are distinct, overlapping, or identical has remained undefined. Here, we triggered partial EMT (pEMT) or UJT in differentiated primary human bronchial epithelial cells. After triggering UJT, cell-cell junctions, apico-basal polarity, and barrier function remain intact, cells elongate and align into cooperative migratory packs, and mesenchymal markers of EMT remain unapparent. After triggering pEMT these and other metrics of UJT versus pEMT diverge. A computational model attributes effects of pEMT mainly to diminished junctional tension but attributes those of UJT mainly to augmented cellular propulsion. Through the actions of UJT and pEMT working independently, sequentially, or interactively, those tissues that are subject to development, injury, or disease become endowed with rich mechanisms for cellular migration, plasticity, self-repair, and regeneration.
Collapse
Affiliation(s)
| | - Amit Das
- Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Ian T Stancil
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Oscar H Ocaña
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | - James P Butler
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
18
|
Chen W, Zhu S, Zhang Y, Xiao J, Tian D. Identification of key candidate tumor biomarkers in non-small-cell lung cancer by in silico analysis. Oncol Lett 2020; 19:1008-1016. [PMID: 31897214 PMCID: PMC6924182 DOI: 10.3892/ol.2019.11169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 11/12/2019] [Indexed: 01/10/2023] Open
Abstract
Lung cancer is a common malignancy worldwide. The aim of the present study was to investigate differentially expressed genes (DEGs) between non-small-cell lung cancer (NSCLC) and normal lung tissue, and to reveal the potential molecular mechanism underlying NSCLC. The Gene Expression Omnibus database was used to obtain three gene expression profiles (GSE18842, GSE30219 and GSE33532). DEGs were obtained by GEO2R. Gene Ontology and pathway enrichment analyses were performed for DEGs in the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network of DEGs was constructed and analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins database and Cytoscape software. A survival analysis was performed and protein expression levels of DEGs in human NSCLC were analyzed in order to determine clinical significance. A total of 764 DEGs were identified, consisting of 428 upregulated and 336 downregulated genes in NSCLC tissues compared with normal lung tissues, which were enriched in the 'cell cycle', 'cell adhesion molecules', 'p53 signaling pathway', 'DNA replication' and 'tight junction'. A PPI network of DEGs consisting of 51 nodes and 192 edges was constructed. The top 10 genes were identified as hub genes from the PPI network. High expression of 4 of the 10 hub genes was associated with worse overall survival rate in patients with NSCLC, including CDK1, PLK1, RAD51 and RFC4. In conclusion, the present study aids in improving the current understanding of aberrant gene expression between NSCLC tissues and normal lung tissues underlying tumorgenesis in NSCLC. Identified hub genes can be used as a tumor marker for diagnosis and prognosis or as a drug therapy target in NSCLC.
Collapse
Affiliation(s)
- Weiping Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Song Zhu
- Department of Radiotherapy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yifei Zhang
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Jinghua Xiao
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Dongbo Tian
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| |
Collapse
|
19
|
Li X, Das A, Bi D. Mechanical Heterogeneity in Tissues Promotes Rigidity and Controls Cellular Invasion. PHYSICAL REVIEW LETTERS 2019; 123:058101. [PMID: 31491312 DOI: 10.1103/physrevlett.123.058101] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/05/2019] [Indexed: 06/10/2023]
Abstract
We study the influence of cell-level mechanical heterogeneity in epithelial tissues using a vertex-based model. Heterogeneity is introduced into the cell shape index (p_{0}) that tunes the stiffness at a single-cell level. The addition of heterogeneity can always enhance the mechanical rigidity of the epithelial layer by increasing its shear modulus, hence making it more rigid. There is an excellent scaling collapse of our data as a function of a single scaling variable f_{r}, which accounts for the overall fraction of rigid cells. We identify a universal threshold f_{r}^{*} that demarcates fluid versus solid tissues. Furthermore, this rigidity onset is far below the contact percolation threshold of rigid cells. These results give rise to a separation of rigidity and contact percolation processes that leads to distinct types of solid states. We also investigate the influence of heterogeneity on tumor invasion dynamics. There is an overall impedance of invasion as the tissue becomes more rigid. Invasion can also occur in an intermediate heterogeneous solid state that is characterized by significant spatial-temporal intermittency.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Amit Das
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
20
|
Roberts CM, Cardenas C, Tedja R. The Role of Intra-Tumoral Heterogeneity and Its Clinical Relevance in Epithelial Ovarian Cancer Recurrence and Metastasis. Cancers (Basel) 2019; 11:E1083. [PMID: 31366178 PMCID: PMC6721439 DOI: 10.3390/cancers11081083] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/27/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecologic cancer, due in large part to recurrent tumors. Recurrences tend to have metastasized, mainly in the peritoneal cavity and developed resistance to the first line chemotherapy. Key to the progression and ultimate lethality of ovarian cancer is the existence of extensive intra-tumoral heterogeneity (ITH). In this review, we describe the genetic and epigenetic changes that have been reported to give rise to different cell populations in ovarian cancer. We also describe at length the contributions made to heterogeneity by both linear and parallel models of clonal evolution and the existence of cancer stem cells. We dissect the key biological signals from the tumor microenvironment, both directly from other cell types in the vicinity and soluble or circulating factors. Finally, we discuss the impact of tumor heterogeneity on the choice of therapeutic approaches in the clinic. Variability in ovarian tumors remains a major barrier to effective therapy, but by leveraging future research into tumor heterogeneity, we may be able to overcome this barrier and provide more effective, personalized therapy to patients.
