1
|
Iglesias Pastrana C, Navas González FJ, Ciani E, Marín Navas C, Delgado Bermejo JV. Determination of breeding criteria for gait proficiency in leisure riding and racing dromedary camels: a stepwise multivariate analysis of factors predicting overall biomechanical performance. Front Vet Sci 2024; 10:1297430. [PMID: 38292133 PMCID: PMC10826703 DOI: 10.3389/fvets.2023.1297430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
To date, the biomechanical dynamics in camelids have not been addressed, although it might be a factor that can affect selection and breeding in this species. Therefore, the aim of this article is to conduct curve fitting and discriminant canonical analysis to identify the mathematical function that best captures the dynamics of camel locomotion and to study the impact of kinematic, morphometric, physiological, and phaneroptic variables on gait performance in leisure riding and racing activities in dromedaries, respectively. The cubic function emerged as the most suitable mathematical model to represent the locomotive behavior of camels. Various factors were found to play a pivotal role in the athletic performance of leisure riding and racing dromedary camels. Concretely, angular measurements at the distal fore and rear extremity areas, pelvis inclination, relative volume of the hump, impact forces of the front limbs, post-neutering effects, and the kinematic behavior of the scapula, shoulder, carpus, hip, and foot are the factors that greatly impact gait performance in leisure riding and racing camels. The biomechanical performance at these specific body regions has a profound impact on weight absorption and minimization of mechanic impact during camel locomotion, static/dynamic balance, force distribution, energy of propulsion, movement direction and amplitude, and storage of elastic strain in leisure riding and racing dromedaries. In contrast, other animal- and environment-dependent factors do not exert significant influence on camel gait performance, which can be attributed to species-specific, inherited adaptations developed in response to desert conditions, including the pacing gait, broad foot pads, and energy-efficient movements. The outcomes of our functional data analysis can provide valuable insights for making informed breeding decisions aimed at enhancing animal functional performance in camel riding and racing activities. Furthermore, these findings can open avenues for exploring alternative applications, such as camel-assisted therapy.
Collapse
Affiliation(s)
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, Bari, Italy
| | - Carmen Marín Navas
- Department of Genetics, Faculty of Veterinary Sciences, University of Cordoba, Cordoba, Spain
| | | |
Collapse
|
2
|
Sathe EA, Chronister NJ, Dudley R. Incipient wing flapping enhances aerial performance of a robotic paravian model. BIOINSPIRATION & BIOMIMETICS 2023; 18:046017. [PMID: 37253379 DOI: 10.1088/1748-3190/acda03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
The functional origins of bird flight remain unresolved despite a diversity of hypothesized selective factors. Fossil taxa phylogenetically intermediate between typical theropod dinosaurs and modern birds exhibit dense aggregations of feathers on their forelimbs, and the evolving morphologies and kinematic activational patterns of these structures could have progressively enhanced aerodynamic force production over time. However, biomechanical functionality of flapping in such transitional structures is unknown. We evaluated a robot inspired by paravian morphology to model the effects of incremental increases in wing length, wingbeat frequency, and stroke amplitude on aerial performance. From a launch height of 2.8 m, wing elongation most strongly influenced distance travelled and time aloft for all frequency-amplitude combinations, although increased frequency and amplitude also enhanced performance. Furthermore, we found interaction effects among these three parameters such that when the wings were long, higher values of either wingbeat frequency or stroke amplitude synergistically improved performance. For launches from a height of 5.0 m, the effects of these flapping parameters appear to diminish such that only flapping at the highest frequency (5.7 Hz) and amplitude (60°) significantly increased performance. Our results suggest that a gliding animal at the physical scale relevant to bird flight origins, and with transitional wings, can improve aerodynamic performance via rudimentary wing flapping at relatively low frequencies and amplitudes. Such gains in horizontal translation and time aloft, as those found in this study, are likely to be advantageous for any taxon that engages in aerial behavior for purposes of transit or escape. This study thus demonstrates aerodynamic benefits of transition from a gliding stage to full-scale wing flapping in paravian taxa.
