1
|
Venkataram S, Kryazhimskiy S. Evolutionary repeatability of emergent properties of ecological communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220047. [PMID: 37004728 PMCID: PMC10067272 DOI: 10.1098/rstb.2022.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 04/04/2023] Open
Abstract
Most species belong to ecological communities where their interactions give rise to emergent community-level properties, such as diversity and productivity. Understanding and predicting how these properties change over time has been a major goal in ecology, with important practical implications for sustainability and human health. Less attention has been paid to the fact that community-level properties can also change because member species evolve. Yet, our ability to predict long-term eco-evolutionary dynamics hinges on how repeatably community-level properties change as a result of species evolution. Here, we review studies of evolution of both natural and experimental communities and make the case that community-level properties at least sometimes evolve repeatably. We discuss challenges faced in investigations of evolutionary repeatability. In particular, only a handful of studies enable us to quantify repeatability. We argue that quantifying repeatability at the community level is critical for approaching what we see as three major open questions in the field: (i) Is the observed degree of repeatability surprising? (ii) How is evolutionary repeatability at the community level related to repeatability at the level of traits of member species? (iii) What factors affect repeatability? We outline some theoretical and empirical approaches to addressing these questions. Advances in these directions will not only enrich our basic understanding of evolution and ecology but will also help us predict eco-evolutionary dynamics. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Sandeep Venkataram
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Blount ZD, Lenski RE, Losos JB. Contingency and determinism in evolution: Replaying life’s tape. Science 2018; 362:362/6415/eaam5979. [DOI: 10.1126/science.aam5979] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historical processes display some degree of “contingency,” meaning their outcomes are sensitive to seemingly inconsequential events that can fundamentally change the future. Contingency is what makes historical outcomes unpredictable. Unlike many other natural phenomena, evolution is a historical process. Evolutionary change is often driven by the deterministic force of natural selection, but natural selection works upon variation that arises unpredictably through time by random mutation, and even beneficial mutations can be lost by chance through genetic drift. Moreover, evolution has taken place within a planetary environment with a particular history of its own. This tension between determinism and contingency makes evolutionary biology a kind of hybrid between science and history. While philosophers of science examine the nuances of contingency, biologists have performed many empirical studies of evolutionary repeatability and contingency. Here, we review the experimental and comparative evidence from these studies. Replicate populations in evolutionary “replay” experiments often show parallel changes, especially in overall performance, although idiosyncratic outcomes show that the particulars of a lineage’s history can affect which of several evolutionary paths is taken. Comparative biologists have found many notable examples of convergent adaptation to similar conditions, but quantification of how frequently such convergence occurs is difficult. On balance, the evidence indicates that evolution tends to be surprisingly repeatable among closely related lineages, but disparate outcomes become more likely as the footprint of history grows deeper. Ongoing research on the structure of adaptive landscapes is providing additional insight into the interplay of fate and chance in the evolutionary process.
Collapse
Affiliation(s)
- Zachary D. Blount
- Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
- Department of Biology, Kenyon College, Gambier, OH 43022, USA
| | - Richard E. Lenski
- Department of Microbiology and Molecular Genetics and BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan B. Losos
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Villa Martín P, Hidalgo J, Rubio de Casas R, Muñoz MA. Eco-evolutionary Model of Rapid Phenotypic Diversification in Species-Rich Communities. PLoS Comput Biol 2016; 12:e1005139. [PMID: 27736874 PMCID: PMC5063285 DOI: 10.1371/journal.pcbi.1005139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/09/2016] [Indexed: 12/30/2022] Open
Abstract
Evolutionary and ecosystem dynamics are often treated as different processes –operating at separate timescales– even if evidence reveals that rapid evolutionary changes can feed back into ecological interactions. A recent long-term field experiment has explicitly shown that communities of competing plant species can experience very fast phenotypic diversification, and that this gives rise to enhanced complementarity in resource exploitation and to enlarged ecosystem-level productivity. Here, we build on progress made in recent years in the integration of eco-evolutionary dynamics, and present a computational approach aimed at describing these empirical findings in detail. In particular we model a community of organisms of different but similar species evolving in time through mechanisms of birth, competition, sexual reproduction, descent with modification, and death. Based on simple rules, this model provides a rationalization for the emergence of rapid phenotypic diversification in species-rich communities. Furthermore, it also leads to non-trivial predictions about long-term phenotypic change and ecological interactions. Our results illustrate that the presence of highly specialized, non-competing species leads to very stable communities and reveals that phenotypically equivalent species occupying the same niche may emerge and coexist for very long times. Thus, the framework presented here provides a simple approach –complementing existing theories, but specifically devised to account for the specificities of the recent empirical findings for plant communities– to explain the collective emergence of diversification at a community level, and paves the way to further scrutinize the intimate entanglement of ecological and evolutionary processes, especially in species-rich communities. Population ecology and evolutionary biology have been traditionally studied as separate disciplines, even if feedbacks between community and evolutionary processes are known to exist, having been empirically characterized in recent years in different types of communities (from microbes to plants and vertebrates), and theoretically analyzed with novel and powerful mathematical tools. Recent long-term field experiments with plants have proven that rapid co-evolution and diversification of species traits results in an overall enhancement of the ecosystem productivity, with important consequences for agriculture and conservation. Here, we propose a relatively simple computational eco-evolutionary model specifically devised to describe rapid phenotypic diversification in this type of species-rich communities. Our model captures the main phenomenology observed experimentally, and it also makes non-trivial predictions for long term phenotypic change and ecological interactions, such as the stable coexistence of highly specialized species or the possible emergence of phenotypically equivalent species occupying the same niche. Finally, the model is easily generalizable to analyze different eco-evolutionary problems within a relatively simple and unified computational framework.
