1
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Roider J, Ngoepe A, Muenchhoff M, Adland E, Groll A, Ndung'u T, Kløverpris H, Goulder P, Leslie A. Increased Regulatory T-Cell Activity and Enhanced T-Cell Homeostatic Signaling in Slow Progressing HIV-infected Children. Front Immunol 2019; 10:213. [PMID: 30809229 PMCID: PMC6379343 DOI: 10.3389/fimmu.2019.00213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
Pediatric slow progressors (PSP) are rare ART-naïve, HIV-infected children who maintain high CD4 T-cell counts and low immune activation despite persistently high viral loads. Using a well-defined cohort of PSP, we investigated the role of regulatory T-cells (TREG) and of IL-7 homeostatic signaling in maintaining normal-for-age CD4 counts in these individuals. Compared to children with progressive disease, PSP had greater absolute numbers of TREG, skewed toward functionally suppressive phenotypes. As with immune activation, overall T-cell proliferation was lower in PSP, but was uniquely higher in central memory TREG (CM TREG), indicating active engagement of this subset. Furthermore, PSP secreted higher levels of the immunosuppressive cytokine IL-10 than children who progressed. The frequency of suppressive TREG, CM TREG proliferation, and IL-10 production were all lower in PSP who go on to progress at a later time-point, supporting the importance of an active TREG response in preventing disease progression. In addition, we find that IL-7 homeostatic signaling is enhanced in PSP, both through preserved surface IL-7receptor (CD127) expression on central memory T-cells and increased plasma levels of soluble IL-7receptor, which enhances the bioactivity of IL-7. Combined analysis, using a LASSO modeling approach, indicates that both TREG activity and homeostatic T-cell signaling make independent contributions to the preservation of CD4 T-cells in HIV-infected children. Together, these data demonstrate that maintenance of normal-for-age CD4 counts in PSP is an active process, which requires both suppression of immune activation through functional TREG, and enhanced T-cell homeostatic signaling.
Collapse
Affiliation(s)
- Julia Roider
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infectious Diseases, Medizinische Klinik IV, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Abigail Ngoepe
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Maximilian Muenchhoff
- Department of Virology, Max von Pettenkofer Institute, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Emily Adland
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
| | - Andreas Groll
- Faculty of Statistics, TU Dortmund University, Dortmund, Germany
| | - Thumbi Ndung'u
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States
- Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Infection and Immunity, University College London, London, United Kingdom
| | - Henrik Kløverpris
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Philip Goulder
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, Oxford University, Oxford, United Kingdom
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Alasdair Leslie
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
3
|
Rallón N, García M, García-Samaniego J, Rodríguez N, Cabello A, Restrepo C, Álvarez B, García R, Górgolas M, Benito JM. HCV coinfection contributes to HIV pathogenesis by increasing immune exhaustion in CD8 T-cells. PLoS One 2017; 12:e0173943. [PMID: 28323897 PMCID: PMC5360268 DOI: 10.1371/journal.pone.0173943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/01/2017] [Indexed: 11/23/2022] Open
Abstract
Background There are several contributors to HIV-pathogenesis or insufficient control of the infection. However, whether HIV/HCV-coinfected population exhibits worst evolution of HIV-pathogenesis remains unclear. Recently, some markers of immune exhaustion have been proposed as preferentially upregulated on T-cells during HIV-infection. Herein, we have analyzed T-cell exhaustion together with several other contributors to HIV-pathogenesis that could be affected by HCV-coinfection. Patients and methods Ninety-six patients with chronic HIV-infection (60 HIV-monoinfected and 36 HIV/HCV-coinfected), and 20 healthy controls were included in the study. All patients were untreated for both infections. Several CD4 and CD8 T-cell subsets involved in HIV-pathogenesis were investigated. Non-parametric tests were used to establish differences between groups and associations between variables. Multivariate linear regression was used to ascertain the variables independently associated with CD4 counts. Results HIV-patients presented significant differences compared to healthy controls in most of the parameters analyzed. Both HIV and HIV/HCV groups were comparable in terms of age, CD4 counts and HIV-viremia. Compared to HIV group, HIV/HCV group presented significantly higher levels of exhaustion (Tim3+PD1- subset) in total CD8+ T-cells (p = 0.003), and higher levels of exhaustion in CD8+HLADR+CD38+ (p = 0.04), CD8+HLADR-CD38+ (p = 0.009) and CD8+HLADR-CD38- (p = 0.006) subsets of CD8+ T-cells. Interestingly these differences were maintained after adjusting by CD4 counts and HIV-viremia. Conclusions We show a significant impact of HCV-coinfection on CD8 T-cells exhaustion, an important parameter associated with CD8 T-cell dysfunction in the setting of chronic HIV-infection. The relevance of this phenomenon on immunological and/or clinical HIV progression prompts HCV treatment to improve management of coinfected patients.