Collapse
Affiliation(s)
- Erik Andrew Sathe
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| | | | - Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, CA, United States of America
| |
Collapse
|
3
|
Meyerpeter MB, Lazenby KD, Coates PS, Ricca MA, Mathews SR, Gardner SC, Dahlgren DK, Delehanty DJ. Field Methods for Translocating Female Greater Sage‐Grouse (
Centrocercus urophasianus
) with their Broods. WILDLIFE SOC B 2021. [DOI: 10.1002/wsb.1199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mary B. Meyerpeter
- U.S. Geological Survey, Western Ecological Research Center 800 Business Park Drive Dixon CA 95620 USA
- Idaho State University 921 S. 8th Ave. Pocatello ID 83209 USA
| | | | - Peter S. Coates
- U.S. Geological Survey, Western Ecological Research Center 800 Business Park Drive Dixon CA 95620 USA
| | - Mark A. Ricca
- U.S. Geological Survey, Western Ecological Research Center 800 Business Park Drive Dixon CA 95620 USA
| | - Steven R. Mathews
- U.S. Geological Survey, Western Ecological Research Center 800 Business Park Drive Dixon CA 95620 USA
| | - Scott C. Gardner
- California Department of Fish and Wildlife, 1010 Riverside Parkway Sacramento CA 95605 USA
| | | | | |
Collapse
|
4
|
Naish D, Witton MP, Martin-Silverstone E. Powered flight in hatchling pterosaurs: evidence from wing form and bone strength. Sci Rep 2021; 11:13130. [PMID: 34294737 PMCID: PMC8298463 DOI: 10.1038/s41598-021-92499-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2021] [Indexed: 11/09/2022] Open
Abstract
Competing views exist on the behaviour and lifestyle of pterosaurs during the earliest phases of life. A 'flap-early' model proposes that hatchlings were capable of independent life and flapping flight, a 'fly-late' model posits that juveniles were not flight capable until 50% of adult size, and a 'glide-early' model requires that young juveniles were flight-capable but only able to glide. We test these models by quantifying the flight abilities of very young juvenile pterosaurs via analysis of wing bone strength, wing loading, wingspan and wing aspect ratios, primarily using data from embryonic and hatchling specimens of Pterodaustro guinazui and Sinopterus dongi. We argue that a young Sinopterus specimen has been mischaracterised as a distinct taxon. The humeri of pterosaur juveniles are similar in bending strength to those of adults and able to withstand launch and flight; wing size and wing aspect ratios of young juveniles are also in keeping with powered flight. We therefore reject the 'fly-late' and 'glide-early' models. We further show that young juveniles were excellent gliders, albeit not reliant on specialist gliding. The wing forms of very young juveniles differ significantly from larger individuals, meaning that variation in speed, manoeuvrability, take-off angle and so on was present across a species as it matured. Juveniles appear to have been adapted for flight in cluttered environments, in contrast to larger, older individuals. We propose on the basis of these conclusions that pterosaur species occupied distinct niches across ontogeny.
Collapse
Affiliation(s)
- Darren Naish
- School of Biological Sciences, Faculty of Environment & Life Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
| | - Mark P Witton
- School of the Environment, Geography and Geosciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO1 3QL, UK
| | | |
Collapse
|
5
|
Wu Y. Molecular phyloecology suggests a trophic shift concurrent with the evolution of the first birds. Commun Biol 2021; 4:547. [PMID: 33986452 PMCID: PMC8119460 DOI: 10.1038/s42003-021-02067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Birds are characterized by evolutionary specializations of both locomotion (e.g., flapping flight) and digestive system (toothless, crop, and gizzard), while the potential selection pressures responsible for these evolutionary specializations remain unclear. Here we used a recently developed molecular phyloecological method to reconstruct the diets of the ancestral archosaur and of the common ancestor of living birds (CALB). Our results suggest a trophic shift from carnivory to herbivory (fruit, seed, and/or nut eater) at the archosaur-to-bird transition. The evolutionary shift of the CALB to herbivory may have essentially made them become a low-level consumer and, consequently, subject to relatively high predation risk from potential predators such as gliding non-avian maniraptorans, from which birds descended. Under the relatively high predation pressure, ancestral birds with gliding capability may have then evolved not only flapping flight as a possible anti-predator strategy against gliding predatory non-avian maniraptorans but also the specialized digestive system as an evolutionary tradeoff of maximizing foraging efficiency and minimizing predation risk. Our results suggest that the powered flight and specialized digestive system of birds may have evolved as a result of their tropic shift-associated predation pressure.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, Changchun, China.
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| |
Collapse
|
6
|
Waxing and Waning of Wings. Trends Ecol Evol 2021; 36:457-470. [PMID: 33648760 DOI: 10.1016/j.tree.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/23/2022]
Abstract
A major challenge to Darwinian evolution is explaining 'rudimentary' organs. This is particularly relevant to birds: rudimentary wings occur in fossils, as well as in developing, molting, and flight-impaired birds. Evidence shows that young birds flap small wings to improve locomotion and transition to flight. Although small wings also occur in adults, their potential role in locomotion is rarely considered. Here we describe the prevalence of rudimentary wings in extant birds, and how wings wax and wane on many timescales. This waxing and waning is integral to the avian clade and offers a rich arena for exploring links between form, function, performance, behavior, ecology, and evolution. Although our understanding is nascent, birds clearly show that rudimentary structures can enhance performance and survival.
Collapse
|
7
|
Heers AM, Varghese SL, Hatier LK, Cabrera JJ. Multiple Functional Solutions During Flightless to Flight-Capable Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.573411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The evolution of avian flight is one of the great transformations in vertebrate history, marked by striking anatomical changes that presumably help meet the demands of aerial locomotion. These changes did not occur simultaneously, and are challenging to decipher. Although extinct theropods are most often compared to adult birds, studies show that developing birds can uniquely address certain challenges and provide powerful insights into the evolution of avian flight: unlike adults, immature birds have rudimentary, somewhat “dinosaur-like” flight apparatuses and can reveal relationships between form, function, performance, and behavior during flightless to flight-capable transitions. Here, we focus on the musculoskeletal apparatus and use CT scans coupled with a three-dimensional musculoskeletal modeling approach to analyze how ontogenetic changes in skeletal anatomy influence muscle size, leverage, orientation, and corresponding function during the development of flight in a precocial ground bird (Alectoris chukar). Our results demonstrate that immature and adult birds use different functional solutions to execute similar locomotor behaviors: in spite of dramatic changes in skeletal morphology, muscle paths and subsequent functions are largely maintained through ontogeny, because shifts in one bone are offset by changes in others. These findings help provide a viable mechanism for how extinct winged theropods with rudimentary pectoral skeletons might have achieved bird-like behaviors before acquiring fully bird-like anatomies. These findings also emphasize the importance of a holistic, whole-body perspective, and the need for extant validation of extinct behaviors and performance. As empirical studies on locomotor ontogeny accumulate, it is becoming apparent that traditional, isolated interpretations of skeletal anatomy mask the reality that integrated whole systems function in frequently unexpected yet effective ways. Collaborative and integrative efforts that address this challenge will surely strengthen our exploration of life and its evolutionary history.
