1
|
Murataeva N, Mattox S, Yust K, Du W, Straiker A. Murine vaginal secretory responses to a male volatile chemical messenger. Sci Rep 2024; 14:27707. [PMID: 39532947 PMCID: PMC11557582 DOI: 10.1038/s41598-024-77983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Many species use chemical messengers to communicate a remarkable range of information. Mice appear to make particular use of chemical messengers, including effects on estrous cycling and initiation, pregnancy, aggression, stress and of course attraction. Behavioral studies have helped identify several candidate messengers, or pheromones, that mediate attraction in mice. One question is whether attractive chemical messengers induced a physical vaginal secretory response. The preparation hypothesis posits that increased vaginal secretion would lubricate and protect the vagina in response to the prospect of imminent coitus, but this has been difficult to assess experimentally, particularly in mice. We developed a rapid, sensitive, minimally invasive method of quantifying vaginal moisture in mice and used this model to test vaginal secretory responses to male bedding. We report that female mice experience an increase in vaginal moisture after exposure to male, but not female, bedding. This response is induced by either physical or airborne exposure to male urine, to preputial gland extract, and to the preputial gland-derived pheromone alpha/beta farnesenes. This vaginal response is diurnally regulated, seen only during their active phase. The response is sensitive to the estrous phase, with a clear response during estrus but not during metestrus. We conclude that mice may serve as a model for aspects of vaginal function and that this assay will be readily applicable to other small animals. The identification of a pheromone-mediated vaginal secretory response offers a window into the regulation of the vaginal environment and the neurobiology of sexual responses in mice.
Collapse
Affiliation(s)
- Natalia Murataeva
- Gill Institute for Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, 1101 E 10th St, IN 47405, USA
| | - Sam Mattox
- Gill Institute for Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, 1101 E 10th St, IN 47405, USA
| | - Kyle Yust
- Gill Institute for Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, 1101 E 10th St, IN 47405, USA
| | - Wenwen Du
- Gill Institute for Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, 1101 E 10th St, IN 47405, USA
| | - Alex Straiker
- Gill Institute for Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, 1101 E 10th St, IN 47405, USA.
| |
Collapse
|
2
|
Coombes HA, Prescott MC, Stockley P, Beynon RJ, Hurst JL. The role of male scent in female attraction in the bank vole, Myodes glareolus. Sci Rep 2024; 14:4812. [PMID: 38413659 PMCID: PMC10899570 DOI: 10.1038/s41598-024-55235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Chemical signals are frequently utilised by male mammals for intersexual communication and females are often attracted to male scent. However, the mechanism underlying female attraction has only been identified in a small number of mammalian species. Mammalian scents contain airborne volatiles, that are detected by receivers at a distance from the scent source, as well as non-volatile molecules, such as proteins, that require physical contact for detection. Lipocalin proteins, produced within the scent secretions of many terrestrial mammals, are thought to be particularly important in chemical signalling. Here, we explore if the male-specific protein, glareosin, expressed by adult male bank voles, Myodes glareolus, stimulates female attraction to male scent. We show that female bank voles are more attracted to male compared to female scent, supporting the results of previous studies. Increased investigation and attraction to male scent occurred to both airborne volatiles and non-volatile proteins when they were presented separately. However, we found no evidence that attraction to male scent was driven by glareosin. Our results differ from those previously described in house mice, where a single protein induces female attraction to male scent, suggesting the mechanism underlying female attraction to male scent differs between species.
Collapse
Affiliation(s)
- Holly A Coombes
- Mammalian Behaviour and Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- Department of Biology, University of Oxford, Oxford, UK.
| | - Mark C Prescott
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Paula Stockley
- Mammalian Behaviour and Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jane L Hurst
- Mammalian Behaviour and Evolution Group, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Real MVF, Colvin MS, Sheehan MJ, Moeller AH. Major urinary protein ( Mup) gene family deletion drives sex-specific alterations in the house-mouse gut microbiota. Microbiol Spectr 2024; 12:e0356623. [PMID: 38170981 PMCID: PMC10846032 DOI: 10.1128/spectrum.03566-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
The gut microbiota is shaped by host metabolism. In house mice (Mus musculus), major urinary protein (MUP) pheromone production represents a considerable energy investment, particularly in sexually mature males. Deletion of the Mup gene family shifts mouse metabolism toward an anabolic state, marked by lipogenesis, lipid accumulation, and body mass increases. Given the metabolic implications of MUPs, they may also influence the gut microbiota. Here, we investigated the effect of a deletion of the Mup gene family on the gut microbiota of sexually mature mice. Shotgun metagenomics revealed distinct taxonomic and functional profiles between wild-type and knockout males but not females. Deletion of the Mup gene cluster significantly reduced diversity in microbial families and functions in male mice. Additionally, a species of Ruminococcaceae and several microbial functions, such as transporters involved in vitamin B5 acquisition, were significantly depleted in the microbiota of Mup knockout males. Altogether, these results show that MUPs significantly affect the gut microbiota of house mouse in a sex-specific manner.IMPORTANCEThe community of microorganisms that inhabits the gastrointestinal tract can have profound effects on host phenotypes. The gut microbiota is in turn shaped by host genes, including those involved with host metabolism. In adult male house mice, expression of the major urinary protein (Mup) gene cluster represents a substantial energy investment, and deletion of the Mup gene family leads to fat accumulation and weight gain in males. We show that deleting Mup genes also alters the gut microbiota of male, but not female, mice in terms of both taxonomic and functional compositions. Male mice without Mup genes harbored fewer gut bacterial families and reduced abundance of a species of Ruminococcaceae, a family that has been previously shown to reduce obesity risk. Studying the impact of the Mup gene family on the gut microbiota has the potential to reveal the ways in which these genes affect host phenotypes.
Collapse
Affiliation(s)
- Madalena V. F. Real
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Melanie S. Colvin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Real MVF, Colvin MS, Sheehan MJ, Moeller AH. Major urinary protein ( Mup) gene family deletion drives sex-specific alterations on the house mouse gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551491. [PMID: 37577672 PMCID: PMC10418228 DOI: 10.1101/2023.08.01.551491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The gut microbiota is shaped by host metabolism. In house mice (Mus musculus), major urinary protein (MUP) pheromone production represents a considerable energy investment, particularly in sexually mature males. Deletion of the Mup gene family shifts mouse metabolism towards an anabolic state, marked by lipogenesis, lipid accumulation, and body mass increases. Given the metabolic implications of MUPs, they may also influence the gut microbiota. Here, we investigated the effect of deletion of the Mup gene family on the gut microbiota of sexually mature mice. Shotgun metagenomics revealed distinct taxonomic and functional profiles between wildtype and knockout males, but not females. Deletion of the Mup gene cluster significantly reduced diversity in microbial families and functions in male mice. Additionally, specific taxa of the Ruminococcaceae family, which is associated with gut health and reduced risk of developing metabolic syndrome, and several microbial functions, such as transporters involved in vitamin B5 acquisition, were significantly depleted in the microbiota of Mup-knockout males. Altogether these results show that major urinary proteins significantly affect the gut microbiota of house mouse in a sex-specific manner.
Collapse
Affiliation(s)
- Madalena V. F. Real
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Melanie S. Colvin
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Andrew H. Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Dos Santos MB, de Oliveira Guarnieri L, Lunardi P, Schenatto Pereira G. On the effect of social cue valence in contextual memory persistence. Behav Brain Res 2023; 447:114398. [PMID: 36966939 DOI: 10.1016/j.bbr.2023.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
Social cues are valuable sensorial stimuli to the acquisition and retrieval of contextual memories. Here, we asked whether the valence of social cues would impact the formation of contextual memories. Adult male C57/BL6 mice were exposed to either conditioned place preference (CPP) or avoidance (CPA). As positive stimuli we used social interaction with a female (IF), while interaction with a male CD1 mice (IM) was used as negative stimulus. Contextual memory was tested 24 h and 7 days after conditioning. Aggressive behavior of CD1, as well as interaction with the female were quantified along the conditioning sessions. IM, but not IF, was salient enough to induce contextual memory estimated by the difference between the time in the conditioned context during test and habituation. Next, we chose two odors with innate behavioral responses and opposite valence to narrow down the sociability to one of its sensorial sources of information - the olfaction. We used urine from females in proestrus (U) and 2,4,5-trimethyl thiazoline (TMT), a predator odor. TMT decreased and U increased the time in the conditioned context during the test performed 24 h and 7 days after conditioning. Taken together, our results suggest that contextual memories conditioned to social encounters are difficult to stablish in mice, specially the one with positive valence. On the other hand, using odors with ecological relevance is a promising strategy to study long-term contextual memories with opposite valences. Ultimately, the behavioral protocol proposed here offers the advantage of studying contextual memories with opposite valences using unconditioned stimulus from the same sensorial category such as olfaction.