Collapse
Affiliation(s)
- Paula Villa Martín
- Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
| | - Jorge Hidalgo
- Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
- Dipartimento di Fisica ’G.Galilei’ and CNISM, INFN, Università di Padova, Padova, Italy
| | - Rafael Rubio de Casas
- Estación Experimental de Zonas Áridas, EEZA-CSIC, Almería, Spain
- UMR 5175 Centre d’Ecologie Fonctionnelle et Evolutive (CNRS), Montpellier, France
- Departamento de Ecología, Universidad de Granada, Granada, Spain
| | - Miguel A. Muñoz
- Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Granada, Spain
- * E-mail:
| |
Collapse
|
4
|
Rendueles O, Velicer GJ. Evolution by flight and fight: diverse mechanisms of adaptation by actively motile microbes. ISME JOURNAL 2016; 11:555-568. [PMID: 27662568 PMCID: PMC5270557 DOI: 10.1038/ismej.2016.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/19/2016] [Accepted: 07/03/2016] [Indexed: 01/16/2023]
Abstract
Evolutionary adaptation can be achieved by mechanisms accessible to all organisms, including faster growth and interference competition, but self-generated motility offers additional possibilities. We tested whether 55 populations of the bacterium Myxococcus xanthus that underwent selection for increased fitness at the leading edge of swarming colonies adapted by swarming faster toward unused resources or by other means. Populations adapted greatly but diversified markedly in both swarming phenotypes and apparent mechanisms of adaptation. Intriguingly, although many adapted populations swarm intrinsically faster than their ancestors, numerous others do not. Some populations evolved interference competition toward their ancestors, whereas others gained the ability to facultatively increase swarming rate specifically upon direct interaction with ancestral competitors. Our results both highlight the diverse range of mechanisms by which actively motile organisms can adapt evolutionarily and help to explain the high levels of swarming-phenotype diversity found in local soil populations of M. xanthus.
Collapse
Affiliation(s)
- Olaya Rendueles
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse 16, Zürich, Switzerland
| |
Collapse
|
5
|
Saxer G, Travisano M. Parallelism in adaptive radiations of experimental Escherichia coli populations. Evolution 2015; 70:98-110. [PMID: 26683761 DOI: 10.1111/evo.12841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 12/01/2022]
Abstract
Adaptive radiations are major contributors to species diversity. Although the underlying mechanisms of adaptive radiations, specialization and trade-offs, are relatively well understood, the tempo and repeatability of adaptive radiations remain elusive. Ecological specialization can occur through the expansion into novel niches or through partitioning of an existing niche. To test how the mode of resource specialization affects the tempo and repeatability of adaptive radiations, we selected replicate bacterial populations in environments that promoted the evolution of diversity either through niche expansion or through niche partitioning, and in a third low-quality single-resource environment, in which diversity was not expected to evolve. Colony size diversity evolved equally fast in environments that provided ecological opportunities regardless of the mode of resource specialization. In the low-quality environments, diversity did not consistently evolve. We observed the largest fitness improvement in the low-quality environment and the smallest the glucose-limited environment. We did not observe a change in the rate of evolutionary change in either trait or environment, suggesting that the pool of beneficial mutations was not exhausted. Overall, the mode of resource specialization did not affect the tempo or repeatability of adaptive radiations. These results demonstrate the limitations of eco-evolutionary feedbacks to affect evolutionary outcomes.
Collapse
Affiliation(s)
- Gerda Saxer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204. .,Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of BioSciences, MS 140, Rice University, 6100 Main Street, Houston, Texas, 77005. .,Current Address: Industrial Biosciences, E.I. du Pont de Nemours and Company, Experimental Station, PO Box 8352, Wilmington, Delaware, 19803.