Collapse
|
8
|
Wei X, Zhang Z. Ontogenetic changes of geometrical and mechanical characteristics of the avian femur: a comparison between precocial and altricial birds. J Anat 2019; 235:903-911. [PMID: 31355453 DOI: 10.1111/joa.13062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 11/30/2022] Open
Abstract
The mechanical performance of limb bones is closely associated with an animal's locomotor capability and is thus important to our understanding of animal behaviour. This study combined a geometrical analysis and three-point bending tests to address the question of how the mechanical performance of the femurs of Japanese quail (Coturnix coturnix japonica) and pigeon (Columba livia domestica) respond to changing functional demands during ontogeny. Results showed that hatchling quails had stiff bone tissues, and the femoral ultimate loads scaled negatively with body mass, corresponding to high functional demands during early growth. The hatchling pigeon femora had weak material properties but they showed a dramatic increase in Young's modulus during growth. Consequently, although femoral cross-sectional geometry showed negative allometry, the ultimate loads scaled positively with body mass. Older pigeons had more circular bone cross-sections than younger pigeons, probably due to load stimulation changes occurred shortly after the onset of locomotion. Negative allometry and isometry of the cross-sectional geometry of hind limb bones were observed in flying birds and ground-dwelling birds, respectively. The correspondence between geometrical change and locomotor pattern suggests that ontogenetic changes in cross-sectional geometry may be an effective indicator of avian locomotor behaviour.
Collapse
Affiliation(s)
- Xinsen Wei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zihui Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
9
|
Nadal J, Ponz C, Margalida A. Body proportions for the facilitation of walking, running and flying: the case of partridges. BMC Evol Biol 2018; 18:176. [PMID: 30477435 PMCID: PMC6260763 DOI: 10.1186/s12862-018-1295-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/16/2018] [Indexed: 11/22/2022] Open
Abstract
Background Predation is one of the most important natural selection forces. Prey species can optimize feeding behavior and escape from predators based on mobility conditioned by body proportions. With age, mobility capacity increases and individuals are more efficient in finding resources and safety (e.g., food and refuge). Birds’ mobility is driven by the dimensions, of the head and torso, as well as the extremities and flight feathers. To assess the relationship between body traits and to understand how body proportions are organized in wild Red-legged partridges (Alectoris rufa), we used biometric data from nearly 14,000 individuals, obtained during a long-term study (1988–2011) on a wild population. Results We used GLMs and regressions to model the relationship between body mass and the size of body parts. We found that wing length was the morphological part best explained by other body trait measures. Wing length models were better predictors in juveniles than in adults and in females than in males. Wing length and feather length, mass and total length are the most strongly related parts; mass and wing length, total length and feather length are moderately related. The association between mass and wing length is intermediated by feather length and total length. Conclusions Social inclusion, feeding and predator evasion may be affected by body structure intermediated by mobility and health. Our results suggest that proportions of the body, extremities and flight feathers drive mobility which is intimately associated with ecology, biological efficiency, health and physical optimization. Our findings showed that wing size was strongly allied to other body part measurements, enhancing the importance of body structure conformation for flight. Our study highlights the scaled relationship of body structure among age-sex classes and its relevance to social cohesion, flock movement and the balance between predation and starvation. Electronic supplementary material The online version of this article (10.1186/s12862-018-1295-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesús Nadal
- Department of Animal Science, Division of Wildlife, Faculty of Life Sciences and Engineering, University of Lleida, Lleida, Spain.