Collapse
Affiliation(s)
- Matheus Barbosa Dos Santos
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo de Oliveira Guarnieri
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Hood KE, Long E, Navarro E, Hurley LM. Playback of broadband vocalizations of female mice suppresses male ultrasonic calls. PLoS One 2023; 18:e0273742. [PMID: 36603000 PMCID: PMC9815654 DOI: 10.1371/journal.pone.0273742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 08/15/2022] [Indexed: 01/06/2023] Open
Abstract
Although male vocalizations during opposite- sex interaction have been heavily studied as sexually selected signals, the understanding of the roles of female vocal signals produced in this context is more limited. During intersexual interactions between mice, males produce a majority of ultrasonic vocalizations (USVs), while females produce a majority of human-audible squeaks, also called broadband vocalizations (BBVs). BBVs may be produced in conjunction with defensive aggression, making it difficult to assess whether males respond to BBVs themselves. To assess the direct effect of BBVs on male behavior, we used a split-cage paradigm in which high rates of male USVs were elicited by female presence on the other side of a barrier, but which precluded extensive male-female contact and the spontaneous production of BBVs. In this paradigm, playback of female BBVs decreased USV production, which recovered after the playback period. Trials in which female vocalizations were prevented by the use of female bedding alone or of anesthetized females as stimuli also showed a decrease in response to BBV playback. No non-vocal behaviors declined during playback, although digging behavior increased. Similar to BBVs, WNs also robustly suppressed USV production, albeit to a significantly larger extent. USVs suppression had two distinct temporal components. When grouped in 5-second bins, USVs interleaved with bursts of stimulus BBVs. USV suppression also adapted to BBV playback on the order of minutes. Adaptation occurred more rapidly in males that were housed individually as opposed to socially for a week prior to testing, suggesting that the adaptation trajectory is sensitive to social experience. These findings suggest the possibility that vocal interaction between male and female mice, with males suppressing USVs in response to BBVs, may influence the dynamics of communicative behavior.
Collapse
Affiliation(s)
- Kayleigh E. Hood
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Eden Long
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Eric Navarro
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| | - Laura M. Hurley
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
7
|
Kahnau P, Guenther A, Boon MN, Terzenbach JD, Hanitzsch E, Lewejohann L, Brust V. Lifetime Observation of Cognition and Physiological Parameters in Male Mice. Front Behav Neurosci 2021; 15:709775. [PMID: 34539359 PMCID: PMC8442583 DOI: 10.3389/fnbeh.2021.709775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
Laboratory mice are predominantly used for one experiment only, i.e., new mice are ordered or bred for every new experiment. Moreover, most experiments use relatively young mice in the range of late adolescence to early adulthood. As a consequence, little is known about the day-to-day life of adult and aged laboratory mice. Here we present a long-term data set with three consecutive phases conducted with the same male mice over their lifetime in order to shed light on possible long-term effects of repeated cognitive stimulation. One third of the animals was trained by a variety of learning tasks conducted up to an age of 606 days. The mice were housed in four cages with 12 animals per cage; only four mice per cage had to repeatedly solve cognitive tasks for getting access to water using the IntelliCage system. In addition, these learner mice were tested in standard cognitive tests outside their home-cage. The other eight mice served as two control groups living in the same environment but without having to solve tasks for getting access to water. One control group was additionally placed on the test set-ups without having to learn the tasks. Next to the cognitive tasks, we took physiological measures (body mass, resting metabolic rate) and tested for dominance behavior, and attractivity in a female choice experiment. Overall, the mice were under surveillance until they died a natural death, providing a unique data set over the course of virtually their entire lives. Our data showed treatment differences during the first phase of our lifetime data set. Young learner mice showed a higher activity, less growth and resting metabolic rate, and were less attractive for female mice. These effects, however, were not preserved over the long-term. We also did not find differences in dominance or effects on longevity. However, we generated a unique and valuable set of long-term behavioral and physiological data from a single group of male mice and note that our long-term data contribute to a better understanding of the behavioral and physiological processes in male C57Bl/6J mice.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Anja Guenther
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Marcus Nicolaas Boon
- Department for Electrical Engineering and Computer Science, Modeling of Cognitive Processes, Technische Universität Berlin, Berlin, Germany
- Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
| | | | - Eric Hanitzsch
- Behavioral Phenotyping Unit, University of Osnabrück, Osnabrück, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Animal Behavior and Laboratory Animal Science, Institute of Animal Welfare, Freie Universität Berlin, Berlin, Germany
| | - Vera Brust
- Behavioral Phenotyping Unit, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
8
|
Neural and Hormonal Basis of Opposite-Sex Preference by Chemosensory Signals. Int J Mol Sci 2021; 22:ijms22158311. [PMID: 34361077 PMCID: PMC8347621 DOI: 10.3390/ijms22158311] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
In mammalian reproduction, sexually active males seek female conspecifics, while estrous females try to approach males. This sex-specific response tendency is called sexual preference. In small rodents, sexual preference cues are mainly chemosensory signals, including pheromones. In this article, we review the physiological mechanisms involved in sexual preference for opposite-sex chemosensory signals in well-studied laboratory rodents, mice, rats, and hamsters of both sexes, especially an overview of peripheral sensory receptors, and hormonal and central regulation. In the hormonal regulation section, we discuss potential rodent brain bisexuality, as it includes neural substrates controlling both masculine and feminine sexual preferences, i.e., masculine preference for female odors and the opposite. In the central regulation section, we show the substantial circuit regulating sexual preference and also the influence of sexual experience that innate attractants activate in the brain reward system to establish the learned attractant. Finally, we review the regulation of sexual preference by neuropeptides, oxytocin, vasopressin, and kisspeptin. Through this review, we clarified the contradictions and deficiencies in our current knowledge on the neuroendocrine regulation of sexual preference and sought to present problems requiring further study.
Collapse
|
9
|
Lymphocytic Choriomeningitis Virus Alters the Expression of Male Mouse Scent Proteins. Viruses 2021; 13:v13061180. [PMID: 34205512 PMCID: PMC8234142 DOI: 10.3390/v13061180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Mature male mice produce a particularly high concentration of major urinary proteins (MUPs) in their scent marks that provide identity and status information to conspecifics. Darcin (MUP20) is inherently attractive to females and, by inducing rapid associative learning, leads to specific attraction to the individual male’s odour and location. Other polymorphic central MUPs, produced at much higher abundance, bind volatile ligands that are slowly released from a male’s scent marks, forming the male’s individual odour that females learn. Here, we show that infection of C57BL/6 males with LCMV WE variants (v2.2 or v54) alters MUP expression according to a male’s infection status and ability to clear the virus. MUP output is substantially reduced during acute adult infection with LCMV WE v2.2 and when males are persistently infected with LCMV WE v2.2 or v54. Infection differentially alters expression of darcin and, particularly, suppresses expression of a male’s central MUP signature. However, following clearance of acute v2.2 infection through a robust virus-specific CD8 cytotoxic T cell response that leads to immunity to the virus, males regain their normal mature male MUP pattern and exhibit enhanced MUP output by 30 days post-infection relative to uninfected controls. We discuss the likely impact of these changes in male MUP signals on female attraction and mate selection. As LCMV infection during pregnancy can substantially reduce embryo survival and lead to lifelong infection in surviving offspring, we speculate that females use LCMV-induced changes in MUP expression both to avoid direct infection from a male and to select mates able to develop immunity to local variants that will be inherited by their offspring.