Collapse
Affiliation(s)
- Norma Rallón
- IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
- * E-mail:
| | - Marcial García
- IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | - Noelia Rodríguez
- IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Clara Restrepo
- IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Beatriz Álvarez
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Rosa García
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José M. Benito
- IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| |
Collapse
|
4
|
Wang S, Hottz P, Schechter M, Rong L. Modeling the Slow CD4+ T Cell Decline in HIV-Infected Individuals. PLoS Comput Biol 2015; 11:e1004665. [PMID: 26709961 PMCID: PMC4692447 DOI: 10.1371/journal.pcbi.1004665] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/17/2015] [Indexed: 02/07/2023] Open
Abstract
The progressive loss of CD4+ T cell population is the hallmark of HIV-1 infection but the mechanism underlying the slow T cell decline remains unclear. Some recent studies suggested that pyroptosis, a form of programmed cell death triggered during abortive HIV infection, is associated with the release of inflammatory cytokines, which can attract more CD4+ T cells to be infected. In this paper, we developed mathematical models to study whether this mechanism can explain the time scale of CD4+ T cell decline during HIV infection. Simulations of the models showed that cytokine induced T cell movement can explain the very slow decline of CD4+ T cells within untreated patients. The long-term CD4+ T cell dynamics predicted by the models were shown to be consistent with available data from patients in Rio de Janeiro, Brazil. Highly active antiretroviral therapy has the potential to restore the CD4+ T cell population but CD4+ response depends on the effectiveness of the therapy, when the therapy is initiated, and whether there are drug sanctuary sites. The model also showed that chronic inflammation induced by pyroptosis may facilitate persistence of the HIV latent reservoir by promoting homeostatic proliferation of memory CD4+ cells. These results improve our understanding of the long-term T cell dynamics in HIV-1 infection, and support that new treatment strategies, such as the use of caspase-1 inhibitors that inhibit pyroptosis, may maintain the CD4+ T cell population and reduce the latent reservoir size. The CD4+ T cell population within HIV-infected individuals declines slowly as disease progresses. When CD4+ cells drop to below 200 cells/ul, the infection is usually considered to enter the late stage, i.e., acquired immune deficiency syndrome (AIDS). CD4+ T cell depletion can take many years but the biological events underlying such slow decline are not well understood. Some studies showed that the majority of infected T cells in lymph nodes die by pyroptosis, a form of programmed cell death, which can release inflammatory signals attracting more CD4+ T cells to be infected. We developed mathematical models to describe this process and explored whether they can generate the long-term CD4+ T cell decline. We showed that pyroptosis induced cell movement can explain the slow time scale of CD4+ T cell depletion and that pyroptosis may also contribute to the persistence of latently infected cells, which represent a major obstacle to HIV eradication. The modeling prediction agrees with patient data in Rio de Janeiro, Brazil. These results suggest that a combination of current treatment regimens and caspase-1 inhibitor that can inhibit pyroptosis might provide a new way to maintain the CD4+ T cell population and eradicate the HIV latent reservoir.