| | - Carolina Ponz
- Department of Animal Science, Division of Wildlife, Faculty of Life Sciences and Engineering, University of Lleida, Lleida, Spain
| | - Antoni Margalida
- Department of Animal Science, Division of Wildlife, Faculty of Life Sciences and Engineering, University of Lleida, Lleida, Spain.,Institute for Game and Wildlife Research, IREC (CSIC-UCLM-JCCM), 13005, Ciudad Real, Spain.,Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
Heers AM, Rankin JW, Hutchinson JR. Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running During Avian Ontogeny. Front Bioeng Biotechnol 2018; 6:140. [PMID: 30406089 PMCID: PMC6205952 DOI: 10.3389/fbioe.2018.00140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/17/2018] [Indexed: 01/01/2023] Open
Abstract
Flapping flight is the most power-demanding mode of locomotion, associated with a suite of anatomical specializations in extant adult birds. In contrast, many developing birds use their forelimbs to negotiate environments long before acquiring "flight adaptations," recruiting their developing wings to continuously enhance leg performance and, in some cases, fly. How does anatomical development influence these locomotor behaviors? Isolating morphological contributions to wing performance is extremely challenging using purely empirical approaches. However, musculoskeletal modeling and simulation techniques can incorporate empirical data to explicitly examine the functional consequences of changing morphology by manipulating anatomical parameters individually and estimating their effects on locomotion. To assess how ontogenetic changes in anatomy affect locomotor capacity, we combined existing empirical data on muscle morphology, skeletal kinematics, and aerodynamic force production with advanced biomechanical modeling and simulation techniques to analyze the ontogeny of pectoral limb function in a precocial ground bird (Alectoris chukar). Simulations of wing-assisted incline running (WAIR) using these newly developed musculoskeletal models collectively suggest that immature birds have excess muscle capacity and are limited more by feather morphology, possibly because feathers grow more quickly and have a different style of growth than bones and muscles. These results provide critical information about the ontogeny and evolution of avian locomotion by (i) establishing how muscular and aerodynamic forces interface with the skeletal system to generate movement in morphing juvenile birds, and (ii) providing a benchmark to inform biomechanical modeling and simulation of other locomotor behaviors, both across extant species and among extinct theropod dinosaurs.
Collapse
Affiliation(s)
- Ashley M Heers
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, United States.,Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Jeffery W Rankin
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, United Kingdom.,Pathokinesiology Laboratory, Rancho Los Amigos National Rehabilitation Hospital, Downey, CA, United States
| | - John R Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
11
|
Affiliation(s)
- Paolo S Segre
- Department of Biology, Hopkins Marine Station, Stanford University, Stanford, CA, USA
| | - Amanda I Banet
- Department of Biological Sciences, California State University, Chico, CA, USA
| |
Collapse
|
12
|
Liang X, Yu J, Wang H, Zhang Z. Post-Hatching Growth of the Pectoralis Muscle in Pigeon and Its Functional Implications. Anat Rec (Hoboken) 2018; 301:1564-1569. [PMID: 29729220 DOI: 10.1002/ar.23850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/08/2018] [Accepted: 01/22/2018] [Indexed: 12/22/2022]
Abstract
The avian pectoralis muscle is responsible for the wing's downstroke, which provides birds with lift and thrust for flight. In the present study, architectural parameters were investigated through growth in the pigeon (Columba livia), an altricial bird species, from the ages of 4 days to 12 months, in order to assess the morphological changes and effects of increasing body mass. Muscle mass, fascicle length (FL), and physiological cross-sectional area (PCSA) increased with strong positive allometry. As an indicator of force production capacity, the PCSA increased 30-fold with the changes in body mass; it grew rapidly during the nesting period and post-fledging period into sexual maturity. The growth pattern of FL demonstrated a gradual increase before fledging and a marked increase after maturity. Taken together, the growth of the pectoralis was found to be dominated by a continuous increase in PCSA before maturity and subsequent increase in FL. These features were associated with the establishment and improvement of flight capability, and further revealed different strategies in maintaining relatively constant power prior to and after maturity. Anat Rec, 301:1564-1569, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xinxin Liang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jiali Yu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Huan Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zihui Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
13
|
|
14
|
LeBlanc C, Tobalske B, Szkotnicki B, Harlander-Matauschek A. Locomotor Behavior of Chickens Anticipating Incline Walking. Front Vet Sci 2018; 4:233. [PMID: 29376060 PMCID: PMC5767578 DOI: 10.3389/fvets.2017.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/14/2017] [Indexed: 11/19/2022] Open
Abstract
Keel bone damage (KBD) is prevalent in hens raised for egg production, and ramps between different tiers in aviaries have potential to reduce the frequency of falls resulting in KBD. Effective use of ramps requires modulation of locomotion in anticipation of the incline. Inadequate adaptive locomotion may be one explanation why domestic layer hens (Gallus gallus domesticus) exhibit high rates of KBD. To improve understanding of the capacity of hens to modulate their locomotion in anticipation of climbing, we measured the effects of incline angle upon the mechanics of the preparatory step before ascending a ramp. Because the energetic challenge of climbing increases with slope, we predicted that as angle of incline increased, birds during foot contact with the ground before starting to climb would increase their peak force and duration of contact and reduce variation in center of pressure (COP) under their foot. We tested 20 female domestic chickens on ramp inclines at slopes of +0°, +40°, and +70° when birds were 17, 21, 26, 31, and 36 weeks of age. There were significantly higher vertical peak ground reaction forces in preparation at the steepest slope, and ground contact time increased significantly with each increase in ramp angle. Effects upon variation in COP were not apparent; likewise, effects of limb length, age, body mass were not significant. Our results reveal that domestic chickens are capable of modulating their locomotion in response to incline angle.
