1
|
Ayoubi A, Talebi AA, Fathipour Y, Hoffmann AA, Mehrabadi M. Symbiont-mediated insect host defense against parasitism: insights from the endosymbiont, Hamiltonella defensa and the insect host, Myzus persicae. PEST MANAGEMENT SCIENCE 2025. [PMID: 40411150 DOI: 10.1002/ps.8844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/06/2025] [Accepted: 04/06/2025] [Indexed: 05/26/2025]
Abstract
BACKGROUND Sap-feeding insects like aphids can harbor a complex of bacterial symbionts, including a primary nutritional symbiont and secondary symbionts that may influence various traits such as resistance to parasitoids and entomopathogens as well as fitness. This study explores the presence and impact of the facultative symbiont, Hamiltonella defensa, in a major pest aphid, the green peach aphid Myzus persicae, focusing particularly on its role in aphid parasitoid resistance, an area that has not been previously characterized. RESULTS We detected Buchnera aphidicola and H. defensa endosymbionts in a population of M. persicae collected from Tehran, Iran. Using antibiotic treatments, we mostly removed H. defensa from the aphid and generated a line with only a low level of the symbiont. The parasitism rate of Aphidius matricariae significantly increased in this line compared to untreated controls. Quantitative polymerase chain reaction (qPCR) analysis indicated that the densities of B. aphidicola and H. defensa were affected following parasitism. Twenty-four hours after parasitism, the density of H. defensa and its phage (APSE, Acyrthosiphon pisum secondary endosymbiont) increased compared to the controls, while the density of B. aphidicola decreased. Reverse transcription PCR (RT-qPCR) of APSE encoding toxins revealed high transcription levels of the YDp toxin at 24 h post-parasitism. CONCLUSION These findings indicate that the APSE-3 bacteriophage is present in H. defensa from M. persicae and likely confers parasitoid resistance in this aphid through the YDp toxin. Overall, these results suggest that Hamiltonella can partly protect M. persicae against parasitism. The results have implications for biological control programs targeting this major insect pest. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Aida Ayoubi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Asghar Talebi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
2
|
Yu Q, Niu R, Gao X, Luo J, Cui J, Wang L, Zhu X. Pseudomonas Infection Affects the Growth and Development of Aphis gossypii by Disrupting Energy Metabolism and Reproductive Processes. INSECTS 2025; 16:238. [PMID: 40266768 PMCID: PMC11943051 DOI: 10.3390/insects16030238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 04/25/2025]
Abstract
For instance, Pseudomonas is involved in numerous life processes of A. gossypii and exerts a significant influence on its physiological indicators. The results demonstrate that Pseudomonas infection disturbs the normal growth and development of A. gossypii, resulting in a substantial reduction in the number of offspring. Compared with the uninfected control group, the innate rate of increase and the endogenous growth rate are markedly lower. Moreover, RNA-sequencing revealed that genes related to energy synthesis and nutrient metabolism were significantly upregulated in A. gossypii infected with Pseudomonas. Simultaneously, the infection led to a significant downregulation of genes related to alkaline phosphatase in the folate-synthesis pathway and histone proteinase B synthesis in the metabolism pathway of A. gossypii. These experimental findings indicate that Pseudomonas infection disrupts the growth and development of A. gossypii, specifically manifested as a significant upregulation of genes related to energy synthesis and nutrient metabolism and a downregulation of genes related to reproduction. Overall, these results offer support for the study of the interactions between aphids and symbiotic bacteria.
Collapse
Affiliation(s)
- Qiqing Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Q.Y.); (R.N.); (X.G.); (J.L.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng 475000, China
| | - Ruichang Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Q.Y.); (R.N.); (X.G.); (J.L.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Q.Y.); (R.N.); (X.G.); (J.L.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Q.Y.); (R.N.); (X.G.); (J.L.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Q.Y.); (R.N.); (X.G.); (J.L.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Q.Y.); (R.N.); (X.G.); (J.L.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (Q.Y.); (R.N.); (X.G.); (J.L.); (J.C.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Higashi CHV, Patel V, Kamalaker B, Inaganti R, Bressan A, Russell JA, Oliver KM. Another tool in the toolbox: Aphid-specific Wolbachia protect against fungal pathogens. Environ Microbiol 2024; 26:e70005. [PMID: 39562330 DOI: 10.1111/1462-2920.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
Aphids harbor nine common facultative symbionts, most mediating one or more ecological interactions. Wolbachia pipientis, well-studied in other arthropods, remains poorly characterized in aphids. In Pentalonia nigronervosa and P. caladii, global pests of banana, Wolbachia was initially hypothesized to function as a co-obligate nutritional symbiont alongside the traditional obligate Buchnera. However, genomic analyses failed to support this role. Our sampling across numerous populations revealed that more than 80% of Pentalonia aphids carried an M-supergroup strain of Wolbachia (wPni). The lack of fixation further supports a facultative status for Wolbachia, while high infection frequencies in these entirely asexual aphids strongly suggest Wolbachia confers net fitness benefits. Finding no correlation between Wolbachia presence and food plant use, we challenged Wolbachia-infected aphids with common natural enemies. Bioassays revealed that Wolbachia conferred significant protection against a specialized fungal pathogen (Pandora neoaphidis) but not against generalist pathogens or parasitoids. Wolbachia also improved aphid fitness in the absence of enemy challenge. Thus, we identified the first clear benefits for aphid-associated Wolbachia and M-supergroup strains specifically. Aphid-Wolbachia systems provide unique opportunities to merge key models of symbiosis to better understand infection dynamics and mechanisms underpinning symbiont-mediated phenotypes.