Collapse
|
10
|
Miller SE, Sheehan MJ, Reeve HK. Coevolution of cognitive abilities and identity signals in individual recognition systems. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190467. [PMID: 32420843 PMCID: PMC7331018 DOI: 10.1098/rstb.2019.0467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Social interactions are mediated by recognition systems, meaning that the cognitive abilities or phenotypic diversity that facilitate recognition may be common targets of social selection. Recognition occurs when a receiver compares the phenotypes produced by a sender with a template. Coevolution between sender and receiver traits has been empirically reported in multiple species and sensory modalities, though the dynamics and relative exaggeration of traits from senders versus receivers have received little attention. Here, we present a coevolutionary dynamic model that examines the conditions under which senders and receivers should invest effort in facilitating individual recognition. The model predicts coevolution of sender and receiver traits, with the equilibrium investment dependent on the relative costs of signal production versus cognition. In order for recognition to evolve, initial sender and receiver trait values must be above a threshold, suggesting that recognition requires some degree of pre-existing diversity and cognitive abilities. The analysis of selection gradients demonstrates that the strength of selection on sender signals and receiver cognition is strongest when the trait values are furthest from the optima. The model provides new insights into the expected strength and dynamics of selection during the origin and elaboration of individual recognition, an important feature of social cognition in many taxa. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
| | - Michael J. Sheehan
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - H. Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Sheehan MJ, Campbell P, Miller CH. Evolutionary patterns of major urinary protein scent signals in house mice and relatives. Mol Ecol 2019; 28:3587-3601. [DOI: 10.1111/mec.15155] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/04/2023]
Affiliation(s)
| | - Polly Campbell
- Evolution, Ecology and Organismal Biology University of California – Riverside Riverside CA USA
| | | |
Collapse
|
12
|
Fearey J, Elwen SH, James BS, Gridley T. Identification of potential signature whistles from free-ranging common dolphins (Delphinus delphis) in South Africa. Anim Cogn 2019; 22:777-789. [PMID: 31177344 DOI: 10.1007/s10071-019-01274-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/07/2019] [Accepted: 06/01/2019] [Indexed: 12/21/2022]
Abstract
Conveying identity is important for social animals to maintain individually based relationships. Communication of identity information relies on both signal encoding and perception. Several delphinid species use individually distinctive signature whistles to transmit identity information, best described for the common bottlenose dolphin (Tursiops truncatus). In this study, we investigate signature whistle use in wild common dolphins (Delphinus delphis). Acoustic recordings were analysed from 11 encounters from three locations in South Africa (Hout Bay, False Bay, and Plettenberg Bay) during 2009, 2016 and 2017. The frequency contours of whistles were visually categorised, with 29 signature whistle types (SWTs) identified through contour categorisation and a bout analysis approach developed specifically to identify signature whistles in bottlenose dolphins (SIGID). Categorisation verification was conducted using an unsupervised neural network (ARTwarp) at both a 91% and 96% vigilance parameter. For this, individual SWTs were analysed type by type and then in a 'global' analysis whereby all 497 whistle contours were categorised simultaneously. Overall the analysis demonstrated high stereotypy in the structure and temporal production of whistles, consistent with signature whistle use. We suggest that individual identity information may be encoded in these whistle contours. However, the large group sizes and high degree of vocal activity characteristic of this dolphin species generate a cluttered acoustic environment with high potential for masking from conspecific vocalisations. Therefore, further investigation into the mechanisms of identity perception in such acoustically cluttered environments is required to demonstrate the function of these stereotyped whistle types in common dolphins.
Collapse
Affiliation(s)
- J Fearey
- Sea Search Research and Conservation NPC, 4 Bath Rd, Muizenberg, Cape Town, 7945, South Africa
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and Conservation, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - S H Elwen
- Sea Search Research and Conservation NPC, 4 Bath Rd, Muizenberg, Cape Town, 7945, South Africa
- Department of Zoology and Entomology, Mammal Research Institute, University of Pretoria, Hatfield, Pretoria , 0002, South Africa
| | - B S James
- Sea Search Research and Conservation NPC, 4 Bath Rd, Muizenberg, Cape Town, 7945, South Africa
| | - T Gridley
- Sea Search Research and Conservation NPC, 4 Bath Rd, Muizenberg, Cape Town, 7945, South Africa.
- Department of Statistical Sciences, Centre for Statistics in Ecology, Environment and Conservation, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.
| |
Collapse
|
13
|
Zhang YH, Tang MM, Guo X, Gao XR, Zhang JH, Zhang JX. Associative learning is necessary for airborne pheromones to activate sexual arousal-linked brain areas of female rats. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Roberts SA, Prescott MC, Davidson AJ, McLean L, Beynon RJ, Hurst JL. Individual odour signatures that mice learn are shaped by involatile major urinary proteins (MUPs). BMC Biol 2018; 16:48. [PMID: 29703213 PMCID: PMC5921788 DOI: 10.1186/s12915-018-0512-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/28/2018] [Indexed: 11/17/2022] Open
Abstract
Background Reliable recognition of individuals requires phenotypic identity signatures that are both individually distinctive and appropriately stable over time. Individual-specific vocalisations or visual patterning are well documented among birds and some mammals, whilst odours play a key role in social recognition across many vertebrates and invertebrates. Less well understood, though, is whether individuals are recognised through variation in cues that arise incidentally from a wide variety of genetic and non-genetic differences between individuals, or whether animals evolve distinctive polymorphic signals to advertise identity reliably. As a bioassay to understand the derivation of individual-specific odour signatures, we use female attraction to the individual odours of male house mice (Mus musculus domesticus), learned on contact with a male’s scent marks. Results Learned volatile odour signatures are determined predominantly by individual differences in involatile major urinary protein (MUP) signatures, a specialised set of communication proteins that mice secrete in their urine. Recognition of odour signatures in genetically distinct mice depended on differences in individual MUP genotype. Direct manipulation using recombinant MUPs confirmed predictable changes in volatile signature recognition according to the degree of matching between MUP profiles and the learned urine template. Both the relative amount of the male-specific MUP pheromone darcin, which induces odour learning, and other MUP isoforms influenced learned odour signatures. By contrast, odour recognition was not significantly influenced by individual major histocompatibility complex genotype. MUP profiles shape volatile odour signatures through isoform-specific differences in binding and release of urinary volatiles from scent deposits, such that volatile signatures were recognised from the urinary protein fraction alone. Manipulation using recombinant MUPs led to quantitative changes in the release of known MUP ligands from scent deposits, with MUP-specific and volatile-specific effects. Conclusions Despite assumptions that many genes contribute to odours that can be used to recognise individuals, mice have evolved a polymorphic combinatorial MUP signature that shapes distinctive volatile signatures in their scent. Such specific signals may be more prevalent within complex body odours than previously realised, contributing to the evolution of phenotypic diversity within species. However, differences in selection may also result in species-specific constraints on the ability to recognise individuals through complex body scents. Electronic supplementary material The online version of this article (10.1186/s12915-018-0512-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah A Roberts
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Mark C Prescott
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Amanda J Davidson
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Lynn McLean
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Jane L Hurst
- Mammalian Behaviour & Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK.
| |
Collapse
|
15
|
Yao S, Bergan J, Lanjuin A, Dulac C. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues. eLife 2017; 6:31373. [PMID: 29231812 PMCID: PMC5768418 DOI: 10.7554/elife.31373] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/11/2017] [Indexed: 01/30/2023] Open
Abstract
The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase-expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single-unit recording in the MeA uncovered significant changes in the sensory representation of conspecific cues in the absence of oxytocin signaling. Finally, acute manipulation of oxytocin signaling in adults is sufficient to alter social interaction preferences in males as well as responses of MeA neurons to chemosensory cues. These results uncover the critical role of oxytocin signaling in a molecularly defined neuronal population in order to modulate the behavioral and physiological responses of male mice to females on a moment-to-moment basis.