Collapse
Affiliation(s)
- Cai M Roberts
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Carlos Cardenas
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA
| | - Roslyn Tedja
- Obstetrics, Gynecology and Reproductive Sciences Department, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Bhatia S, Monkman J, Blick T, Pinto C, Waltham M, Nagaraj SH, Thompson EW. Interrogation of Phenotypic Plasticity between Epithelial and Mesenchymal States in Breast Cancer. J Clin Med 2019; 8:E893. [PMID: 31234417 PMCID: PMC6617164 DOI: 10.3390/jcm8060893] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Dynamic interconversions between transitional epithelial and mesenchymal states underpin the epithelial mesenchymal plasticity (EMP) seen in some carcinoma cell systems. We have delineated epithelial and mesenchymal subpopulations existing within the PMC42-LA breast cancer cell line by their EpCAM expression. These purified but phenotypically plastic states, EpCAMHigh (epithelial) and EpCAMLow (mesenchymal), have the ability to regain the phenotypic equilibrium of the parental population (i.e., 80% epithelial and 20% mesenchymal) over time, although the rate of reversion in the mesenchymal direction (epithelial-mesenchymal transition; EMT) is higher than that in the epithelial direction (mesenchymal-epithelial transition; MET). Single-cell clonal propagation was implemented to delineate the molecular and cellular features of this intrinsic heterogeneity with respect to EMP flux. The dynamics of the phenotypic proportions of epithelial and mesenchymal states in single-cell generated clones revealed clonal diversity and intrinsic plasticity. Single cell-derived clonal progenies displayed differences in their functional attributes of proliferation, stemness marker (CD44/CD24), migration, invasion and chemo-sensitivity. Interrogation of genomic copy number variations (CNV) with whole exome sequencing (WES) in the context of chromosome count from metaphase spread indicated that chromosomal instability was not influential in driving intrinsic phenotypic plasticity. Overall, these findings reveal the stochastic nature of both the epithelial and mesenchymal subpopulations, and the single cell-derived clones for differential functional attributes.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- School of Biological/Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - James Monkman
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- School of Biological/Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Tony Blick
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- School of Biological/Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Cletus Pinto
- Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC 3065, Australia.
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Melbourne, VIC 3065, Australia.
| | - Mark Waltham
- Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC 3065, Australia.
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Melbourne, VIC 3065, Australia.
| | - Shivashankar H Nagaraj
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- School of Biological/Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia.
- School of Biological/Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia.
- Translational Research Institute, Brisbane, QLD 4102, Australia.
- Invasion and Metastasis Unit, St. Vincent's Institute, Melbourne, VIC 3065, Australia.