Collapse
Affiliation(s)
- Chantal LeBlanc
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Bret Tobalske
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Bill Szkotnicki
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
15
|
Tobalske BW. Evolution of avian flight: muscles and constraints on performance. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0383. [PMID: 27528773 DOI: 10.1098/rstb.2015.0383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 11/12/2022] Open
Abstract
Competing hypotheses about evolutionary origins of flight are the 'fundamental wing-stroke' and 'directed aerial descent' hypotheses. Support for the fundamental wing-stroke hypothesis is that extant birds use flapping of their wings to climb even before they are able to fly; there are no reported examples of incrementally increasing use of wing movements in gliding transitioning to flapping. An open question is whether locomotor styles must evolve initially for efficiency or if they might instead arrive due to efficacy. The proximal muscles of the avian wing output work and power for flight, and new research is exploring functions of the distal muscles in relation to dynamic changes in wing shape. It will be useful to test the relative contributions of the muscles of the forearm compared with inertial and aerodynamic loading of the wing upon dynamic morphing. Body size has dramatic effects upon flight performance. New research has revealed that mass-specific muscle power declines with increasing body mass among species. This explains the constraints associated with being large. Hummingbirds are the only species that can sustain hovering. Their ability to generate force, work and power appears to be limited by time for activation and deactivation within their wingbeats of high frequency. Most small birds use flap-bounding flight, and this flight style may offer an energetic advantage over continuous flapping during fast flight or during flight into a headwind. The use of flap-bounding during slow flight remains enigmatic. Flap-bounding birds do not appear to be constrained to use their primary flight muscles in a fixed manner. To improve understanding of the functional significance of flap-bounding, the energetic costs and the relative use of alternative styles by a given species in nature merit study.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.
Collapse
Affiliation(s)
- Bret W Tobalske
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
16
|
Nadal J, Ponz C, Margalida A. Feathers for escape: the transition from juvenile to adult in red-legged partridges (Alectoris rufa). Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
17
|
Tobalske BW, Jackson BE, Dial KP. Ontogeny of Flight Capacity and Pectoralis Function in a Precocial Ground Bird (Alectoris chukar). Integr Comp Biol 2017; 57:217-230. [DOI: 10.1093/icb/icx050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
18
|
Kozak M, Tobalske B, Martins C, Bowley S, Wuerbel H, Harlander-Matauschek A. Use of space by domestic chicks housed in complex aviaries. Appl Anim Behav Sci 2016. [DOI: 10.1016/j.applanim.2016.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Dececchi TA, Larsson HC, Habib MB. The wings before the bird: an evaluation of flapping-based locomotory hypotheses in bird antecedents. PeerJ 2016; 4:e2159. [PMID: 27441115 PMCID: PMC4941780 DOI: 10.7717/peerj.2159] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/27/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Powered flight is implicated as a major driver for the success of birds. Here we examine the effectiveness of three hypothesized pathways for the evolution of the flight stroke, the forelimb motion that powers aerial locomotion, in a terrestrial setting across a range of stem and basal avians: flap running, Wing Assisted Incline Running (WAIR), and wing-assisted leaping. METHODS Using biomechanical mathematical models based on known aerodynamic principals and in vivo experiments and ground truthed using extant avians we seek to test if an incipient flight stroke may have contributed sufficient force to permit flap running, WAIR, or leaping takeoff along the phylogenetic lineage from Coelurosauria to birds. RESULTS None of these behaviours were found to meet the biomechanical threshold requirements before Paraves. Neither was there a continuous trend of refinement for any of these biomechanical performances across phylogeny nor a signal of universal applicability near the origin of birds. None of these flap-based locomotory models appear to have been a major influence on pre-flight character acquisition such as pennaceous feathers, suggesting non-locomotory behaviours, and less stringent locomotory behaviours such as balancing and braking, played a role in the evolution of the maniraptoran wing and nascent flight stroke. We find no support for widespread prevalence of WAIR in non-avian theropods, but can't reject its presence in large winged, small-bodied taxa like Microraptor and Archaeopteryx. DISCUSSION Using our first principles approach we find that "near flight" locomotor behaviors are most sensitive to wing area, and that non-locomotory related selection regimes likely expanded wing area well before WAIR and other such behaviors were possible in derived avians. These results suggest that investigations of the drivers for wing expansion and feather elongation in theropods need not be intrinsically linked to locomotory adaptations, and this separation is critical for our understanding of the origin of powered flight and avian evolution.
Collapse
Affiliation(s)
| | | | - Michael B. Habib
- Keck School of Medicine of USC, Department of Cell and Neurobiology, University of Southern California, Los Angeles, California, United States
- Dinosaur Institute, Natural History Museum of Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
20
|
Heers AM, Baier DB, Jackson BE, Dial KP. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development. PLoS One 2016; 11:e0153446. [PMID: 27100994 PMCID: PMC4872793 DOI: 10.1371/journal.pone.0153446] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/29/2016] [Indexed: 12/05/2022] Open
Abstract
Some of the greatest transformations in vertebrate history involve developmental
and evolutionary origins of avian flight. Flight is the most power-demanding
mode of locomotion, and volant adult birds have many anatomical features that
presumably help meet these demands. However, juvenile birds, like the first
winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of
large wings they have small “protowings”, and instead of robust, interlocking
forelimb skeletons their limbs are more gracile and their joints less
constrained. Such traits are often thought to preclude extinct theropods from
powered flight, yet young birds with similarly rudimentary anatomies flap-run up
slopes and even briefly fly, thereby challenging longstanding ideas on skeletal
and feather function in the theropod-avian lineage. Though skeletons and
feathers are the common link between extinct and extant theropods and figure
prominently in discussions on flight performance (extant birds) and flight
origins (extinct theropods), skeletal inter-workings are hidden from view and
their functional relationship with aerodynamically active wings is not known.