Collapse
Affiliation(s)
- Shenqin Yao
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Joseph Bergan
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Anne Lanjuin
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Center for Brain Science, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
| |
Collapse
|
16
|
Oboti L, Trova S, Schellino R, Marraudino M, Harris NR, Abiona OM, Stampar M, Lin W, Peretto P. Activity Dependent Modulation of Granule Cell Survival in the Accessory Olfactory Bulb at Puberty. Front Neuroanat 2017; 11:44. [PMID: 28588456 PMCID: PMC5440572 DOI: 10.3389/fnana.2017.00044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/01/2017] [Indexed: 11/23/2022] Open
Abstract
The vomeronasal system (VNS) is specialized in the detection of salient chemical cues triggering social and neuroendocrine responses. Such responses are not always stereotyped, instead, they vary depending on age, sex, and reproductive state, yet the mechanisms underlying this variability are unclear. Here, by analyzing neuronal survival in the first processing nucleus of the VNS, namely the accessory olfactory bulb (AOB), through multiple bromodeoxyuridine birthdating protocols, we show that exposure of female mice to male soiled bedding material affects the integration of newborn granule interneurons mainly after puberty. This effect is induced by urine compounds produced by mature males, as bedding soiled by younger males was ineffective. The granule cell increase induced by mature male odor exposure is not prevented by pre-pubertal ovariectomy, indicating a lesser role of circulating estrogens in this plasticity. Interestingly, the intake of adult male urine-derived cues by the female vomeronasal organ increases during puberty, suggesting a direct correlation between sensory activity and AOB neuronal plasticity. Thus, as odor exposure increases the responses of newly born cells to the experienced stimuli, the addition of new GABAergic inhibitory cells to the AOB might contribute to the shaping of vomeronasal processing of male cues after puberty. Consistently, only after puberty, female mice are capable to discriminate individual male odors through the VNS.
Collapse
Affiliation(s)
- Livio Oboti
- Center for Neuroscience Research, Children's National Health System, WashingtonDC, United States
| | - Sara Trova
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of TorinoOrbassano, Italy
| | - Roberta Schellino
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of TorinoOrbassano, Italy.,Department of Neurosciences "Rita Levi Montalcini", University of TurinTurin, Italy
| | - Marilena Marraudino
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of TorinoOrbassano, Italy.,Department of Neurosciences "Rita Levi Montalcini", University of TurinTurin, Italy
| | - Natalie R Harris
- Department of Biological Sciences, University of Maryland, Baltimore County, BaltimoreMD, United States
| | - Olubukola M Abiona
- Department of Biological Sciences, University of Maryland, Baltimore County, BaltimoreMD, United States
| | - Mojca Stampar
- Research Center for Genetic Medicine, Children's National Health System, WashingtonDC, United States
| | - Weihong Lin
- Department of Biological Sciences, University of Maryland, Baltimore County, BaltimoreMD, United States
| | - Paolo Peretto
- Department of Life Sciences and Systems Biology, Neuroscience Institute Cavalieri Ottolenghi, University of TorinoOrbassano, Italy
| |
Collapse
|
17
|
|
18
|
|
19
|
Physical Interaction Is Required in Social Buffering Induced by a Familiar Conspecific. Sci Rep 2016; 6:39788. [PMID: 28008991 PMCID: PMC5180222 DOI: 10.1038/srep39788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022] Open
Abstract
In social animals, signals released from fearless conspecifics attenuate fear responses, namely social buffering. The presence of conspecific odor can suppress the expression of freezing response of conditioned mice. The present study investigated if physical social experience is required for this social buffering effect. The mice were exposed to donors, donor bedding (collected from cages of donors), or fresh bedding as control, respectively, for 10 days (1 hour daily) in prior to fear conditioning test. The fear expression test was examined in presence of donor bedding. The results showed that only the donor group mice showed reduced freezing time than the other two groups in the fear memory test. This phenomenon indicated that physical interaction might be required for the social buffering effect.
Collapse
|
20
|
Sutter A, Lindholm AK. No evidence for female discrimination against male house mice carrying a selfish genetic element. Curr Zool 2016; 62:675-685. [PMID: 29491955 PMCID: PMC5804255 DOI: 10.1093/cz/zow063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022] Open
Abstract
Meiotic drivers distort transmission to the next generation in their favor, with detrimental effects on the fitness of their homologues and the rest of the genome. Male carriers of meiotic drivers commonly inflict costs on their mates through genetic incompatibility, reduced fecundity, or biased brood sex ratios. Given these costs, evidence for female discrimination against male carriers is surprisingly rare. One of few examples is the t haplotype in house mice, a meiotic driver that shows strong transmission distortion in males and is typically homozygote lethal. As a consequence, mating between 2 t heterozygous (+/t) mice leads to high embryo mortality. Previous experiments showing that +/t females avoid this incompatibility cost by preferring +/+ versus +/t males have inferred preference based on olfactory cues or brief social interactions. Evidence from mating contexts in laboratory settings and semi-natural populations has been inconclusive. Here, we investigated female choice from a large number of no-choice mating trials. We found no evidence for discrimination against +/t males based on mating, remating, and copulatory behavior. Further, we found no evidence for avoidance of incompatibility through selective interactions between gametes. The likelihood of mating showed significant effects of female weight and genotype, suggesting that our test paradigm enabled females to exhibit mate choice. We discuss the strengths and limitations of our approach. By explicitly considering selection at both the individual and gene level, we argue why precopulatory female discrimination by +/t females may be less evolutionarily stable than discrimination by all females based on postcopulatory mechanisms.
Collapse
Affiliation(s)
- Andreas Sutter
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Anna K Lindholm
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland
| |
Collapse
|
21
|
Selection on Coding and Regulatory Variation Maintains Individuality in Major Urinary Protein Scent Marks in Wild Mice. PLoS Genet 2016; 12:e1005891. [PMID: 26938775 PMCID: PMC4777540 DOI: 10.1371/journal.pgen.1005891] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/31/2016] [Indexed: 01/17/2023] Open
Abstract
Recognition of individuals by scent is widespread across animal taxa. Though animals can often discriminate chemical blends based on many compounds, recent work shows that specific protein pheromones are necessary and sufficient for individual recognition via scent marks in mice. The genetic nature of individuality in scent marks (e.g. coding versus regulatory variation) and the evolutionary processes that maintain diversity are poorly understood. The individual signatures in scent marks of house mice are the protein products of a group of highly similar paralogs in the major urinary protein (Mup) gene family. Using the offspring of wild-caught mice, we examine individuality in the major urinary protein (MUP) scent marks at the DNA, RNA and protein levels. We show that individuality arises through a combination of variation at amino acid coding sites and differential transcription of central Mup genes across individuals, and we identify eSNPs in promoters. There is no evidence of post-transcriptional processes influencing phenotypic diversity as transcripts accurately predict the relative abundance of proteins in urine samples. The match between transcripts and urine samples taken six months earlier also emphasizes that the proportional relationships across central MUP isoforms in urine is stable. Balancing selection maintains coding variants at moderate frequencies, though pheromone diversity appears limited by interactions with vomeronasal receptors. We find that differential transcription of the central Mup paralogs within and between individuals significantly increases the individuality of pheromone blends. Balancing selection on gene regulation allows for increased individuality via combinatorial diversity in a limited number of pheromones. Individual recognition via scent is critical for many aspects of behavior including parental care, competition, cooperation and mate choice. While animal scents can differ in a huge number of dimensions, recent work has shown that only some specialized semiochemicals in scent marks are behaviorally relevant for individual recognition. How is individuality in specialized semiochemical blends produced and maintained in populations? At the extremes, individuality may depend on either a plethora of semiochemical isoforms or on combinatorial variation in a small number of shared isoforms across individuals. Analyzing the major urinary protein (MUP) pheromone blends of a wild population of house mice, we find evidence in favor of a combinatorial diversity model for the production and maintenance of individuality. Balancing selection maintains MUP proteins at moderate frequencies in the population, though interactions with the pheromone receptors appear to limit the extent of pheromone diversity in the system. By contrast, differential transcription of proteins greatly increases individuality in pheromone blends with balancing selection maintaining diversity in promoter regions associated with gene expression patterns. Selection maintaining combinatorial diversity in a limited set of behaviorally important semiochemicals may be a widespread mechanism generating and maintaining individuality in scent across taxa.