| | - Michael Travisano
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204.,Department of Ecology, Evolution and Behavior, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, Minnesota, 55108
| |
Collapse
|
6
|
Puentes-Téllez PE, van Elsas JD. Sympatric metabolic diversification of experimentally evolved Escherichia coli in a complex environment. Antonie van Leeuwenhoek 2014; 106:565-76. [DOI: 10.1007/s10482-014-0228-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/26/2014] [Indexed: 11/24/2022]
|
7
|
Puentes-Téllez PE, van Elsas JD. Differential stress resistance and metabolic traits underlie coexistence in a sympatrically evolved bacterial population. Environ Microbiol 2014; 17:889-900. [PMID: 24976459 DOI: 10.1111/1462-2920.12551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/18/2014] [Indexed: 12/01/2022]
Abstract
Following intermittent batch growth in Luria-Bertani (LB) broth for about 1000 generations, differentially evolved forms were found in a population of Escherichia coli cells. Studies on this population revealed the emergence of key polymorphisms, as evidenced by analysis of both whole genome sequences and transcription analysis. Here, we investigated the phenotypic nature of several key forms and found a remarkable (interactive) coexistence of forms which highlights the presence of different ecological roles pointing at a dichotomy in: (i) tolerance to environmental stresses and (ii) the capacity to utilize particular carbon sources such as galactose. Both forms differed from their common ancestor by different criteria. This apparent coexistence of two diverged forms points at the occurrence of niche partitioning as a consequence of dichotomous adaptive evolution. Remarkably, the two forms were shown to continue to coexist - in varying ratio's - in an experiment that cycled them through periods of nutrient feast (plentiful growth substrates) and famine (growth-restrictive - stress conditions). The results further indicated that the equilibrium of the coexistence was destroyed when one of the parameters was high tuned, jeopardizing the stability of the coexisting pair.
Collapse
|
8
|
Ratcliff WC, Herron MD, Howell K, Pentz JT, Rosenzweig F, Travisano M. Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat Commun 2014; 4:2742. [PMID: 24193369 PMCID: PMC3831279 DOI: 10.1038/ncomms3742] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023] Open
Abstract
The transition to multicellularity enabled the evolution of large, complex organisms, but early steps in this transition remain poorly understood. Here we show that multicellular complexity, including development from a single cell, can evolve rapidly in a unicellular organism that has never had a multicellular ancestor. We subject the alga Chlamydomonas reinhardtii to conditions that favour multicellularity, resulting in the evolution of a multicellular life cycle in which clusters reproduce via motile unicellular propagules. While a single-cell genetic bottleneck during ontogeny is widely regarded as an adaptation to limit among-cell conflict, its appearance very early in this transition suggests that it did not evolve for this purpose. Instead, we find that unicellular propagules are adaptive even in the absence of intercellular conflict, maximizing cluster-level fecundity. These results demonstrate that the unicellular bottleneck, a trait essential for evolving multicellular complexity, can arise rapidly via co-option of the ancestral unicellular form. The early steps in the evolution of multicellularity are poorly understood. Here, Ratcliff et al. show that multicellularity can rapidly evolve in the green alga Chlamydomonas reinhardtii, demonstrating that single-cell developmental bottlenecks may evolve rapidly via co-option of the ancestral phenotype.
Collapse
Affiliation(s)
- William C Ratcliff
- 1] School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA [2] Ecology, Evolution and Behavior, University of Minnesota, Minneapolis, Minnesota 55108, USA [3] The BioTechnology Institute, University of Minnesota, Minneapolis, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Herron MD, Doebeli M. Parallel evolutionary dynamics of adaptive diversification in Escherichia coli. PLoS Biol 2013; 11:e1001490. [PMID: 23431270 PMCID: PMC3576414 DOI: 10.1371/journal.pbio.1001490] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/09/2013] [Indexed: 11/19/2022] Open
Abstract
The divergence of Escherichia coli bacteria into metabolically distinct ecotypes has a similar genetic basis and similar evolutionary dynamics across independently evolved populations. The causes and mechanisms of evolutionary diversification are central issues in biology. Geographic isolation is the traditional explanation for diversification, but recent theoretical and empirical studies have shown that frequency-dependent selection can drive diversification without isolation and that adaptive diversification occurring in sympatry may be an important source of biological diversity. However, there are no empirical examples in which sympatric lineage splits have been understood at the genetic level, and it is unknown how predictable this process is—that is, whether similar ecological settings lead to parallel evolutionary dynamics of diversification. We documented the genetic basis and the evolutionary dynamics of adaptive diversification in three replicate evolution experiments, in which competition for two carbon sources caused initially isogenic populations of the bacterium Escherichia coli to diversify into two coexisting ecotypes representing different physiological adaptations in the central carbohydrate metabolism. Whole-genome sequencing of clones of each ecotype from different populations revealed many parallel and some unique genetic changes underlying the derived phenotypes, including changes to the same genes and sometimes to the same nucleotide. Timelines of allele frequencies extracted from the frozen “fossil” record of the three evolving populations suggest parallel evolutionary dynamics driven at least in part by a co-evolutionary process in which mutations causing one type of physiology changed the ecological environment, allowing the invasion of mutations causing an alternate physiology. This process closely corresponds to the evolutionary dynamics seen in mathematical models of adaptive diversification due to frequency-dependent ecological interactions. The parallel genetic changes underlying similar phenotypes in independently evolved lineages provide empirical evidence of adaptive diversification as a predictable evolutionary process. The causes and mechanisms of evolutionary diversification are central issues in biology. There is well-established theory that predicts that adaptive diversification can arise because of ecological interactions between individuals, such as competition or predation, but there are no empirical examples in which this process has been observed at the genetic level. We documented the genetic basis of adaptive diversification resulting from competition for resources in populations of the bacterium Escherichia coli. The populations diversified into two coexisting ecotypes representing different physiological adaptations. We found that similar but independently evolved phenotypes often shared mutations in the same gene and, in four cases, shared identical mutations at the same nucleotide position. Timelines of allele frequencies extracted from the frozen “fossil record” of three evolving populations showed parallel evolutionary dynamics, suggesting that mutations causing one type of physiology changed the ecological environment and allowed invasion of mutations causing an alternate physiology. The results provide empirical evidence of adaptive diversification as a predictable evolutionary process.