Collapse
Affiliation(s)
- Clesson H V Higashi
- Department of Entomology, University of Georgia, Athens, GA, USA
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Bryan Kamalaker
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Rahul Inaganti
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Wang ZW, Zhao J, Li GY, Hu D, Wang ZG, Ye C, Wang JJ. The endosymbiont Serratia symbiotica improves aphid fitness by disrupting the predation strategy of ladybeetle larvae. INSECT SCIENCE 2024; 31:1555-1568. [PMID: 38196174 DOI: 10.1111/1744-7917.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Aphids, the important global agricultural pests, harbor abundant resources of symbionts that can improve the host adaptability to environmental conditions, also control the interactions between host aphid and natural enemy, resulting in a significant decrease in efficiency of biological control. The facultative symbiont Serratia symbiotica has a strong symbiotic association with its aphid hosts, a relationship that is known to interfere with host-parasitoid interactions. We hypothesized that Serratia may also influence other trophic interactions by interfering with the physiology and behavior of major predators to provide host aphid defense. To test this hypothesis, we investigated the effects of Serratia on the host aphid Acyrthosiphon pisum and its predator, the ladybeetle Propylaea japonica. First, the prevalence of Serratia in different A. pisum colonies was confirmed by amplicon sequencing. We then showed that harboring Serratia improved host aphid growth and fecundity but reduced longevity. Finally, our research demonstrated that Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior. Our findings reveal that facultative symbiont Serratia improves aphid fitness by disrupting the predation strategy of ladybeetle larvae, offering new insight into the interactions between aphids and their predators, and providing the basis of a new biological control strategy for aphid pests involving the targeting of endosymbionts.
Collapse
Affiliation(s)
- Zheng-Wu Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Jin Zhao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Guang-Yun Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Die Hu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Zi-Guo Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Chao Ye
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- International Joint Laboratory of China-Belgium on Sustainable Crop Pest Control, Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Zhang Y, Chen H, Lian C, Cao L, Guo Y, Wang M, Zhong Z, Li M, Zhang H, Li C. Insights into phage-bacteria interaction in cold seep Gigantidas platifrons through metagenomics and transcriptome analyses. Sci Rep 2024; 14:10540. [PMID: 38719945 PMCID: PMC11078923 DOI: 10.1038/s41598-024-61272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
Viruses are crucial for regulating deep-sea microbial communities and biogeochemical cycles. However, their roles are still less characterized in deep-sea holobionts. Bathymodioline mussels are endemic species inhabiting cold seeps and harboring endosymbionts in gill epithelial cells for nutrition. This study unveiled a diverse array of viruses in the gill tissues of Gigantidas platifrons mussels and analyzed the viral metagenome and transcriptome from the gill tissues of Gigantidas platifrons mussels collected from a cold seep in the South Sea. The mussel gills contained various viruses including Baculoviridae, Rountreeviridae, Myoviridae and Siphovirdae, but the active viromes were Myoviridae, Siphoviridae, and Podoviridae belonging to the order Caudovirales. The overall viral community structure showed significant variation among environments with different methane concentrations. Transcriptome analysis indicated high expression of viral structural genes, integrase, and restriction endonuclease genes in a high methane concentration environment, suggesting frequent virus infection and replication. Furthermore, two viruses (GP-phage-contig14 and GP-phage-contig72) interacted with Gigantidas platifrons methanotrophic gill symbionts (bathymodiolin mussels host intracellular methanotrophic Gammaproteobacteria in their gills), showing high expression levels, and have huge different expression in different methane concentrations. Additionally, single-stranded DNA viruses may play a potential auxiliary role in the virus-host interaction using indirect bioinformatics methods. Moreover, the Cro and DNA methylase genes had phylogenetic similarity between the virus and Gigantidas platifrons methanotrophic gill symbionts. This study also explored a variety of viruses in the gill tissues of Gigantidas platifrons and revealed that bacteria interacted with the viruses during the symbiosis with Gigantidas platifrons. This study provides fundamental insights into the interplay of microorganisms within Gigantidas platifrons mussels in deep sea.