Collapse
|
22
|
Jouhanneau MÃ, Goudet C, Moussu C, Tashiro T, Buatois B, Mori K, Ganem G, Keller M. Peripubertal exposure to male chemosignals accelerates vaginal opening and induces male-directed odor preference in female mice. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Griffiths PR, Brennan PA. Roles for learning in mammalian chemosensory responses. Horm Behav 2015; 68:91-102. [PMID: 25200200 DOI: 10.1016/j.yhbeh.2014.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/08/2014] [Accepted: 08/27/2014] [Indexed: 12/27/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". A rich variety of chemosignals have been identified that influence mammalian behaviour, including peptides, proteins and volatiles. Many of these elicit innate effects acting either as pheromones within species or allelochemicals between species. However, even innate pheromonal responses in mammals are not as hard-wired as the original definition of the term would suggest. Many, if not most mammalian pheromonal responses are only elicited in certain behavioural or physiological contexts. Furthermore, certain pheromones are themselves rewarding and act as unconditioned stimuli to link non-pheromonal stimuli to the pheromonal response, via associative learning. The medial amygdala, has emerged as a potential site for this convergence by which learned chemosensory input is able to gain control over innately-driven output circuits. The medial amygdala is also an important site for associating social chemosensory information that enables recognition of conspecifics and heterospecifics by association of their complex chemosensory signatures both within and across olfactory chemosensory systems. Learning can also influence pheromonal responses more directly to adapt them to changing physiological and behavioural context. Neuromodulators such as noradrenaline and oxytocin can plasticise neural circuits to gate transmission of chemosensory information. More recent evidence points to a role for neurogenesis in this adaptation, both at the peripheral level of the sensory neurons and via the incorporation of new neurons into existing olfactory bulb circuits. The emerging picture is of integrated and flexible responses to chemosignals that adapt them to the environmental and physiological context in which they occur.
Collapse
Affiliation(s)
- Philip R Griffiths
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | - Peter A Brennan
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
24
|
Martín-Sánchez A, McLean L, Beynon RJ, Hurst JL, Ayala G, Lanuza E, Martínez-Garcia F. From sexual attraction to maternal aggression: when pheromones change their behavioural significance. Horm Behav 2015; 68:65-76. [PMID: 25161057 DOI: 10.1016/j.yhbeh.2014.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/31/2014] [Accepted: 08/17/2014] [Indexed: 11/26/2022]
Abstract
This article is part of a Special Issue "Chemosignals and Reproduction". This paper reviews the role of chemosignals in the socio-sexual interactions of female mice, and reports two experiments testing the role of pup-derived chemosignals and the male sexual pheromone darcin in inducing and promoting maternal aggression. Female mice are attracted to urine-borne male pheromones. Volatile and non-volatile urine fractions have been proposed to contain olfactory and vomeronasal pheromones. In particular, the male-specific major urinary protein (MUP) MUP20, darcin, has been shown to be rewarding and attractive to females. Non-urinary male chemosignals, such as the lacrimal protein ESP1, promote lordosis in female mice, but its attractive properties are still to be tested. There is evidence indicating that ESP1 and MUPs are detected by vomeronasal type 2 receptors (V2R). When a female mouse becomes pregnant, she undergoes dramatic changes in her physiology and behaviour. She builds a nest for her pups and takes care of them. Dams also defend the nest against conspecific intruders, attacking especially gonadally intact males. Maternal behaviour is dependent on a functional olfactory system, thus suggesting a role of chemosignals in the development of maternal behaviour. Our first experiment demonstrates, however, that pup chemosignals are not sufficient to induce maternal aggression in virgin females. In addition, it is known that vomeronasal stimuli are needed for maternal aggression. Since MUPs (and other molecules) are able to promote intermale aggression, in our second experiment we test if the attractive MUP darcin also promotes attacks on castrated male intruders by lactating dams. Our findings demonstrate that the same chemosignal, darcin, promotes attraction or aggression according to female reproductive state.
Collapse
Affiliation(s)
- Ana Martín-Sánchez
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Lynn McLean
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Robert J Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jane L Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Guillermo Ayala
- Department of Statistics and Operative Research, Faculty of Mathematics, Avda. Vicent Andrés Estellés, 1, 46100 Burjassot, Spain
| | - Enrique Lanuza
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain
| | - Fernando Martínez-Garcia
- Laboratori de Neuroanatomia Funcional Comparada, Departments of Functional Biology and of Cell Biology, Faculty of Biological Sciences, Univ. Valencia, C. Dr. Moliner, 50, 46100 Burjassot, Spain.
| |
Collapse
|
25
|
Roberts SA, Davidson AJ, Beynon RJ, Hurst JL. Female attraction to male scent and associative learning: the house mouse as a mammalian model. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
|
27
|
Abstract
Many animals use chemicals as pheromones to communicate between individuals of the same species, for example to influence mate choice or to assert dominance. Pheromonal communication is an open broadcast system that can be intercepted by unintended receivers such as predators and prey. We have recently reported that male rats infected by the protozoan parasite
Toxoplasma gondii become more attractive to female rats. This suggests a facilitatory effect of infection on rat pheromone production. In view of the open nature of pheromonal communication, we postulate that
Toxoplasma gondii infection collateraly enhances kairomonal valence of infected rats to their prey. We compared the strength of kairomonal interception by mice when using scent marks from rats infected with
Toxoplasma gondii vs. marks from uninfected control rats. Mice exhibited greater avoidance to both fresh urine and aged rat urine marks obtained from infected animals. These results indicate that, at least in some cases, parasitism can result in opportunity costs for hosts by making prey species more averse to them.
Collapse
Affiliation(s)
- Anand Vasudevan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
28
|
Oboti L, Pérez-Gómez A, Keller M, Jacobi E, Birnbaumer L, Leinders-Zufall T, Zufall F, Chamero P. A wide range of pheromone-stimulated sexual and reproductive behaviors in female mice depend on G protein Gαo. BMC Biol 2014. [PMID: 24886577 DOI: 10.1186/1741‐7007‐12‐31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Optimal reproductive fitness is essential for the biological success and survival of species. The vomeronasal organ is strongly implicated in the display of sexual and reproductive behaviors in female mice, yet the roles that apical and basal vomeronasal neuron populations play in controlling these gender-specific behaviors remain largely unclear. RESULTS To dissect the neural pathways underlying these functions, we genetically inactivated the basal vomeronasal organ layer using conditional, cell-specific ablation of the G protein Gαo. Female mice mutant for Gαo show severe alterations in sexual and reproductive behaviors, timing of puberty onset, and estrous cycle. These mutant mice are insensitive to reproductive facilitation stimulated by male pheromones that accelerate puberty and induce ovulation. Gαo-mutant females exhibit a striking reduction in sexual receptivity or lordosis behavior to males, but gender discrimination seems to be intact. These mice also show a loss in male scent preference, which requires a learned association for volatile olfactory signals with other nonvolatile ownership signals that are contained in the high molecular weight fraction of male urine. Thus, Gαo impacts on both instinctive and learned social responses to pheromones. CONCLUSIONS These results highlight that sensory neurons of the Gαo-expressing vomeronasal subsystem, together with the receptors they express and the molecular cues they detect, control a wide range of fundamental mating and reproductive behaviors in female mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank Zufall
- Department of Physiology, University of Saarland School of Medicine, 66421 Homburg, Germany.