Collapse
Affiliation(s)
- Matthew D. Herron
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Doebeli
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
11
|
Maharjan RP, Ferenci T, Reeves PR, Li Y, Liu B, Wang L. The multiplicity of divergence mechanisms in a single evolving population. Genome Biol 2012; 13:R41. [PMID: 22682524 PMCID: PMC3446313 DOI: 10.1186/gb-2012-13-6-r41] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/25/2012] [Accepted: 06/08/2012] [Indexed: 01/06/2023] Open
Abstract
Background Evolutionary divergence is common within bacterial species and populations, even during a single bacterial infection. We use large-scale genomic and phenotypic analysis to identify the extent of diversification in controlled experimental populations and apply these data to differentiate between several potential mechanisms of evolutionary divergence. Results We defined testable differences between five proposed mechanisms and used experimental evolution studies to follow eight glucose-limited Escherichia coli chemostat populations at two growth rates. Simple phenotypic tests identified 11 phenotype combinations evolving under glucose limitation. Each evolved population exhibited 3 to 5 different combinations of the 11 phenotypic clusters. Genome sequencing of a representative of each phenotypic cluster from each population identified 193 mutations in 48 isolates. Only two of the 48 strains had evolved identically. Convergent paths to the same phenotype occurred, but two pleiotropic mutations were unique to slow-growing bacteria, permitting them greater phenotypic variance. Indeed, greater diversity arose in slower-growing, more stressed cultures. Mutation accumulation, hypermutator presence and fitness mechanisms varied between and within populations, with the evolved fitness considerably more uniform with fast growth cultures. Negative frequency-dependent fitness was shown by a subset of isolates. Conclusions Evolutionary diversity is unlikely to be explained by any one of the available mechanisms. For a large population as used in this study, our results suggest that multiple mechanisms contribute to the mix of phenotypes and evolved fitness types in a diversifying population. Another major conclusion is that the capacity of a population to diversify is a function of growth rate.
Collapse
Affiliation(s)
- Ram P Maharjan
- TEDA School of Biological Sciences and Biotechnology, Nankai University, Tianjin, PR China
| | | | | | | | | | | |
Collapse
|
12
|
Wu H, Zhang Z, Hu S, Yu J. On the molecular mechanism of GC content variation among eubacterial genomes. Biol Direct 2012; 7:2. [PMID: 22230424 PMCID: PMC3274465 DOI: 10.1186/1745-6150-7-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 01/10/2012] [Indexed: 12/02/2022] Open
Abstract
Background As a key parameter of genome sequence variation, the GC content of bacterial genomes has been investigated for over half a century, and many hypotheses have been put forward to explain this GC content variation and its relationship to other fundamental processes. Previously, we classified eubacteria into dnaE-based groups (the dimeric combination of DNA polymerase III alpha subunits), according to a hypothesis where GC content variation is essentially governed by genome replication and DNA repair mechanisms. Further investigation led to the discovery that two major mutator genes, polC and dnaE2, may be responsible for genomic GC content variation. Consequently, an in-depth analysis was conducted to evaluate various potential intrinsic and extrinsic factors in association with GC content variation among eubacterial genomes. Results Mutator genes, especially those with dominant effects on the mutation spectra, are biased towards either GC or AT richness, and they alter genomic GC content in the two opposite directions. Increased bacterial genome size (or gene number) appears to rely on increased genomic GC content; however, it is unclear whether the changes are directly related to certain environmental pressures. Certain environmental and bacteriological features are related to GC content variation, but their trends are more obvious when analyzed under the dnaE-based grouping scheme. Most terrestrial, plant-associated, and nitrogen-fixing bacteria are members of the dnaE1|dnaE2 group, whereas most pathogenic or symbiotic bacteria in insects, and those dwelling in aquatic environments, are largely members of the dnaE1|polV group. Conclusion Our studies provide several lines of evidence indicating that DNA polymerase III α subunit and its isoforms participating in either replication (such as polC) or SOS mutagenesis/translesion synthesis (such as dnaE2), play dominant roles in determining GC variability. Other environmental or bacteriological factors, such as genome size, temperature, oxygen requirement, and habitat, either play subsidiary roles or rely indirectly on different mutator genes to fine-tune the GC content. These results provide a comprehensive insight into mechanisms of GC content variation and the robustness of eubacterial genomes in adapting their ever-changing environments over billions of years. Reviewers This paper was reviewed by Nicolas Galtier, Adam Eyre-Walker, and Eugene Koonin.