| |
Collapse
|
22
|
Franssen LC, Lorenzi T, Burgess AEF, Chaplain MAJ. A Mathematical Framework for Modelling the Metastatic Spread of Cancer. Bull Math Biol 2019; 81:1965-2010. [PMID: 30903592 PMCID: PMC6503893 DOI: 10.1007/s11538-019-00597-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Cancer is a complex disease that starts with mutations of key genes in one cell or a small group of cells at a primary site in the body. If these cancer cells continue to grow successfully and, at some later stage, invade the surrounding tissue and acquire a vascular network, they can spread to distant secondary sites in the body. This process, known as metastatic spread, is responsible for around 90% of deaths from cancer and is one of the so-called hallmarks of cancer. To shed light on the metastatic process, we present a mathematical modelling framework that captures for the first time the interconnected processes of invasion and metastatic spread of individual cancer cells in a spatially explicit manner-a multigrid, hybrid, individual-based approach. This framework accounts for the spatiotemporal evolution of mesenchymal- and epithelial-like cancer cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase-2 (MMP-2), and for their interactions with the extracellular matrix. Using computational simulations, we demonstrate that our model captures all the key steps of the invasion-metastasis cascade, i.e. invasion by both heterogeneous cancer cell clusters and by single mesenchymal-like cancer cells; intravasation of these clusters and single cells both via active mechanisms mediated by matrix-degrading enzymes (MDEs) and via passive shedding; circulation of cancer cell clusters and single cancer cells in the vasculature with the associated risk of cell death and disaggregation of clusters; extravasation of clusters and single cells; and metastatic growth at distant secondary sites in the body. By faithfully reproducing experimental results, our simulations support the evidence-based hypothesis that the membrane-bound MT1-MMP is the main driver of invasive spread rather than diffusible MDEs such as MMP-2.
Collapse
Affiliation(s)
- Linnea C Franssen
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK.
| | - Tommaso Lorenzi
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | | | - Mark A J Chaplain
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| |
Collapse
|
23
|
Spatarelu CP, Zhang H, Trung Nguyen D, Han X, Liu R, Guo Q, Notbohm J, Fan J, Liu L, Chen Z. Biomechanics of Collective Cell Migration in Cancer Progression: Experimental and Computational Methods. ACS Biomater Sci Eng 2019; 5:3766-3787. [PMID: 32953985 PMCID: PMC7500334 DOI: 10.1021/acsbiomaterials.8b01428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell migration is essential for regulating many biological processes in physiological or pathological conditions, including embryonic development and cancer invasion. In vitro and in silico studies suggest that collective cell migration is associated with some biomechanical particularities such as restructuring of extracellular matrix (ECM), stress and force distribution profiles, and reorganization of the cytoskeleton. Therefore, the phenomenon could be understood by an in-depth study of cells' behavior determinants, including but not limited to mechanical cues from the environment and from fellow "travelers". This review article aims to cover the recent development of experimental and computational methods for studying the biomechanics of collective cell migration during cancer progression and invasion. We also summarized the tested hypotheses regarding the mechanism underlying collective cell migration enabled by these methods. Together, the paper enables a broad overview on the methods and tools currently available to unravel the biophysical mechanisms pertinent to cell collective migration as well as providing perspectives on future development toward eventually deciphering the key mechanisms behind the most lethal feature of cancer.
Collapse
Affiliation(s)
| | - Hao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Dung Trung Nguyen
- Department of Engineering and Computer Science, Seattle Pacific University, Seattle, Washington 98119,
United States
| | - Xinyue Han
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350014,
China
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706,
United States
| | - Jing Fan
- Department of Mechanical Engineering, City College of City University of New York, New York 10031, United
States
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
24
|
Hwang PY, Brenot A, King AC, Longmore GD, George SC. Randomly Distributed K14 + Breast Tumor Cells Polarize to the Leading Edge and Guide Collective Migration in Response to Chemical and Mechanical Environmental Cues. Cancer Res 2019; 79:1899-1912. [PMID: 30862718 DOI: 10.1158/0008-5472.can-18-2828] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/27/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Collective cell migration is an adaptive, coordinated interactive process involving cell-cell and cell-extracellular matrix (ECM) microenvironmental interactions. A critical aspect of collective migration is the sensing and establishment of directional movement. It has been proposed that a subgroup of cells known as leader cells localize at the front edge of a collectively migrating cluster and are responsible for directing migration. However, it is unknown how and when leader cells arrive at the front edge and what environmental cues dictate leader cell development and behavior. Here, we addressed these questions by combining a microfluidic device design that mimics multiple tumor microenvironmental cues concurrently with biologically relevant primary, heterogeneous tumor cell organoids. Prior to migration, breast tumor leader cells (K14+) were present throughout a tumor organoid and migrated (polarized) to the leading edge in response to biochemical and biomechanical cues. Impairment of either CXCR4 (biochemical responsive) or the collagen receptor DDR2 (biomechanical responsive) abrogated polarization of leader cells and directed collective migration. This work demonstrates that K14+ leader cells utilize both chemical and mechanical cues from the microenvironment to polarize to the leading edge of collectively migrating tumors. SIGNIFICANCE: These findings demonstrate that pre-existing, randomly distributed leader cells within primary tumor organoids use CXCR4 and DDR2 to polarize to the leading edge and direct migration.