| | | |
Collapse
|
29
|
Oboti L, Pérez-Gómez A, Keller M, Jacobi E, Birnbaumer L, Leinders-Zufall T, Zufall F, Chamero P. A wide range of pheromone-stimulated sexual and reproductive behaviors in female mice depend on G protein Gαo. BMC Biol 2014; 12:31. [PMID: 24886577 PMCID: PMC4038847 DOI: 10.1186/1741-7007-12-31] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/25/2014] [Indexed: 01/03/2023] Open
Abstract
Background Optimal reproductive fitness is essential for the biological success and survival of species. The vomeronasal organ is strongly implicated in the display of sexual and reproductive behaviors in female mice, yet the roles that apical and basal vomeronasal neuron populations play in controlling these gender-specific behaviors remain largely unclear. Results To dissect the neural pathways underlying these functions, we genetically inactivated the basal vomeronasal organ layer using conditional, cell-specific ablation of the G protein Gαo. Female mice mutant for Gαo show severe alterations in sexual and reproductive behaviors, timing of puberty onset, and estrous cycle. These mutant mice are insensitive to reproductive facilitation stimulated by male pheromones that accelerate puberty and induce ovulation. Gαo-mutant females exhibit a striking reduction in sexual receptivity or lordosis behavior to males, but gender discrimination seems to be intact. These mice also show a loss in male scent preference, which requires a learned association for volatile olfactory signals with other nonvolatile ownership signals that are contained in the high molecular weight fraction of male urine. Thus, Gαo impacts on both instinctive and learned social responses to pheromones. Conclusions These results highlight that sensory neurons of the Gαo-expressing vomeronasal subsystem, together with the receptors they express and the molecular cues they detect, control a wide range of fundamental mating and reproductive behaviors in female mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Frank Zufall
- Department of Physiology, University of Saarland School of Medicine, 66421 Homburg, Germany.
| | | |
Collapse
|
30
|
Trojan Genes or Transparent Genomes? Sexual Selection and Potential Impacts of Genetically Modified Animals in Natural Ecosystems. Evol Biol 2013. [DOI: 10.1007/s11692-013-9268-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Fortes-Marco L, Lanuza E, Martinez-Garcia F. Of pheromones and kairomones: what receptors mediate innate emotional responses? Anat Rec (Hoboken) 2013; 296:1346-63. [PMID: 23904448 DOI: 10.1002/ar.22745] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 11/10/2022]
Abstract
Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation.
Collapse
Affiliation(s)
- Lluis Fortes-Marco
- Laboratori de Neuroanatomia Funcional Comparada, Department of Functional Biology, University of València, C. Dr. Moliner, 50, 46100, Burjassot, Spain
| | | | | |
Collapse
|
32
|
Petrulis A. Chemosignals, hormones and mammalian reproduction. Horm Behav 2013; 63:723-41. [PMID: 23545474 PMCID: PMC3667964 DOI: 10.1016/j.yhbeh.2013.03.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Many mammalian species use chemosignals to coordinate reproduction by altering the physiology and behavior of both sexes. Chemosignals prime reproductive physiology so that individuals become sexually mature and active at times when mating is most probable and suppress it when it is not. Once in reproductive condition, odors produced and deposited by both males and females are used to find and select individuals for mating. The production, dissemination and appropriate responses to these cues are modulated heavily by organizational and activational effects of gonadal sex steroids and thereby intrinsically link chemical communication to the broader reproductive context. Many compounds have been identified as "pheromones" but very few have met the expectations of that term: a unitary, species-typical substance that is both necessary and sufficient for an experience-independent behavioral or physiological response. In contrast, most responses to chemosignals are dependent or heavily modulated by experience, either in adulthood or during development. Mechanistically, chemosignals are perceived by both main and accessory (vomeronasal) olfactory systems with the importance of each system tied strongly to the nature of the stimulus rather than to the response. In the central nervous system, the vast majority of responses to chemosignals are mediated by cortical and medial amygdala connections with hypothalamic and other forebrain structures. Despite the importance of chemosignals in mammals, many details of chemical communication differ even among closely related species and defy clear categorization. Although generating much research and public interest, strong evidence for the existence of a robust chemical communication among humans is lacking.
Collapse
Affiliation(s)
- Aras Petrulis
- Georgia State University, Neuroscience Institute, Atlanta, GA 30303, USA.
| |
Collapse
|
33
|
Roberts SA, Davidson AJ, McLean L, Beynon RJ, Hurst JL. Pheromonal induction of spatial learning in mice. Science 2012; 338:1462-5. [PMID: 23239735 DOI: 10.1126/science.1225638] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many mammals use scent marking for sexual and competitive advertisement, but little is known about the mechanism by which scents are used to locate mates and competitors. We show that darcin, an involatile protein sex pheromone in male mouse urine, can rapidly condition preference for its remembered location among females and competitor males so that animals prefer to spend time in the site even when scent is absent. Learned spatial preference is conditioned through contact with darcin in a single trial and remembered for approximately 14 days. This pheromone-induced learning allows animals to relocate sites of particular social relevance and provides proof that pheromones such as darcin can be highly potent stimuli for social learning.
Collapse
Affiliation(s)
- Sarah A Roberts
- Mammalian Behaviour and Evolution Group, Institute of Integrative Biology, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
| | | | | | | | | |
Collapse
|
34
|
Citronellal ingestion decreases the appeal of male mouse urinary pheromone for female mice. Biosci Biotechnol Biochem 2012; 76:1781-4. [PMID: 22972327 DOI: 10.1271/bbb.120180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To determine whether ingestion of citronellal decreases the attractive power of the male mouse urinary odor, female mice were used in preference tests. A series of tests revealed that the female mice preferred voided urine odors from aged mice over those from younger adult mice. However, exogenous citronellal directly inhibited the advantage of the aged males with regard to attraction.
Collapse
|
35
|
Pardo-Bellver C, Cádiz-Moretti B, Novejarque A, Martínez-García F, Lanuza E. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Front Neuroanat 2012; 6:33. [PMID: 22933993 PMCID: PMC3423790 DOI: 10.3389/fnana.2012.00033] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/27/2012] [Indexed: 11/29/2022] Open
Abstract
The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.
Collapse
Affiliation(s)
- Cecília Pardo-Bellver
- Facultat de Ciències Biològiques, Laboratory of Functional and Comparative Neuroanatomy, Departament de Biologia Cel·lular, Universitat de València València, Spain
| | | | | | | | | |
Collapse
|
36
|
Differential binding between volatile ligands and major urinary proteins due to genetic variation in mice. Physiol Behav 2012; 107:112-20. [PMID: 22728785 DOI: 10.1016/j.physbeh.2012.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/23/2012] [Accepted: 06/12/2012] [Indexed: 11/22/2022]
|
37
|
Learning individual signatures: rove beetle males discriminate unreceptive females by cuticular hydrocarbon patterns. Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Baum MJ. Contribution of pheromones processed by the main olfactory system to mate recognition in female mammals. Front Neuroanat 2012; 6:20. [PMID: 22679420 PMCID: PMC3367429 DOI: 10.3389/fnana.2012.00020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/19/2012] [Indexed: 11/24/2022] Open
Abstract
Until recently it was widely believed that the ability of female mammals (with the likely exception of women) to identify and seek out a male breeding partner relied on the detection of non-volatile male pheromones by the female's vomeronasal organ (VNO) and their subsequent processing by a neural circuit that includes the accessory olfactory bulb (AOB), vomeronasal amygdala, and hypothalamus. Emperical data are reviewed in this paper that demonstrate the detection of volatile pheromones by the main olfactory epithelium (MOE) of female mice which, in turn, leads to the activation of a population of glomeruli and abutting mitral cells in the main olfactory bulb (MOB). Anatomical results along with functional neuroanatomical data demonstrate that some of these MOB mitral cells project to the vomeronasal amygdala. These particular MOB mitral cells were selectively activated (i.e., expressed Fos protein) by exposure to male as opposed to female urinary volatiles. A similar selectivity to opposite sex urinary volatiles was also seen in mitral cells of the AOB of female mice. Behavioral data from female mouse, ferret, and human are reviewed that implicate the main olfactory system, in some cases interacting with the accessory olfactory system, in mate recognition.