Collapse
Affiliation(s)
- Hao Wu
- James D Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310007, China
| | | | | | | |
Collapse
|
13
|
Phenotypic diversity caused by differential RpoS activity among environmental Escherichia coli isolates. Appl Environ Microbiol 2011; 77:7915-23. [PMID: 21948830 DOI: 10.1128/aem.05274-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteric bacteria deposited into the environment by animal hosts are subject to diverse selective pressures. These pressures may act on phenotypic differences in bacterial populations and select adaptive mutations for survival in stress. As a model to study phenotypic diversity in environmental bacteria, we examined mutations of the stress response sigma factor, RpoS, in environmental Escherichia coli isolates. A total of 2,040 isolates from urban beaches and nearby fecal pollution sources on Lake Ontario (Canada) were screened for RpoS function by examining growth on succinate and catalase activity, two RpoS-dependent phenotypes. The rpoS sequence was determined for 45 isolates, including all candidate RpoS mutants, and of these, six isolates were confirmed as mutants with the complete loss of RpoS function. Similarly to laboratory strains, the RpoS expression of these environmental isolates was stationary phase dependent. However, the expression of RpoS regulon members KatE and AppA had differing levels of expression in several environmental isolates compared to those in laboratory strains. Furthermore, after plating rpoS+ isolates on succinate, RpoS mutants could be readily selected from environmental E. coli. Naturally isolated and succinate-selected RpoS mutants had lower generation times on poor carbon sources and lower stress resistance than their rpoS+ isogenic parental strains. These results show that RpoS mutants are present in the environment (with a frequency of 0.003 among isolates) and that, similarly to laboratory and pathogenic strains, growth on poor carbon sources selects for rpoS mutations in environmental E. coli. RpoS selection may be an important determinant of phenotypic diversification and, hence, the survival of E. coli in the environment.
Collapse
|
14
|
Herron MD, Doebeli M. Adaptive diversification of a plastic trait in a predictably fluctuating environment. J Theor Biol 2011; 285:58-68. [DOI: 10.1016/j.jtbi.2011.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
15
|
Saxer G, Doebeli M, Travisano M. The repeatability of adaptive radiation during long-term experimental evolution of Escherichia coli in a multiple nutrient environment. PLoS One 2010; 5:e14184. [PMID: 21152028 PMCID: PMC2996281 DOI: 10.1371/journal.pone.0014184] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 11/11/2010] [Indexed: 11/19/2022] Open
Abstract
Adaptive radiations occur when a species diversifies into different ecological specialists due to competition for resources and trade-offs associated with the specialization. The evolutionary outcome of an instance of adaptive radiation cannot generally be predicted because chance (stochastic events) and necessity (deterministic events) contribute to the evolution of diversity. With increasing contributions of chance, the degree of parallelism among different instances of adaptive radiations and the predictability of an outcome will decrease. To assess the relative contributions of chance and necessity during adaptive radiation, we performed a selection experiment by evolving twelve independent microcosms of Escherichia coli for 1000 generations in an environment that contained two distinct resources. Specialization to either of these resources involves strong trade-offs in the ability to use the other resource. After selection, we measured three phenotypic traits: 1) fitness, 2) mean colony size, and 3) colony size diversity. We used fitness relative to the ancestor as a measure of adaptation to the selective environment; changes in colony size as a measure of the evolution of new resource specialists because colony size has been shown to correlate with resource specialization; and colony size diversity as a measure of the evolved ecological diversity. Resource competition led to the rapid evolution of phenotypic diversity within microcosms. Measurements of fitness, colony size, and colony size diversity within and among microcosms showed that the repeatability of adaptive radiation was high, despite the evolution of genetic variation within microcosms. Consistent with the observation of parallel evolution, we show that the relative contributions of chance are far smaller and less important than effects due to adaptation for the traits investigated. The two-resource environment imposed similar selection pressures in independent populations and promoted parallel phenotypic adaptive radiations in all independently evolved microcosms.
Collapse
Affiliation(s)
- Gerda Saxer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America.