Collapse
Affiliation(s)
- Sunpeng Wang
- Department of Biology, New York University, New York, New York, United States of America
| | - Patricia Hottz
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Schechter
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Projeto Praça Onze, Hospital Escola São Francisco de Assis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Libin Rong
- Department of Mathematics and Statistics, and Center for Biomedical Research, Oakland University, Rochester, Michigan, United States of America
- * E-mail:
| |
Collapse
|
5
|
Showa SP, Nyabadza F, Hove-Musekwa SD, Magombedze G. Exploring the benefits of antibody immune response in HIV-1 infection using a discrete model. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2015; 33:189-210. [PMID: 25899531 DOI: 10.1093/imammb/dqv014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/31/2015] [Indexed: 02/07/2023]
Abstract
The role of antibodies in HIV-1 infection is investigated using a discrete-time mathematical model that considers cell-free and cell-associated transmission of the virus. Model analysis shows that the effect of each type of antibody is dependent on the stage of the infection. Neutralizing antibodies are efficient in controlling the viral levels in the early days after seroconversion and antibodies that coat HIV-1-infected cells and recruit effector cells to either kill the HIV-1-infected cells or inhibit viral replication are efficient when the infection becomes established. Model simulations show that antibodies that inhibit viral replication are more effective in controlling the infection than those that recruit Natural Killer T cells after infection establishment. The model was fitted to subjects of the Tsedimoso study conducted in Botswana and conclusions similar to elasticity analysis results were obtained. Model fitting results predicted that neutralizing antibodies are more efficient in controlling the viral levels than antibodies that coat HIV-1-infected cells and recruit effector cells to either kill the HIV-1-infected cells or inhibit viral replication in the early days after seroconversion.
Collapse
Affiliation(s)
- S P Showa
- Department of Applied Mathematics, National University of Science and Technology, Box AC 939 Ascot, Bulawayo, Zimbabwe
| | - F Nyabadza
- Department of Mathematical Sciences, University of Stellenbosch, P. Bag XI, Matieland 7602, South Africa
| | - S D Hove-Musekwa
- Department of Applied Mathematics, National University of Science and Technology, Box AC 939 Ascot, Bulawayo, Zimbabwe
| | - G Magombedze
- National Institute for Mathematical and Biological Synthesis, 1122 Volunteer Blvd, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
6
|
Showa SP, Nyabadza F, Hove-Musekwa SD, Magombedze G. A comparison of elasticities of viral levels to specific immune response mechanisms in human immunodeficiency virus infection. BMC Res Notes 2014; 7:737. [PMID: 25331717 PMCID: PMC4221687 DOI: 10.1186/1756-0500-7-737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of an asymptomatic phase in an HIV infection indicates that the immune system can partially control the infection. Determining the immune mechanisms that contribute significantly to the partial control of the infection enhance the HIV infection intervention strategies and is important in vaccine development. Towards this goal, a discrete time HIV model, which incorporates the life cycle aspects of the virus, the antibody (humoral) response and the cell-mediated immune response is formulated to determine immune system components that are most efficient in controlling viral levels. Ecological relationships are used to model the interplay between the immune system components and the HIV pathogen. Model simulations and transient elasticity analysis of the viral levels to immune response parameters are used to compare the different immune mechanisms. RESULTS It is shown that cell-mediated immune response is more effective in controlling the viral levels than the antibody response. Killing of infected cells is shown to be crucial in controlling the viral levels. Our results show a negative correlation between the antibody response and the viral levels in the early stages of the infection, but we predicted this immune mechanism to be positively correlated with the viral levels in the late stage of the infection. A result that suggests lack of relevance of antibody response with infection progression. On the contrary, we predicted the cell-mediated immune response to be always negatively correlated with viral levels. CONCLUSION Neutralizing antibodies can only control the viral levels in the early days of the HIV infection whereas cell-mediated immune response is beneficial during all the stages of the infection. This study predicts that vaccine design efforts should also focus on stimulating killer T cells that target infected cells.