Collapse
Affiliation(s)
- Priscilla Y Hwang
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Audrey Brenot
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Ashley C King
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri.,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Gregory D Longmore
- Department of Medicine (Oncology), Washington University in St. Louis, St. Louis, Missouri. .,ICCE Institute, Washington University in St. Louis, St. Louis, Missouri.,Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, California.
| |
Collapse
|
25
|
Moitrier S, Blanch-Mercader C, Garcia S, Sliogeryte K, Martin T, Camonis J, Marcq P, Silberzan P, Bonnet I. Collective stresses drive competition between monolayers of normal and Ras-transformed cells. SOFT MATTER 2019; 15:537-545. [PMID: 30516225 DOI: 10.1039/c8sm01523f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study the competition for space between two cell lines that differ only in the expression of the Ras oncogene. The two cell populations are initially separated and set to migrate antagonistically towards an in-between stripe of free substrate. After contact, their interface moves towards the population of normal cells. We interpret the velocity and traction force data taken before and after contact thanks to a hydrodynamic description of collectively migrating cohesive cell sheets. The kinematics of cells, before and after contact, allows us to estimate the relative material parameters for both cell lines. As predicted by the model, the transformed cell population with larger collective stresses pushes the wild type cell population.
Collapse
Affiliation(s)
- Sarah Moitrier
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | | | - Simon Garcia
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | - Kristina Sliogeryte
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | - Tobias Martin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | - Jacques Camonis
- Institut Curie, PSL Research University, 75005 Paris, France and ART Group, Inserm U830, 75005 Paris, France
| | - Philippe Marcq
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France
| | - Pascal Silberzan
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| | - Isabelle Bonnet
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France. and Sorbonne Université, 75005, Paris, France and Équipe Labellisée Ligue Contre le Cancer, France
| |
Collapse
|
26
|
Mathur J, Sarker B, Pathak A. Predicting Collective Migration of Cell Populations Defined by Varying Repolarization Dynamics. Biophys J 2018; 115:2474-2485. [PMID: 30527449 PMCID: PMC6302036 DOI: 10.1016/j.bpj.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/23/2023] Open
Abstract
Collective migration of heterogeneous cell populations is an essential aspect of fundamental biological processes, including morphogenesis, wound healing, and tumor invasion. Through experiments and modeling, it has been shown that cells attain front-rear polarity, generate forces, and form adhesions to migrate. However, it remains unclear how the ability of individual cells in a population to dynamically repolarize themselves into new directions could regulate the collective response. We present a vertex-based model in which each deformable cell randomly chooses a new polarization direction after every defined time interval, elongates, proportionally generates forces, and causes collective migration. Our simulations predict that cell types that repolarize at longer time intervals attain more elongated shapes, migrate faster, deform the cell sheet, and roughen the leading edge. By imaging collectively migrating epithelial cell monolayers at high temporal resolution, we found longer repolarization intervals and elongated shapes of cells at the leading edge compared to those within the monolayer. Based on these experimental measurements and simulations, we defined aggressive mutant leader cells by long repolarization interval and minimal intercellular contact. The cells with frequent and random repolarization were defined as normal cells. In simulations with uniformly dispersed leader cells in a normal cell population at a 1:10 ratio, the resulting migration and deformation of the heterogeneous cell sheet remained low. However, when the 10% mutant leaders were placed only at the leading edge, we predicted a rise in the migration of an otherwise normal cell sheet. Our model predicts that a repolarization-based definition of leader cells and their placement within a healthy population can generate myriad modes of collective cell migration, which can enhance our understanding of collective cell migration in disease and development.
Collapse
Affiliation(s)
- Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri.
| |
Collapse
|
27
|
Bogdan MJ, Savin T. Fingering instabilities in tissue invasion: an active fluid model. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181579. [PMID: 30662758 PMCID: PMC6304124 DOI: 10.1098/rsos.181579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/20/2018] [Indexed: 05/26/2023]
Abstract
Metastatic tumours often invade healthy neighbouring tissues by forming multicellular finger-like protrusions emerging from the cancer mass. To understand the mechanical context behind this phenomenon, we here develop a minimalist fluid model of a self-propelled, growing biological tissue. The theory involves only four mechanical parameters and remains analytically trackable in various settings. As an application of the model, we study the evolution of a two-dimensional circular droplet made of our active and expanding fluid, and embedded in a passive non-growing tissue. This system could be used to model the evolution of a carcinoma in an epithelial layer. We find that our description can explain the propensity of tumour tissues to fingering instabilities, as conditioned by the magnitude of active traction and the growth kinetics. We are also able to derive predictions for the tumour size at the onset of metastasis, and for the number of subsequent invasive fingers. Our active fluid model may help describe a wider range of biological processes, including wound healing and developmental patterning.