| | | | | |
Collapse
|
16
|
Cooper TF, Lenski RE. Experimental evolution with E. coli in diverse resource environments. I. Fluctuating environments promote divergence of replicate populations. BMC Evol Biol 2010; 10:11. [PMID: 20070898 PMCID: PMC2827396 DOI: 10.1186/1471-2148-10-11] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/13/2010] [Indexed: 12/11/2023] Open
Abstract
BACKGROUND Environmental conditions affect the topology of the adaptive landscape and thus the trajectories followed by evolving populations. For example, a heterogeneous environment might lead to a more rugged adaptive landscape, making it more likely that replicate populations would evolve toward distinct adaptive peaks, relative to a uniform environment. To date, the influence of environmental variability on evolutionary dynamics has received relatively little experimental study. RESULTS We report findings from an experiment designed to test the effects of environmental variability on the adaptation and divergence of replicate populations of E. coli. A total of 42 populations evolved for 2000 generations in 7 environmental regimes that differed in the number, identity, and presentation of the limiting resource. Regimes were organized in two sets, having the sugars glucose and maltose singly and in combination, or glucose and lactose singly and in combination. Combinations of sugars were presented either simultaneously or as temporally fluctuating resource regimes. This design allowed us to compare the effects of resource identity and presentation on the evolutionary trajectories followed by replicate populations. After 2000 generations, the fitness of all populations had increased relative to the common ancestor, but to different extents. Populations evolved in glucose improved the least, whereas populations evolving in maltose or lactose increased the most in their respective sets. Among-population divergence also differed across regimes, with variation higher in those groups that evolved in fluctuating environments than in those that faced constant resource regimens. This divergence under the fluctuating conditions increased between 1000 and 2000 generations, consistent with replicate populations evolving toward distinct adaptive peaks. CONCLUSIONS These results support the hypothesis that environmental heterogeneity can give rise to more rugged adaptive landscapes, which in turn promote evolutionary diversification. These results also demonstrate that this effect depends on the form of environmental heterogeneity, with greater divergence when the pairs of resources fluctuated temporally rather than being presented simultaneously.
Collapse
Affiliation(s)
- Tim F Cooper
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | | |
Collapse
|
17
|
Evolution of diversity in spatially structured Escherichia coli populations. Appl Environ Microbiol 2009; 75:6047-54. [PMID: 19648364 DOI: 10.1128/aem.00063-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stochastic Ricker population model was used to investigate the generation and maintenance of genetic diversity in a bacterial population grown in a spatially structured environment. In particular, we showed that Escherichia coli undergoes dramatic genetic diversification when grown as a biofilm. Using a novel biofilm entrapment method, we retrieved 64 clones from each of six different depths of a mature biofilm, and after subculturing for approximately 30 generations, we measured their growth kinetics in three different media. We fit a stochastic Ricker population growth model to the recorded growth curves. The growth kinetics of clonal lineages descendant from cells sampled at different biofilm depths varied as a function of both the depth in the biofilm and the growth medium used. We concluded that differences in the growth dynamics of clones were heritable and arose during adaptive evolution under local conditions in a spatially heterogeneous environment. We postulate that under nutrient-limited conditions, selective sweeps would be protracted and would be insufficient to purge less-fit variants, a phenomenon that would allow the coexistence of genetically distinct clones. These findings contribute to the current understanding of biofilm ecology and complement current hypotheses for the maintenance and generation of microbial diversity in spatially structured environments.
Collapse
|
18
|
Crombach A, Hogeweg P. Evolution of resource cycling in ecosystems and individuals. BMC Evol Biol 2009; 9:122. [PMID: 19486519 PMCID: PMC2698886 DOI: 10.1186/1471-2148-9-122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 06/01/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resource cycling is a defining process in the maintenance of the biosphere. Microbial communities, ranging from simple to highly diverse, play a crucial role in this process. Yet the evolutionary adaptation and speciation of micro-organisms have rarely been studied in the context of resource cycling. In this study, our basic questions are how does a community evolve its resource usage and how are resource cycles partitioned? RESULTS We design a computational model in which a population of individuals evolves to take up nutrients and excrete waste. The waste of one individual is another's resource. Given a fixed amount of resources, this leads to resource cycles. We find that the shortest cycle dominates the ecological dynamics, and over evolutionary time its length is minimized. Initially a single lineage processes a long cycle of resources, later crossfeeding lineages arise. The evolutionary dynamics that follow are determined by the strength of indirect selection for resource cycling. We study indirect selection by changing the spatial setting and the strength of direct selection. If individuals are fixed at lattice sites or direct selection is low, indirect selection result in lineages that structure their local environment, leading to 'smart' individuals and stable patterns of resource dynamics. The individuals are good at cycling resources themselves and do this with a short cycle. On the other hand, if individuals randomly change position each time step, or direct selection is high, individuals are more prone to crossfeeding: an ecosystem based solution with turbulent resource dynamics, and individuals that are less capable of cycling resources themselves. CONCLUSION In a baseline model of ecosystem evolution we demonstrate different eco-evolutionary trajectories of resource cycling. By varying the strength of indirect selection through the spatial setting and direct selection, the integration of information by the evolutionary process leads to qualitatively different results from individual smartness to cooperative community structures.