Collapse
Affiliation(s)
- Sarudzai P Showa
- Department of Applied Mathematics, National University of Science and Technology, P,O, Box AC 939 Ascot, Bulawayo, Zimbabwe.
| | | | | | | |
Collapse
|
7
|
Guo H, Gao J, Taxman DJ, Ting JPY, Su L. HIV-1 infection induces interleukin-1β production via TLR8 protein-dependent and NLRP3 inflammasome mechanisms in human monocytes. J Biol Chem 2014; 289:21716-26. [PMID: 24939850 DOI: 10.1074/jbc.m114.566620] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The induction of inflammatory cytokines such as IL-1β is associated with the progression of human immunodeficiency virus, type 1 (HIV-1) disease or AIDS. Unlike most inflammatory cytokines that are regulated by NF-κB at the transcriptional level, production of mature IL-1β also depends on inflammasome activation. The mechanism by which HIV-1 induces pro-IL-1β expression and activates inflammasomes to cleave pro-IL-1β into its bioactive form is not clearly defined. We report here that HIV-1 infection in human monocytes efficiently induced IL-1β expression and inflammasome activation. Toll-like receptor 8 (TLR8) was required for inducing pro-IL-1β expression, whereas the NLRP3 inflammasome was required for IL-1β maturation and release. Furthermore, the lysosomal protease cathepsin B and HIV-1 induced production of reactive oxygen species were critical for HIV-induced inflammasome activation and IL-1β production. HIV-1 entry, reverse transcription, and integration were all required for both pro-IL-1β expression and inflammasome activation. Finally, we show that HIV-1-derived RNA was sufficient to induce both pro-IL-1β expression and inflammasome activation. We conclude that HIV-1 infection induced the expression of pro-IL-1β via TLR8-mediated mechanisms and activated caspase-1 through the NLRP3 inflammasome to cleave pro-IL-1β into bioactive IL-1β. These findings help to elucidate mechanisms of HIV-1 disease progression and identify novel targets for treating HIV-1 induced inflammation and immune activation.
Collapse
Affiliation(s)
- Haitao Guo
- From the Lineberger Comprehensive Cancer Center and
| | - Jianmei Gao
- From the Lineberger Comprehensive Cancer Center and
| | - Debra J Taxman
- From the Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jenny P Y Ting
- From the Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Lishan Su
- From the Lineberger Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
8
|
Increased stability and limited proliferation of CD4+ central memory T cells differentiate nonprogressive simian immunodeficiency virus (SIV) infection of sooty mangabeys from progressive SIV infection of rhesus macaques. J Virol 2014; 88:4533-42. [PMID: 24501416 DOI: 10.1128/jvi.03515-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Depletion of CD4(+) central memory T (TCM) cells dictates the tempo of progression to AIDS in simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) both in the natural history of infection and in the context of vaccination. CD4(+) TCM cells of sooty mangabeys (SMs), a natural host for SIV in which infection is nonpathogenic, are less susceptible to SIV infection than CD4(+) TCM cells of RMs. Whether this relative protection from infection translates into increased stability of CD4(+) TCM cells in natural versus nonnatural hosts has not yet been determined. Here we compared, both cross-sectionally and longitudinally, the levels of CD4(+) TCM cells in a large cohort of SMs and RMs and the association between CD4(+) TCM levels and the main virologic and immunologic markers of disease progression. Consistent with their lower susceptibility to infection, CD4(+) TCM cells of SIV-infected SMs are lost with kinetics 20 times slower than those of SIV-infected RMs. Remarkably, the estimated length of time of SIV infection needed for CD4(+) TCM cells to fall to half of their initial levels is <16 months for RMs but >17 years for SMs. Furthermore, the fraction of proliferating CD4(+) TCM cells is significantly lower in SIV-infected SMs than in SIV-infected RMs, and the extent of CD4(+) TCM cell proliferation is associated positively with CD4(+) T cell levels in SIV-infected SMs but negatively with CD4(+) T cell levels in SIV-infected RMs. Collectively, these findings identify increased stability and maintenance of the prohomeostatic role of CD4(+) TCM cells as features distinguishing nonprogressive from progressive SIV infections and support the hypothesis of a direct mechanistic link between the loss of CD4(+) TCM cells and disease progression. IMPORTANCE Comparison of the immunologic effects of simian immunodeficiency virus (SIV) infection on rhesus macaques (RMs), a species characterized by progression to AIDS, and natural host sooty mangabeys (SMs), a species which remains AIDS free, has become a useful tool for identifying mechanisms of human immunodeficiency virus (HIV) disease progression. One such distinguishing feature is that CD4(+) central memory T (TCM) cells in SIV-infected SMs are less infected than the same cells in RMs. Here we investigated whether lower levels of infection in SMs translate into a better-preserved CD4(+) TCM compartment. We found that the CD4(+) TCM compartment is significantly more stable in SIV-infected SMs. Likely to compensate for this cell loss, we also found that CD4(+) TCM cells increase their level of proliferation upon SIV infection in RMs but not in SMs, which mechanistically supports their preferential infectivity. Our study provides new insights into the importance of long-term maintenance of CD4(+) TCM homeostasis during HIV/SIV infection.
