1
|
Sándor AD, Corduneanu A, Orlova M, Hornok S, Cabezas-Cruz A, Foucault-Simonin A, Kulisz J, Zając Z, Borzan M. Diversity of bartonellae in mites (Acari: Mesostigmata: Macronyssidae and Spinturnicidae) of boreal forest bats: Association of host specificity of mites and habitat selection of hosts with vector potential. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:518-529. [PMID: 39175110 DOI: 10.1111/mve.12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
Research into various bacterial pathogens that can be transmitted between different animals and may have zoonotic potential has led to the discovery of different strains of Bartonella sp. in bats and their associated ectoparasites. Despite their enormous species diversity, only a few studies have focussed on the detection of bacterial pathogens in insectivorous bats of boreal forests and their associated Macronyssidae and Spinturnicidae mites. We collected and molecularly analysed mite samples from forest-dwelling bat species distributed all along the boreal belt of the Palearctic, from Central Europe to Far East. Ectoparasitic mites were pooled for DNA extraction and DNA amplification polymerase chain reaction (PCRs) were conducted to detect the presence of various bacterial (Anaplasmataceae, Bartonella sp., Rickettsia sp., Mycoplasma sp.) and protozoal (Hepatozoon sp.) pathogens. Bartonella sp. DNA was detected in four different mite species (Macronyssidae: Steatonyssus periblepharus and Spinturnicidae: Spinturnix acuminata, Sp. myoti and Sp. mystacinus), with different prevalences of the targeted gene (gltA, 16-23S ribosomal RNA intergenic spacer and ftsZ). Larger pools (>5 samples pooled) were more likely to harbour Bartonella sp. DNA, than smaller ones. In addition, cave-dwelling bat hosts and host generalist mite species are more associated with Bartonella spp. presence. Spinturnicidae mites may transmit several distinct Bartonella strains, which cluster phylogenetically close to Bartonella species known to cause diseases in humans and livestock. Mites with ubiquitous presence may facilitate the long-term maintenance (and even local recurrence) of Bartonella-infestations inside local bat populations, thus acting as continuous reservoirs for Bartonella spp in bats.
Collapse
Affiliation(s)
- Attila D Sándor
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, Hungary
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Alexandra Corduneanu
- Department of Parasitology and Parasitic Diseases, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Maria Orlova
- Department of Mobilization Training of Health Care and Disaster Medicine, Tyumen State Medical University, Tyumen, Russia
- Department of Research and Production Laboratory of Engineering Surveys and Environmental Technologies, National Research Tomsk State University, Tomsk, Russia
- Laboratory of Transmissible Viral Infections and Tick-Borne Encephalitis, Federal Scientific Research Institute of Viral Infections 'Virome', Yekaterinburg, Russia
| | - Sándor Hornok
- HUN-REN-UVMB Climate Change: New Blood-sucking Parasites and Vector-borne Pathogens Research Group, Budapest, Hungary
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Angélique Foucault-Simonin
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Joanna Kulisz
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Zbigniew Zając
- Department of Biology and Parasitology, Medical University of Lublin, Lublin, Poland
| | - Mihai Borzan
- Department of Animal Breeding and Animal Production, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Jackson RT, Lunn TJ, DeAnglis IK, Ogola JG, Webala PW, Forbes KM. Frequent and intense human-bat interactions occur in buildings of rural Kenya. PLoS Negl Trop Dis 2024; 18:e0011988. [PMID: 38412171 PMCID: PMC10923417 DOI: 10.1371/journal.pntd.0011988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
Simultaneous use of domestic spaces by humans and wildlife is little understood, despite global ubiquity, and can create an interface for human exposure to wildlife pathogens. Bats are a pervasive synanthropic taxon and are associated with several pathogens that can spill over and cause disease in humans. Urbanization has destroyed much natural bat habitat and, in response, many species increasingly use buildings as roosts. The purpose of this study was to characterize human interactions with bats in shared buildings to assess potential for human exposure to and spillover of bat-borne pathogens. We surveyed 102 people living and working in buildings used as bat roosts in Taita-Taveta county, Kenya between 2021 and 2023. We characterized and quantified the duration, intensity, and frequency of human-bat interactions occurring in this common domestic setting. Survey respondents reported living with bats in buildings year-round, with cohabitation occurring consistently for at least 10 years in 38% of cases. Human contact with bats occurred primarily through direct and indirect routes, including exposure to excrement (90% of respondents), and direct touching of bats (39% of respondents). Indirect contacts most often occurred daily, and direct contacts most often occurred yearly. Domestic animal consumption of bats was also reported (16% of respondents). We demonstrate that shared building use by bats and humans in rural Kenya leads to prolonged, frequent, and sometimes intense interactions between bats and humans, consistent with interfaces that can facilitate exposure to bat pathogens and subsequent spillover. Identifying and understanding the settings and practices that may lead to zoonotic pathogen spillover is of great global importance for developing countermeasures, and this study establishes bat roosts in buildings as such a setting.
Collapse
Affiliation(s)
- Reilly T. Jackson
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Tamika J. Lunn
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Isabella K. DeAnglis
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Joseph G. Ogola
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|