For the first time, we use X-ray Reconstruction of Moving Morphology to
visualize skeletal movement in developing birds, and explore how development of
the avian flight apparatus corresponds with ontogenetic trajectories in skeletal
kinematics, aerodynamic performance, and the locomotor transition from
pre-flight flapping behaviors to full flight capacity. Our findings reveal that
developing chukars (Alectoris chukar) with rudimentary flight
apparatuses acquire an “avian” flight stroke early in ontogeny, initially by
using their wings and legs cooperatively and, as they acquire flight capacity,
counteracting ontogenetic increases in aerodynamic output with greater skeletal
channelization. In conjunction with previous work, juvenile birds thereby
demonstrate that the initial function of developing wings is to enhance leg
performance, and that aerodynamically active, flapping wings might better be
viewed as adaptations or exaptations for enhancing leg performance.
Collapse
Affiliation(s)
- Ashley M. Heers
- Division of Paleontology, American Museum of Natural History, Central
Park West and 79 St., New York, New York 10024, United States of
America
- * E-mail:
| | - David B. Baier
- Department of Biology, Providence College, 1 Cunningham Square,
Providence, Rhode Island 02918, United States of America
| | - Brandon E. Jackson
- Biology and Environmental Sciences, Longwood University, 201 High St.,
Farmville, Virginia 23909, United States of America
| | - Kenneth P. Dial
- Division of Biological Sciences, University of Montana, 32 Campus Drive,
Missoula, Montana 59812, United States of America
| |
Collapse
|
21
|
Rose KA, Bates KT, Nudds RL, Codd JR. Ontogeny of sex differences in the energetics and kinematics of terrestrial locomotion in leghorn chickens (Gallus gallus domesticus). Sci Rep 2016; 6:24292. [PMID: 27068682 PMCID: PMC4828670 DOI: 10.1038/srep24292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/24/2016] [Indexed: 11/09/2022] Open
Abstract
Sex differences in locomotor performance may precede the onset of sexual maturity and/or arise concomitantly with secondary sex characteristics. Here, we present the first study to quantify the terrestrial locomotor morphology, energetics and kinematics in a species, either side of sexual maturation. In domestic leghorn chickens (Gallus gallus domesticus) sexual maturation brings about permanent female gravidity and increased male hind limb muscle mass. We found that the sexes of a juvenile cohort of leghorns shared similar maximum sustainable speeds, while in a sexually mature cohort maximum sustainable speeds were greater by 67% (males) and 34% (females). Furthermore, relative to that in juveniles of the same sex, the absolute duration of leg swing was longer in mature males and shorter in mature females. Consequently, the proportion of a stride that each limb was in contact with the ground (duty factor) was higher in sexually mature females compared to males. Modulation of the duty factor with the development of secondary sex characteristics may act to minimize mechanical work in males; and minimise mechanical power and/or peak force in females. A greater incremental response of mass-specific metabolic power to speed in males compared to females was common to both age cohorts and, therefore, likely results from physiological sexual dimorphisms that precede sexual maturation.
Collapse
Affiliation(s)
- K. A. Rose
- Faculty of Life Sciences, University of Manchester, Manchester, M139PT, UK
| | - K. T. Bates
- Faculty of Life Sciences, University of Manchester, Manchester, M139PT, UK
| | - R. L. Nudds
- Faculty of Life Sciences, University of Manchester, Manchester, M139PT, UK
| | - J. R. Codd
- Faculty of Life Sciences, University of Manchester, Manchester, M139PT, UK
| |
Collapse
|
22
|
Javůrková V, Krkavcová E, Kreisinger J, Hyršl P, Hyánková L. Effects of experimentally increased in ovo lysozyme on egg hatchability, chicks complement activity, and phenotype in a precocial bird. ACTA ACUST UNITED AC 2015. [PMID: 26205223 DOI: 10.1002/jez.1935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In birds, spectrum of egg white proteins deposited into the egg during its formation are thought to be essential maternal effects. Particularly, egg white lysozyme (LSM), exhibiting great between and within species variability, is considered to be essential for developing avian embryos due to its physiological, antimicrobial, and innate immune defense functions. However, there have been few studies investigating effects of LSM on early post-hatching phenotype, despite its broad physiological and protective role during embryogenesis. Here, we test how experimentally increased concentrations of egg white LSM affect hatchability in Japanese quail (Coturnix japonica) and chick phenotype immediately after hatching (particularly body weight, tarsus length, plasma LSM concentration, and plasma complement activity). Chicks from eggs with increased LSM concentration displayed reduced tarsus length compared to chicks from control eggs while hatchability, body weight and plasma LSM concentration were unaffected. It is worth noting that no effect of increased in ovo lysozyme on eggs hatchability could be related to pathogen-free environment during artificial incubation of experimental eggs causing minimal pressure on embryo viability. While tangible in vivo mechanisms during avian embryogenesis remain to be tested, our study is the first to document experimentally that egg white LSM appears to have growth-regulation role during embryo development, with possible underlying phenotypic consequences in the early post-hatching period in precocial birds.