Collapse
|
9
|
BAIRAGI N, ADAK D. HOW SELF-PROLIFERATION OF CD4+T CELLS AFFECT THE HIV DYNAMICS IN AN IN-HOST TARGET-CELL LIMITED HIV MODEL WITH SATURATION INFECTION RATE: A QUASI-STEADY-STATE APPROXIMATION ANALYSIS. INT J BIOMATH 2013. [DOI: 10.1142/s1793524513500046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we consider two target-cell limited models with saturation type infection rate and intracellular delay: one without self-proliferation and the other with self-proliferation of activated CD4+T cells. We discuss about the local and global behavior of both the systems in presence and absence of intracellular delay. It is shown that the endemic equilibrium of a target-cell limited model would be unstable in presence and absence of intracellular delay only when self-proliferation of activated CD4+T cell is considered. Otherwise, all positive solutions converge to the endemic equilibrium or disease-free equilibrium depending on whether the basic reproduction ratio is greater than or less than unity. Our study suggests that amplitude of oscillation is negatively correlated with the constant input rate of CD4+T cell when intracellular delay is absent or low. However, they are positively correlated if the delay is too high. Amplitude of oscillation, on the other hand, is always positively correlated with the proliferation rate of CD4+T cell for all delay. Our mathematical and simulation analysis also suggest that there are many potential contributors who are responsible for the variation of CD4+T cells and virus particles in the blood plasma of HIV patients.
Collapse
Affiliation(s)
- N. BAIRAGI
- Center for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - D. ADAK
- Center for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Shaw JM, Hunt PW, Critchfield JW, McConnell DH, Garcia JC, Pollard RB, Somsouk M, Deeks SG, Shacklett BL. Short communication: HIV+ viremic slow progressors maintain low regulatory T cell numbers in rectal mucosa but exhibit high T cell activation. AIDS Res Hum Retroviruses 2013; 29:172-7. [PMID: 22998457 DOI: 10.1089/aid.2012.0268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Viremic slow progressors (VSP) are a rare subset of HIV-infected persons who exhibit slow immunologic progression despite high viremia. The mechanisms associated with this slow progression remain to be defined. Clinical characteristics of VSP are similar to those of natural hosts for simian immunodeficiency virus (SIV), such as sooty mangabeys (SM) and African green monkeys (AGM), who maintain near-normal CD4 counts despite high-level viremia but maintain low immune activation. Immune activation is a powerful predictor of disease progression, and we hypothesized that low immune activation might also explain the VSP phenotype. Using multiparameter flow cytometry, we assessed levels of T cell activation and regulatory T cells (Treg) in blood and rectal mucosa of VSP, typical progressors, virologic controllers, and seronegative controls. We also assessed Treg function and CD4 T cell proliferative capacity in VSP. Contrary to expectations, we found that VSP subjects have high levels of T cell activation in the gastrointestinal mucosa. The ratio of Treg to CD3+ T cells in the mucosa of VSP was relatively low, potentially contributing to increased immune activation. Nonetheless, CD4+CD25- T cells isolated from these individuals displayed a comparatively weak proliferative response to anti-CD3 stimulation. These data reveal that the VSP phenotype is associated with elevated markers of mucosal immune activation and low numbers of mucosal Treg, suggesting that factors other than immune activation account for this phenotype.