Collapse
|
28
|
The lonely driver or the orchestra of mutations? How next generation sequencing datasets contradict the concept of single driver checkpoint mutations in solid tumours - NSCLC as a scholarly example. Semin Cancer Biol 2018; 58:22-28. [PMID: 30458202 DOI: 10.1016/j.semcancer.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Driver mutations are considered to be responsible for the majority of cancers and several of those mutations provide targets in order to set up personalized therapies. So far the generally accepted opinion had been that driver mutations occur as stand-alone factors, but novel sequencing technologies induced an essential rethink. Next generation sequencing approaches have shown that double, triple or multiple concurrent mutations could occur within the same tumour and may by interaction influence sensitivity to anticancer drugs and therapy success. This review focusses on this novel concept and discusses the challenges for molecular pathology and laboratory diagnostics while providing putative solutions to overcome the present pitfalls, thereby taking NSCLC as an example.
Collapse
|
29
|
Xuan B, Ghosh D, Cheney EM, Clifton EM, Dawson MR. Dysregulation in Actin Cytoskeletal Organization Drives Increased Stiffness and Migratory Persistence in Polyploidal Giant Cancer Cells. Sci Rep 2018; 8:11935. [PMID: 30093656 PMCID: PMC6085392 DOI: 10.1038/s41598-018-29817-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Polyploidal giant cancer cells (PGCCs) have been observed by pathologists in patient tumor samples and are especially prominent in late stage, high grade disease or after chemotherapy. However, they are often overlooked due to their apparent dormancy. Recent research has shown PGCCs to be chemoresistant and express stem-like features, traits associated with disease progression and relapse. Here, we show the preferential survival of PGCCs during Paclitaxel (PTX) treatment and used multiple particle tracking analysis to probe their unique biophysical phenotype. We show that PGCCs have higher inherent cytoplasmic and nuclear stiffness in order to withstand the mechanical stress associated with their increased size and the chemical stress from PTX treatment. Inhibitor studies show the involvement of a dysregulated RhoA-Rock1 pathway and overall actin cytoskeletal network as the underlying mechanism for the altered biophysical phenotype of PGCCs. Furthermore, PGCCs exhibit a slow but persistent migratory phenotype, a trait commonly associated with metastatic dissemination and invasiveness. This work demonstrates the clinical relevance and the need to study this subpopulation, in order to devise therapeutic strategies to combat disease relapse. By highlighting the unique biophysical phenotype of PGCCs, we hope to provide unique avenues for therapeutic targeting of these cells in disease treatment.
Collapse
Affiliation(s)
- Botai Xuan
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA
| | - Deepraj Ghosh
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA
| | - Emily M Cheney
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA
| | - Elizabeth M Clifton
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA
| | - Michelle R Dawson
- Brown University, Department of Molecular Pharmacology, Physiology, and Biotechnology, Providence, 02912, USA.
- Brown University, Center for Biomedical Engineering, Providence, 02912, USA.
- Brown University, School of Engineering, Providence, 02912, USA.
| |
Collapse
|
30
|
Blanchard GB, Fletcher AG, Schumacher LJ. The devil is in the mesoscale: Mechanical and behavioural heterogeneity in collective cell movement. Semin Cell Dev Biol 2018; 93:46-54. [PMID: 29940338 DOI: 10.1016/j.semcdb.2018.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Abstract
Heterogeneity within cell populations can be an important aspect affecting their collective movement and tissue-mechanical properties, determining for example their effective viscoelasticity. Differences in cell-level properties and behaviour within a group of moving cells can give rise to unexpected and non-intuitive behaviours at the tissue level. Such emergent phenomena often manifest themselves through spatiotemporal patterns at an intermediate 'mesoscale' between cell and tissue scales, typically involving tens of cells. Focussing on the development of embryonic animal tissues, we review recent evidence for the importance of heterogeneity at the mesoscale for collective cell migration and convergence and extension movements. We further discuss approaches to incorporate heterogeneity into computational models to complement experimental investigations.
Collapse
Affiliation(s)
- Guy B Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK; Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Linus J Schumacher
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
31
|
Deng LL, Deng HB, Lu CL, Gao G, Wang F, Yang Y. Differential molecular markers of primary lung tumors and metastatic sites indicate different possible treatment selections in patients with metastatic lung adenocarcinoma. Clin Transl Oncol 2018; 21:197-205. [DOI: 10.1007/s12094-018-1906-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022]
|