Collapse
Affiliation(s)
- Michael J Baum
- Department of Biology, Boston University, Boston MA, USA
| |
Collapse
|
39
|
Oboti L, Peretto P, Marchis SD, Fasolo A. From chemical neuroanatomy to an understanding of the olfactory system. Eur J Histochem 2011; 55:e35. [PMID: 22297441 PMCID: PMC3284237 DOI: 10.4081/ejh.2011.e35] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/20/2011] [Indexed: 02/04/2023] Open
Abstract
The olfactory system is the appropriate model for studying several aspects of neuronal physiology spanning from the developmental stage to neural network remodelling in the adult brain. Both the morphological and physiological understanding of this system were strongly supported by classical histochemistry. It is emblematic the case of the Olfactory Marker Protein (OMP) staining, the first, powerful marker for fully differentiated olfactory receptor neurons and a key tool to investigate the dynamic relations between peripheral sensory epithelia and central relay regions given its presence within olfactory fibers reaching the olfactory bulb (OB). Similarly, the use of thymidine analogues was able to show neurogenesis in an adult mammalian brain far before modern virus labelling and lipophilic tracers based methods. Nowadays, a wealth of new histochemical techniques combining cell and molecular biology approaches is available, giving stance to move from the analysis of the chemically identified circuitries to functional research. The study of adult neurogenesis is indeed one of the best explanatory examples of this statement. After defining the cell types involved and the basic physiology of this phenomenon in the OB plasticity, we can now analyze the role of neurogenesis in well testable behaviours related to socio-chemical communication in rodents.
Collapse
Affiliation(s)
- L Oboti
- Department of Animal and Human Biology, University of Turin, Italy
| | | | | | | |
Collapse
|
40
|
Disruption of urinary odor preference and lordosis behavior in female mice given lesions of the medial amygdala. Physiol Behav 2011; 105:554-9. [PMID: 21945865 DOI: 10.1016/j.physbeh.2011.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/08/2011] [Accepted: 09/11/2011] [Indexed: 11/21/2022]
Abstract
Previous research showed that axonal inputs to both anterior and posterior subdivisions of the medial amygdala from the main and accessory olfactory bulbs of female mice, respectively, process volatile and non-volatile pheromonal signals from male conspecifics. In the present study we found that bilateral electrolytic lesions that included posterior portions, but not the anterior subdivision alone of the medial amygdala (Me) blocked the preference of estrous female mice to investigate volatile urinary odors from testes-intact vs. castrated males. Similar results were obtained in separate tests in which nasal contact with urinary stimuli was permitted. In addition, total time investigating volatile urinary stimuli was reduced in subjects with posterior Me lesions. Subjects were able to discriminate volatile urinary odors from testes-intact vs. castrated male mice, suggesting that this disruption of odor preference did not result from the inability of females given amygdaloid lesions to discriminate these male urinary odors. Bilateral lesions of the Me that were either restricted to the anterior or posterior subdivisions, or included areas of both regions, caused significant reductions in the display of lordosis behavior in estrous female mice. Our results suggest that the Me is a critical segment of the olfactory circuit that controls both mate recognition and mating behavior in the female mouse.
Collapse
|
41
|
Liu D, Huang KJ, Zhang JX. Individual Recognition and Odor in Rat-Like Hamsters: Behavioral Responses and Chemical Properties. Chem Senses 2011; 36:799-810. [PMID: 21745800 DOI: 10.1093/chemse/bjr055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dingzhen Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
42
|
Flanagan KA, Webb W, Stowers L. Analysis of male pheromones that accelerate female reproductive organ development. PLoS One 2011; 6:e16660. [PMID: 21347429 PMCID: PMC3035649 DOI: 10.1371/journal.pone.0016660] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 01/08/2011] [Indexed: 11/18/2022] Open
Abstract
Male odors can influence a female's reproductive physiology. In the mouse, the odor of male urine results in an early onset of female puberty. Several volatile and protein pheromones have previously been reported to each account for this bioactivity. Here we bioassay inbred BALB/cJ females to study pheromone-accelerated uterine growth, a developmental hallmark of puberty. We evaluate the response of wild-type and mutant mice lacking a specialized sensory transduction channel, TrpC2, and find TrpC2 function to be necessary for pheromone-mediated uterine growth. We analyze the relative effectiveness of pheromones previously identified to accelerate puberty through direct bioassay and find none to significantly accelerate uterine growth in BALB/cJ females. Complementary to this analysis, we have devised a strategy of partial purification of the uterine growth bioactivity from male urine and applied it to purify bioactivity from three different laboratory strains. The biochemical characteristics of the active fraction of all three strains are inconsistent with that of previously known pheromones. When directly analyzed, we are unable to detect previously known pheromones in urine fractions that generate uterine growth. Our analysis indicates that pheromones emitted by males to advance female puberty remain to be identified.
Collapse
Affiliation(s)
- Kelly A. Flanagan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - William Webb
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lisa Stowers
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Shepard KN, Liu RC. Experience restores innate female preference for male ultrasonic vocalizations. GENES, BRAIN, AND BEHAVIOR 2011; 10:28-34. [PMID: 20345895 PMCID: PMC2947590 DOI: 10.1111/j.1601-183x.2010.00580.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse models are increasingly contributing to our understanding of the neural genetics of sensory processing and memory. For example, strain differences have helped elucidate basic mechanisms of age-related hearing loss and auditory fear conditioning. Assessing sensory differences arising in acoustic communication contexts is also important for understanding natural audition. While this topic has not been well studied, it is currently being addressed through auditory neuroethological studies in the CBA/CaJ strain, where insights will help lay a foundation for future neural genetic studies. Here, we focus on the responses of adult females to ultrasonic vocalizations of males. We tested a group of female mice in a place-preference paradigm before and after auditory and olfactory experience with a male. A control group was housed with other female cagemates between trials. All females showed an initial preference for male calls that rapidly decayed over the course of a trial. However, only females that had been pair-housed with a male during the inter-trial interval displayed a reinstated interest in male vocalizations, suggesting possible group differences in the assessment of the calls' behavioral relevance. These findings provide a timeframe during which auditory processing of male ultrasounds might be expected to show a difference depending on behavioral relevance, and also suggest an importance of social interactions in maintaining call recognition.
Collapse
Affiliation(s)
- Kathryn N. Shepard
- Neuroscience Program, Emory University
- Center for Behavioral Neuroscience
| | - Robert C. Liu
- Department of Biology, Emory University
- Center for Behavioral Neuroscience
| |
Collapse
|
44
|
Feierstein CE, Lazarini F, Wagner S, Gabellec MM, de Chaumont F, Olivo-Marin JC, Boussin FD, Lledo PM, Gheusi G. Disruption of Adult Neurogenesis in the Olfactory Bulb Affects Social Interaction but not Maternal Behavior. Front Behav Neurosci 2010; 4:176. [PMID: 21160552 PMCID: PMC3001759 DOI: 10.3389/fnbeh.2010.00176] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/27/2010] [Indexed: 01/16/2023] Open
Abstract
Adult-born neurons arrive to the olfactory bulb (OB) and integrate into the existing circuit throughout life. Despite the prevalence of this phenomenon, its functional impact is still poorly understood. Recent studies point to the importance of newly generated neurons to olfactory learning and memory. Adult neurogenesis is regulated by a variety of factors, notably by instances related to reproductive behavior, such as exposure to mating partners, pregnancy and lactation, and exposure to offspring. To study the contribution of olfactory neurogenesis to maternal behavior and social recognition, here we selectively disrupted OB neurogenesis using focal irradiation of the subventricular zone in adult female mice. We show that reduction of olfactory neurogenesis results in an abnormal social interaction pattern with male, but not female, conspecifics; we suggest that this effect could result from the inability to detect or discriminate male odors and could therefore have implications for the recognition of potential mating partners. Disruption of OB neurogenesis, however, neither impaired maternal-related behaviors, nor did it affect the ability of mothers to discriminate their own progeny from others.