Collapse
Affiliation(s)
- Julia M. Shaw
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California
| | - Peter W. Hunt
- Positive Health Program, Department of Medicine, University of California, San Francisco, California
| | - J. William Critchfield
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California
| | - Delandy H. McConnell
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California
| | - Juan Carlos Garcia
- Division of Gastroenterology, School of Medicine, University of California, Davis, California
| | - Richard B. Pollard
- Division of Infectious Diseases, School of Medicine, University of California, Davis, California
| | - Ma Somsouk
- Division of Gastroenterology, San Francisco General Hospital, University of California, San Francisco, California
| | - Steven G. Deeks
- Positive Health Program, Department of Medicine, University of California, San Francisco, California
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California
- Division of Infectious Diseases, School of Medicine, University of California, Davis, California
| |
Collapse
|
11
|
Souquière S, Makuwa M, Sallé B, Kazanji M. New strain of simian immunodeficiency virus identified in wild-born chimpanzees from central Africa. PLoS One 2012; 7:e44298. [PMID: 22984489 PMCID: PMC3440395 DOI: 10.1371/journal.pone.0044298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 08/01/2012] [Indexed: 12/27/2022] Open
Abstract
Studies of primate lentiviruses continue to provide information about the evolution of simian immunodeficiency viruses (SIVs) and the origin and emergence of HIV since chimpanzees in west–central Africa (Pan troglodytes troglodytes) were recognized as the reservoir of SIVcpzPtt viruses, which have been related phylogenetically to HIV-1. Using in-house peptide ELISAs to study SIV prevalence, we tested 104 wild-born captive chimpanzees from Gabon and Congo. We identified two new cases of SIVcpz infection in Gabon and characterized a new SIVcpz strain, SIVcpzPtt-Gab4. The complete sequence (9093 bp) was obtained by a PCR-based ‘genome walking’ approach to generate 17 overlapping fragments. Phylogenetic analyses of separated genes (gag, pol-vif and env-nef) showed that SIVcpzPtt-Gab4 is closely related to SIVcpzPtt-Gab1 and SIVcpzPtt-Gab2. No significant variation in viral load was observed during 3 years of follow-up, but a significantly lower CD4+ T cells count was found in infected than in uninfected chimpanzees (p<0.05). No clinical symptoms of SIV infection were observed in the SIV-positive chimpanzees. Further field studies with non-invasive methods are needed to determine the prevalence, geographic distribution, species association, and natural history of SIVcpz strains in the chimpanzee habitat in Gabon.
Collapse
Affiliation(s)
- Sandrine Souquière
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Maria Makuwa
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Bettina Sallé
- Centre de Primatologie, Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Mirdad Kazanji
- Unité de Rétrovirologie, Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
- Institut Pasteur de Bangui, Réseau International des Instituts Pasteur, Bangui, Central African Republic
- * E-mail:
| |
Collapse
|
12
|
Smyth RP, Davenport MP, Mak J. The origin of genetic diversity in HIV-1. Virus Res 2012; 169:415-29. [PMID: 22728444 DOI: 10.1016/j.virusres.2012.06.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
One of the hallmarks of HIV infection is the rapid development of a genetically complex population (quasispecies) from an initially limited number of infectious particles. Genetic diversity remains one of the major obstacles to eradication of HIV. The viral quasispecies can respond rapidly to selective pressures, such as that imposed by the immune system and antiretroviral therapy, and frustrates vaccine design efforts. Two unique features of retroviral replication are responsible for the unprecedented variation generated during infection. First, mutations are frequently introduced into the viral genome by the error prone viral reverse transcriptase and through the actions of host cellular factors, such as the APOBEC family of nucleic acid editing enzymes. Second, the HIV reverse transcriptase can utilize both copies of the co-packaged viral genome in a process termed retroviral recombination. When the co-packaged viral genomes are genetically different, retroviral recombination can lead to the shuffling of mutations between viral genomes in the quasispecies. This review outlines the stages of the retroviral life cycle where genetic variation is introduced, focusing on the principal mechanisms of mutation and recombination. Understanding the mechanistic origin of genetic diversity is essential to combating HIV.
Collapse
Affiliation(s)
- Redmond P Smyth
- Centre for Virology, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | |
Collapse
|