Collapse
Affiliation(s)
- Veronika Javůrková
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic.,The Czech Academy of Sciences, Institute of Vertebrate Biology v.v.i., Brno, Czech Republic
| | - Eva Krkavcová
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Biodiversity Research Group, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic.,Department of Biodiversity and Molecular Ecology, Fondazione Edmund Mach, Research and Innovation Centre, Trentino, Italy
| | - Pavel Hyršl
- Department of Animal Physiology and Immunology, Institute of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Ludmila Hyánková
- Department of Genetics and breeding of farm animals, Institute of Animal Science, Prague, Czech Republic
| |
Collapse
|
23
|
Evangelista D, Cam S, Huynh T, Krivitskiy I, Dudley R. Ontogeny of aerial righting and wing flapping in juvenile birds. Biol Lett 2015; 10:rsbl.2014.0497. [PMID: 25165451 DOI: 10.1098/rsbl.2014.0497] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mechanisms of aerial righting in juvenile chukar partridge (Alectoris chukar) were studied from hatching to 14 days-post-hatching (dph). Asymmetric movements of the wings were used from 1 to 8 dph to effect progressively more successful righting behaviour via body roll. Following 8 dph, wing motions transitioned to bilaterally symmetric flapping that yielded aerial righting via nose-down pitch, along with substantial increases in vertical force production during descent. Ontogenetically, the use of such wing motions to effect aerial righting precedes both symmetric flapping and a previously documented behaviour in chukar (i.e. wing-assisted incline running) hypothesized to be relevant to incipient flight evolution in birds. These findings highlight the importance of asymmetric wing activation and controlled aerial manoeuvres during bird development and are potentially relevant to understanding the origins of avian flight.
Collapse
Affiliation(s)
- Dennis Evangelista
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharlene Cam
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Tony Huynh
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Igor Krivitskiy
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA Smithsonian Tropical Research Institute, Balboa, Panama
| |
Collapse
|
24
|
Baier DB, Gatesy SM, Dial KP. Three-dimensional, high-resolution skeletal kinematics of the avian wing and shoulder during ascending flapping flight and uphill flap-running. PLoS One 2013; 8:e63982. [PMID: 23691132 PMCID: PMC3655074 DOI: 10.1371/journal.pone.0063982] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 04/10/2013] [Indexed: 11/25/2022] Open
Abstract
Past studies have shown that birds use their wings not only for flight, but also when ascending steep inclines. Uphill flap-running or wing-assisted incline running (WAIR) is used by both flight-incapable fledglings and flight-capable adults to retreat to an elevated refuge. Despite the broadly varying direction of travel during WAIR, level, and descending flight, recent studies have found that the basic wing path remains relatively invariant with reference to gravity. If so, joints undergo disparate motions to maintain a consistent wing path during those specific flapping modes. The underlying skeletal motions, however, are masked by feathers and skin. To improve our understanding of the form-functional relationship of the skeletal apparatus and joint morphology with a corresponding locomotor behavior, we used XROMM (X-ray Reconstruction of Moving Morphology) to quantify 3-D skeletal kinematics in chukars (Alectoris chukar) during WAIR (ascending with legs and wings) and ascending flight (AF, ascending with wings only) along comparable trajectories. Evidence here from the wing joints demonstrates that the glenohumeral joint controls the vast majority of wing movements. More distal joints are primarily involved in modifying wing shape. All bones are in relatively similar orientations at the top of upstroke during both behaviors, but then diverge through downstroke. Total excursion of the wing is much smaller during WAIR and the tip of the manus follows a more vertical path. The WAIR stroke appears "truncated" relative to ascending flight, primarily stemming from ca. 50% reduction in humeral depression. Additionally, the elbow and wrist exhibit reduced ranges of angular excursions during WAIR. The glenohumeral joint moves in a pattern congruent with being constrained by the acrocoracohumeral ligament. Finally, we found pronounced lateral bending of the furcula during the wingbeat cycle during ascending flight only, though the phasic pattern in chukars is opposite of that observed in starlings (Sturnus vulgaris).
Collapse
Affiliation(s)
- David B Baier
- Department of Biology, Providence College, Providence, Rhode Island, United States of America.
| | | | | |
Collapse
|
25
|
Cheng YR, Martin TE. Nest Predation Risk and Growth Strategies of Passerine Species: Grow Fast or Develop Traits to Escape Risk? Am Nat 2012; 180:285-95. [DOI: 10.1086/667214] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Heers AM, Dial KP. From extant to extinct: locomotor ontogeny and the evolution of avian flight. Trends Ecol Evol 2012; 27:296-305. [PMID: 22304966 DOI: 10.1016/j.tree.2011.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 12/01/2022]
Abstract
Evolutionary transformations are recorded by fossils with transitional morphologies, and are key to understanding the history of life. Reconstructing these transformations requires interpreting functional attributes of extinct forms by exploring how similar features function in extant organisms. However, extinct-extant comparisons are often difficult, because extant adult forms frequently differ substantially from fossil material. Here, we illustrate how postnatal developmental transitions in extant birds can provide rich and novel insights into evolutionary transformations in theropod dinosaurs. Although juveniles have not been a focus of extinct-extant comparisons, developing juveniles in many groups transition through intermediate morphological, functional and behavioral stages that anatomically and conceptually parallel evolutionary transformations. Exploring developmental transitions may thus disclose observable, ecologically relevant answers to long puzzling evolutionary questions.