Collapse
Affiliation(s)
- Claudia E. Feierstein
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Françoise Lazarini
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Sebastien Wagner
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Marie-Madeleine Gabellec
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Fabrice de Chaumont
- Laboratory for Quantitative Image Analysis, Institut PasteurParis, France
- URA2582, Centre National de la Recherche ScientifiqueParis, France
| | - Jean-Christophe Olivo-Marin
- Laboratory for Quantitative Image Analysis, Institut PasteurParis, France
- URA2582, Centre National de la Recherche ScientifiqueParis, France
| | - François D. Boussin
- CEA, DSV, iRCM, SCSR, Laboratoire de Radiopathologie, INSERM U967Fontenay-aux-Roses, France
| | - Pierre-Marie Lledo
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
| | - Gilles Gheusi
- Laboratory for Perception and Memory, Institut PasteurParis, France
- URA2182, Centre National de la Recherche ScientifiqueParis, France
- Laboratoire d'Ethologie Expérimentale et Comparée, University of Paris 13Villetaneuse, France
| |
Collapse
|
45
|
Osada K, Hanawa M, Tsunoda K, Izumi H. Alteration of mouse urinary odor by ingestion of the xenobiotic monoterpene citronellal. Chem Senses 2010; 36:137-47. [PMID: 20956737 DOI: 10.1093/chemse/bjq104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Body odors provide a rich source of sensory information for other animals. There is considerable evidence to suggest that short-term fluctuations in body odor can be caused by diet; however, few, if any, previous studies have demonstrated that specific compounds can directly mask or alter mouse urinary odor when ingested and thus alter another animal's behavior. To investigate whether the ingestion of citronellal, a monoterpene aldehyde that produces an intense aroma detected by both humans and mice, can alter mouse urinary odor, mice (C57BL6J) were trained in a Y maze to discriminate between the urinary odors of male donor mice that had ingested either citronellal in aqueous solution or a control solution. Trained mice could discriminate between urinary odors from the citronellal ingestion and control groups. A series of generalization tests revealed that citronellal ingestion directly altered mouse urinary odor. Moreover, trained mice that had successfully discriminated between urinary odors from donor mice of different ages failed to detect age-related changes in urine from male mice that had ingested 50 ppm of citronellal. This study is the first to show that ingestion of a xenobiotic can alter mouse urinary odor and confuse the behavioral responses of trained mice to age-related scents.
Collapse
Affiliation(s)
- Kazumi Osada
- Department of Oral Physiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan.
| | | | | | | |
Collapse
|
46
|
Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL. Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male's odour. BMC Biol 2010; 8:75. [PMID: 20525243 PMCID: PMC2890510 DOI: 10.1186/1741-7007-8-75] [Citation(s) in RCA: 251] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/03/2010] [Indexed: 11/23/2022] Open
Abstract
Background Among invertebrates, specific pheromones elicit inherent (fixed) behavioural responses to coordinate social behaviours such as sexual recognition and attraction. By contrast, the much more complex social odours of mammals provide a broad range of information about the individual owner and stimulate individual-specific responses that are modulated by learning. How do mammals use such odours to coordinate important social interactions such as sexual attraction while allowing for individual-specific choice? We hypothesized that male mouse urine contains a specific pheromonal component that invokes inherent sexual attraction to the scent and which also stimulates female memory and conditions sexual attraction to the airborne odours of an individual scent owner associated with this pheromone. Results Using wild-stock house mice to ensure natural responses that generalize across individual genomes, we identify a single atypical male-specific major urinary protein (MUP) of mass 18893Da that invokes a female's inherent sexual attraction to male compared to female urinary scent. Attraction to this protein pheromone, which we named darcin, was as strong as the attraction to intact male urine. Importantly, contact with darcin also stimulated a strong learned attraction to the associated airborne urinary odour of an individual male, such that, subsequently, females were attracted to the airborne scent of that specific individual but not to that of other males. Conclusions This involatile protein is a mammalian male sex pheromone that stimulates a flexible response to individual-specific odours through associative learning and memory, allowing female sexual attraction to be inherent but selective towards particular males. This 'darcin effect' offers a new system to investigate the neural basis of individual-specific memories in the brain and give new insights into the regulation of behaviour in complex social mammals. See associated Commentary http://www.biomedcentral.com/1741-7007/8/71
Collapse
Affiliation(s)
- Sarah A Roberts
- Mammalian Behaviour & Evolution Group, University of Liverpool, Neston CH64 7TE, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Familiarity and female choice in the bank vole — do females prefer strangers? ACTA ACUST UNITED AC 2009. [DOI: 10.1007/bf03193171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Fernández-Montraveta C, Cuadrado M. Mate Attraction in a Burrowing Wolf-Spider (Araneae, Lycosidae) is not Olfactory Mediated. Ethology 2009. [DOI: 10.1111/j.1439-0310.2009.01623.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Cheetham SA, Smith AL, Armstrong SD, Beynon RJ, Hurst JL. Limited variation in the major urinary proteins of laboratory mice. Physiol Behav 2009; 96:253-61. [PMID: 18973768 DOI: 10.1016/j.physbeh.2008.10.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/21/2022]
Abstract
Individual variation in a specialised set of scent communication proteins, the major urinary proteins (MUPs), provides a genetic identity signature that underlies individual and kin recognition, and the assessment of heterozygosity in wild house mice. Here we examine the extent to which MUP variation is retained among 30 classical strains of laboratory mice from three main lineages (Castle, C57, Swiss). Normal wild-type variation in urinary MUP pattern appears to have been lost at an early stage in the derivation of the classical laboratory strains. All strains from the Castle and Swiss lineages shared the same "individual" MUP pattern, consistent with common ancestry from very few founders, while those from the C57 lineage shared a different pattern. Notably, individual variation in MUP pattern was no greater within the Swiss outbred ICR (CD-1) strain than typical for inbred strains. Total urinary protein concentration varied considerably between even closely related substrains, together with minor variation in the relative amount of each MUP isoform expressed, although the functional significance of such quantitative variation in MUP expression has yet to be established. Expression was 2-8 fold higher among males, while a MUP expressed by most male but not female wild mice was expressed by C57 males but variably among Castle and Swiss males and occasionally by females in some strains. The lack of normal variation in MUP patterns within and between strains has important implications for the use of laboratory mice in behavioural or neurophysiological research investigating social recognition or mate choice.
Collapse
Affiliation(s)
- Sarah A Cheetham
- Mammalian Behaviour & Evolution Group, Department of Veterinary Preclinical Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | | | | | | | | |
Collapse
|
50
|
Hoffmann F, Musolf K, Penn DJ. Freezing urine reduces its efficacy for eliciting ultrasonic vocalizations from male mice. Physiol Behav 2008; 96:602-5. [PMID: 19150619 DOI: 10.1016/j.physbeh.2008.12.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 12/12/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
Abstract
Studies on chemosensory communication generally rely on using samples of emanations that have been frozen for convenience, and assume that freezing has no detrimental effects. Female urine triggers courtship ultrasonic vocalizations (USVs) in male mice, and in this study, we examined whether freezing urine affects males' USV responses. We used wild-derived house mice (Mus musculus musculus), and recorded males' USVs after being presented samples of fresh versus frozen urine. We found that males emitted significantly fewer USVs when presented with frozen versus fresh urine, and furthermore, males were no longer able to discriminate the scent of familiar versus unfamiliar females after samples were frozen. Our findings indicate that freezing alters the bioactivity of urinary compounds both by reducing its potential to elicit behavioral responses from receivers (male courtship USVs) and eliminating important information about senders (familiarity). Freezing may denature the major urinary proteins (MUPs) released in rodent urine that play an important role in chemical communication. Our results raise concerns about the negative results of studies utilizing frozen samples for studying chemical signals.
Collapse
Affiliation(s)
- Frauke Hoffmann
- Konrad Lorenz Institute for Ethology, Austrian Academy of Sciences, Savoyenstr. 1a, Vienna A-1160, Austria
| | | | | |
Collapse
|