Collapse
Affiliation(s)
- Anton Crombach
- Theoretical Biology and Bioinformatics Group, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
19
|
Morphological diversity and the roles of contingency, chance and determinism in african cichlid radiations. PLoS One 2009; 4:e4740. [PMID: 19270732 PMCID: PMC2648897 DOI: 10.1371/journal.pone.0004740] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 02/04/2009] [Indexed: 11/29/2022] Open
Abstract
Background Deterministic evolution, phylogenetic contingency and evolutionary chance each can influence patterns of morphological diversification during adaptive radiation. In comparative studies of replicate radiations, convergence in a common morphospace implicates determinism, whereas non-convergence suggests the importance of contingency or chance. Methodology/Principal Findings The endemic cichlid fish assemblages of the three African great lakes have evolved similar sets of ecomorphs but show evidence of non-convergence when compared in a common morphospace, suggesting the importance of contingency and/or chance. We then analyzed the morphological diversity of each assemblage independently and compared their axes of diversification in the unconstrained global morphospace. We find that despite differences in phylogenetic composition, invasion history, and ecological setting, the three assemblages are diversifying along parallel axes through morphospace and have nearly identical variance-covariance structures among morphological elements. Conclusions/Significance By demonstrating that replicate adaptive radiations are diverging along parallel axes, we have shown that non-convergence in the common morphospace is associated with convergence in the global morphospace. Applying these complimentary analyses to future comparative studies will improve our understanding of the relationship between morphological convergence and non-convergence, and the roles of contingency, chance and determinism in driving morphological diversification.
Collapse
|
20
|
Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. ISME JOURNAL 2008; 2:1194-212. [DOI: 10.1038/ismej.2008.74] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Abstract
During a 1000-generation evolution experiment, two types of morphologically and kinetically distinct bacteria repeatedly diverged from a common ancestor in a fully sympatric seasonal environment containing glucose and acetate. To investigate the metabolic modifications associated with this adaptive diversification, we compared transcription profiles of the two derived types and the common ancestor. Both derived types share a suite of common metabolic changes that may represent adaptation to the environment preceding the diversification event. These include improved translation efficiency, glucose uptake capacity via the mal/lamB genes, upregulation of various transporters during stationary phase, and likely the disruption of the rbs operon. The diversification event is associated with the overexpression of genes involved in the TCA cycle, glyoxylate shunt, acetate consumption, and anaerobic respiration in one type and in acetate excretion in the other. These results reveal that competition for both carbon and oxygen have likely played an important role in the adaptation of Escherichia coli during this adaptive diversification event, where one derived type mainly consumes glucose at a fast rate when oxygen is not limiting, and the other derived type consumes glucose and acetate at a slower rate, even when oxygen is limiting.
Collapse
|
22
|
Tyerman JG, Bertrand M, Spencer CC, Doebeli M. Experimental demonstration of ecological character displacement. BMC Evol Biol 2008; 8:34. [PMID: 18234105 PMCID: PMC2267161 DOI: 10.1186/1471-2148-8-34] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Accepted: 01/30/2008] [Indexed: 11/24/2022] Open
Abstract
Background The evolutionary consequences of competition are of great interest to researchers studying sympatric speciation, adaptive radiation, species coexistence and ecological assembly. Competition's role in driving evolutionary change in phenotypic distributions, and thus causing ecological character displacement, has been inferred from biogeographical data and measurements of divergent selection on a focal species in the presence of competitors. However, direct experimental demonstrations of character displacement due to competition are rare. Results We demonstrate a causal role for competition in ecological character displacement. Using populations of the bacterium Escherichia coli that have adaptively diversified into ecotypes exploiting different carbon resources, we show that when interspecific competition is relaxed, phenotypic distributions converge. When we reinstate competition, phenotypic distributions diverge. Conclusion This accordion-like dynamic provides direct experimental evidence that competition for resources can cause evolutionary shifts in resource-related characters.
Collapse
Affiliation(s)
- Jabus G Tyerman
- Dept. Zoology & Centre for Biodiversity, University of British Columbia, 6270 University Blvd., Vancouver, BC, V6T 1Z4 Canada.
| | | | | | | |
Collapse
|
23
|
Adaptation increases the likelihood of diversification in an experimental bacterial lineage. Proc Natl Acad Sci U S A 2008; 105:1585-9. [PMID: 18216261 DOI: 10.1073/pnas.0708504105] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms and processes that generate biological diversity is a fundamental problem in evolution and ecology. In the past decade, the theory of evolutionary branching and adaptive diversification has provided new perspectives for understanding the evolution of diversity caused by ecological interactions. In models of adaptive diversification, the fitness landscapes change dynamically, so that the likelihood of diversification into different phenotypic clusters increases over time. In contrast, in models with static fitness landscapes, the likelihood of diversification decreases as populations climb fitness peaks, because crossing maladaptive fitness valleys becomes increasingly difficult. We used experimental evolution in bacteria to test how the likelihood of diversification changes over time in a bacterial lineage that has diversified in sympatry from a single ancestral strain. By analyzing the "fossil" record of this lineage, and restarting the lineage from different time points in the evolutionary past, we demonstrate that: (i) the lineage has initially undergone a phase of directional adaptation to the competitive environment, and (ii) during this phase, the likelihood of diversification increases significantly over time. These results suggest evolutionary branching caused by frequency-dependent competition as the main mechanism of diversification in our experimental populations.