Collapse
Affiliation(s)
- Ashley M Heers
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | |
Collapse
|
27
|
Peterson K, Birkmeyer P, Dudley R, Fearing RS. A wing-assisted running robot and implications for avian flight evolution. BIOINSPIRATION & BIOMIMETICS 2011; 6:046008. [PMID: 22004831 DOI: 10.1088/1748-3182/6/4/046008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s⁻¹, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.
Collapse
Affiliation(s)
- K Peterson
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720-1770, USA.
| | | | | | | |
Collapse
|
28
|
|
29
|
Heers AM, Tobalske BW, Dial KP. Ontogeny of lift and drag production in ground birds. ACTA ACUST UNITED AC 2011; 214:717-25. [PMID: 21307057 DOI: 10.1242/jeb.051177] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The juvenile period is often a crucial interval for selective pressure on locomotor ability. Although flight is central to avian biology, little is known about factors that limit flight performance during development. To improve understanding of flight ontogeny, we used a propeller (revolving wing) model to test how wing shape and feather structure influence aerodynamic performance during development in the precocial chukar partridge (Alectoris chukar, 4 to >100 days post hatching). We spun wings in mid-downstroke posture and measured lift (L) and drag (D) using a force plate upon which the propeller assembly was mounted. Our findings demonstrate a clear relationship between feather morphology and aerodynamic performance. Independent of size and velocity, older wings with stiffer and more asymmetrical feathers, high numbers of barbicels and a high degree of overlap between barbules generate greater L and L:D ratios than younger wings with flexible, relatively symmetrical and less cohesive feathers. The gradual transition from immature feathers and drag-based performance to more mature feathers and lift-based performance appears to coincide with ontogenetic transitions in locomotor capacity. Younger birds engage in behaviors that require little aerodynamic force and that allow D to contribute to weight support, whereas older birds may expand their behavioral repertoire by flapping with higher tip velocities and generating greater L. Incipient wings are, therefore, uniquely but immediately functional and provide flight-incapable juveniles with access to three-dimensional environments and refugia. Such access may have conferred selective advantages to theropods with protowings during the evolution of avian flight.
Collapse
Affiliation(s)
- Ashley M Heers
- Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | | | | |
Collapse
|
30
|
Dudley R, Yanoviak SP. Animal aloft: the origins of aerial behavior and flight. Integr Comp Biol 2011; 51:926-36. [PMID: 21558180 DOI: 10.1093/icb/icr002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diverse taxa of animals exhibit remarkable aerial capacities, including jumping, mid-air righting, parachuting, gliding, landing, controlled maneuvers, and flapping flight. The origin of flapping wings in hexapods and in 3 separate lineages of vertebrates (pterosaurs, bats, and birds) greatly facilitated subsequent diversification of lineages, but both the paleobiological context and the possible selective pressures for the evolution of wings remain contentious. Larvae of various arboreal hemimetabolous insects, as well as many adult canopy ants, demonstrate the capacity for directed aerial descent in the absence of wings. Aerial control in the ancestrally wingless archaeognathans suggests that flight behavior preceded the origins of wings in hexapods. In evolutionary terms, the use of winglets and partial wings to effect aerial righting and maneuvers could select for enhanced appendicular motions, and ultimately lead to powered flight. Flight behaviors that involve neither flapping nor wings are likely to be much more widespread than is currently recognized. Further characterization of the sensory and biomechanical mechanisms used by these aerially capable taxa can potentially assist in reconstruction of ancestral winged morphologies and facilitate our understanding of the origins of flight.
Collapse
Affiliation(s)
- Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|
31
|
Dial KP, Jackson BE. When hatchlings outperform adults: locomotor development in Australian brush turkeys (Alectura lathami, Galliformes). Proc Biol Sci 2010; 278:1610-6. [PMID: 21047855 DOI: 10.1098/rspb.2010.1984] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Within Galliformes, megapods (brush turkey, malleefowl, scrubfowl) exhibit unique forms of parental care and growth. Hatchlings receive no post-hatching parental care and exhibit the most exaggerated precocial development of all extant birds, hatching with fully developed, flight-capable forelimbs. Rather than flying up to safety, young birds preferentially employ wing-assisted incline running. Newly hatched Australian brush turkeys (Alectura lathami) are extraordinarily proficient at negotiating all textured inclined surfaces and can flap-walk up inclines exceeding the vertical. Yet, as brush turkeys grow, their forelimb-dependent locomotor performance declines. In an attempt to elucidate how hatchlings perform so well, we analysed hindlimb forces and forelimb kinematics. We measured ground reaction forces (GRFs) for animals spanning the entire growth range (110-2000 g) as they ascended a variably positioned inclined ramp that housed a forceplate. These data are compared with a similar dataset for a chukar partridge (Alectoris chukar) that exhibit a growth strategy typical of most other Galliformes and that demonstrate improved incline performance with increasing age. The brush turkeys' ontogenetic decline in incline running performance is accompanied by loss of traction at steep angles, reduced GRFs and increased wing-loading. We hypothesize that Australian brush turkeys, in contrast to other Galliformes, develop from forelimb-dominated young that exploit a variable terrain (e.g. mound nests, boulders, embankments, cliffs, bushes and trees) into hindlimb-dominated adults dependent on size and running speed to avoid predation.
Collapse
|