Collapse
|
24
|
Bacher JM, Waas WF, Metzgar D, de Crécy-Lagard V, Schimmel P. Genetic code ambiguity confers a selective advantage on Acinetobacter baylyi. J Bacteriol 2007; 189:6494-6. [PMID: 17616603 PMCID: PMC1951902 DOI: 10.1128/jb.00622-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A primitive genetic code, composed of a smaller set of amino acids, may have expanded via recursive periods of genetic code ambiguity that were followed by specificity. Here we model a step in this process by showing how genetic code ambiguity could result in an enhanced growth rate in Acinetobacter baylyi.
Collapse
Affiliation(s)
- Jamie M Bacher
- The Scripps Research Institute, 10550 N. Torrey Pines Rd., BCC-379, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
25
|
Spencer CC, Bertrand M, Travisano M, Doebeli M. Adaptive diversification in genes that regulate resource use in Escherichia coli. PLoS Genet 2007; 3:e15. [PMID: 17238290 PMCID: PMC1779306 DOI: 10.1371/journal.pgen.0030015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 12/08/2006] [Indexed: 11/18/2022] Open
Abstract
While there has been much recent focus on the ecological causes of adaptive diversification, we know less about the genetic nature of the trade-offs in resource use that create and maintain stable, diversified ecotypes. Here we show how a regulatory genetic change can contribute to sympatric diversification caused by differential resource use and maintained by negative frequency-dependent selection in Escherichia coli. During adaptation to sequential use of glucose and acetate, these bacteria differentiate into two ecotypes that differ in their growth profiles. The "slow-switcher" exhibits a long lag when switching to growth on acetate after depletion of glucose, whereas the "fast-switcher" exhibits a short switching lag. We show that the short switching time in the fast-switcher is associated with a failure to down-regulate potentially costly acetate metabolism during growth on glucose. While growing on glucose, the fast-switcher expresses malate synthase A (aceB), a critical gene for acetate metabolism that fails to be properly down-regulated because of a transposon insertion in one of its regulators. Swapping the mutant regulatory allele with the ancestral allele indicated that the transposon is in part responsible for the observed differentiation between ecological types. Our results provide a rare example of a mechanistic integration of diversifying processes at the genetic, physiological, and ecological levels.
Collapse
Affiliation(s)
- Christine C Spencer
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
26
|
Hall AR, Colegrave N. How does resource supply affect evolutionary diversification? Proc Biol Sci 2007; 274:73-8. [PMID: 17015335 PMCID: PMC1679875 DOI: 10.1098/rspb.2006.3703] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 08/13/2006] [Indexed: 11/12/2022] Open
Abstract
The availability of different resources in the environment can affect the outcomes of evolutionary diversification. A unimodal distribution of diversity with resource supply has been widely observed and explained previously in the context of selection acting in a spatially heterogeneous environment. Here, we propose an alternative mechanism to explain the relationship between resource supply and diversification that is based on selection for exploitation of different resources. To test this mechanism, we conducted a selection experiment using the bacterium Pseudomonas fluorescens in spatially homogeneous environments over a wide range of resource supply rates. Our results show that niche diversification peaks at intermediate levels of resource availability. We suggest that this unimodal relationship is due to evolutionary diversification that is driven by competition for resources but constrained by the ecological opportunity represented by different resource types. These processes may underlie some general patterns of diversity, including latitudinal gradients in species richness and the effects of anthropogenic enrichment of the environment.
Collapse
Affiliation(s)
- Alex R Hall
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, West Mains road, Edinburgh EH9 3JT, UK.
| | | |
Collapse
|
27
|
Maharjan RP, Seeto S, Ferenci T. Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J Bacteriol 2006; 189:2350-8. [PMID: 17158684 PMCID: PMC1899394 DOI: 10.1128/jb.01414-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The energetic efficiency of nutrient uptake and conversion into biomass is a key factor in the ecological behavior of microorganisms. The constraints shaping the metabolic rate-yield trade-off in bacteria are not well understood. To examine whether metabolic rate-yield settings and physiological strategies evolve toward a particular optimum in a constant environment, we studied multiple Escherichia coli isolates evolving in a glucose-limited chemostat population. A major divergence in transport and metabolic strategies was observed, and the isolates included inefficient rate strategists (polluters or cheaters) and yield strategists (conservationists), as well as various hybrid rate-yield strategists and alternative ecotypes (dropouts). Sugar transport assays, strain comparisons based on metabolomics, and Biolog profiling revealed variance to the point of individuality within an evolving population. Only 68 of 177 metabolites assayed were not affected in 10 clonally related strains. The parallel enrichment of rate and yield strategists and the divergence in metabolic phylogenies indicate that bacteria do not converge on a particular rate-yield balance or unique evolutionary solutions. Redundancies in transport and metabolic pathways are proposed to have laid the framework for the multiplicity of bacterial adaptations.
Collapse
Affiliation(s)
- Ram Prasad Maharjan
- School of Molecular and Microbial Biosciences G08, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|