Collapse
Affiliation(s)
- Yan Zhang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Lian
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lei Cao
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yang Guo
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhaoshan Zhong
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengna Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Huan Zhang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Chaolun Li
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Hoang KL, Salguero-Gómez R, Pike VL, King KC. The impacts of host association and perturbation on symbiont fitness. Symbiosis 2024; 92:439-451. [PMID: 38666134 PMCID: PMC11039428 DOI: 10.1007/s13199-024-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of Biology, University of Oxford, Oxford, UK
- Emory University School of Medicine, Atlanta, GA USA
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Patel V, Lynn-Bell N, Chevignon G, Kucuk RA, Higashi CHV, Carpenter M, Russell JA, Oliver KM. Mobile elements create strain-level variation in the services conferred by an aphid symbiont. Environ Microbiol 2023; 25:3333-3348. [PMID: 37864320 DOI: 10.1111/1462-2920.16520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Heritable, facultative symbionts are common in arthropods, often functioning in host defence. Despite moderately reduced genomes, facultative symbionts retain evolutionary potential through mobile genetic elements (MGEs). MGEs form the primary basis of strain-level variation in genome content and architecture, and often correlate with variability in symbiont-mediated phenotypes. In pea aphids (Acyrthosiphon pisum), strain-level variation in the type of toxin-encoding bacteriophages (APSEs) carried by the bacterium Hamiltonella defensa correlates with strength of defence against parasitoids. However, co-inheritance creates difficulties for partitioning their relative contributions to aphid defence. Here we identified isolates of H. defensa that were nearly identical except for APSE type. When holding H. defensa genotype constant, protection levels corresponded to APSE virulence module type. Results further indicated that APSEs move repeatedly within some H. defensa clades providing a mechanism for rapid evolution in anti-parasitoid defences. Strain variation in H. defensa also correlates with the presence of a second symbiont Fukatsuia symbiotica. Predictions that nutritional interactions structured this coinfection were not supported by comparative genomics, but bacteriocin-containing plasmids unique to co-infecting strains may contribute to their common pairing. In conclusion, strain diversity, and joint capacities for horizontal transfer of MGEs and symbionts, are emergent players in the rapid evolution of arthropods.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Nicole Lynn-Bell
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Roy A Kucuk
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| | | | - Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
Giordano R, Weber EP, Mitacek R, Flores A, Ledesma A, De AK, Herman TK, Soto-Adames FN, Nguyen MQ, Hill CB, Hartman GL. Patterns of asexual reproduction of the soybean aphid, Aphis glycines (Matsumura), with and without the secondary symbionts Wolbachia and Arsenophonus, on susceptible and resistant soybean genotypes. Front Microbiol 2023; 14:1209595. [PMID: 37720159 PMCID: PMC10501154 DOI: 10.3389/fmicb.2023.1209595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Plant breeding is used to develop crops with host resistance to aphids, however, virulent biotypes often develop that overcome host resistance genes. We tested whether the symbionts, Arsenophonus (A) and Wolbachia (W), affect virulence and fecundity in soybean aphid biotypes Bt1 and Bt3 cultured on whole plants and detached leaves of three resistant, Rag1, Rag2 and Rag1 + 2, and one susceptible, W82, soybean genotypes. Whole plants and individual aphid experiments of A. glycines with and without Arsenophonus and Wolbachia did not show differences in overall fecundity. Differences were observed in peak fecundity, first day of deposition, and day of maximum nymph deposition of individual aphids on detached leaves. Bt3 had higher fecundity than Bt1 on detached leaves of all plant genotypes regardless of bacterial profile. Symbionts did not affect peak fecundity of Bt1 but increased it in Bt3 (A+W+) and all Bt3 strains began to deposit nymphs earlier than the Bt1 (A+W-). Arsenophonus in Bt1 delayed the first day of nymph deposition in comparison to aposymbiotic Bt1 except when reared on Rag1 + 2. For the Bt1 and Bt3 strains, symbionts did not result in a significant difference in the day they deposited the maximum number of nymphs nor was there a difference in survival or variability in number of nymphs deposited. Variability of number of aphids deposited was higher in aphids feeding on resistant plant genotypes. The impact of Arsenophonus on soybean aphid patterns of fecundity was dependent on the aphid biotype and plant genotype. Wolbachia alone had no detectable impact but may have contributed to the increased fecundity of Bt3 (A+W+). An individual based model, using data from the detached leaves experiment and with intraspecific competition removed, found patterns similar to those observed in the greenhouse and growth chamber experiments including a significant interaction between soybean genotype and aphid strain. Combining individual data with the individual based model of population growth isolated the impact of fecundity and host resistance from intraspecific competition and host health. Changes to patterns of fecundity, influenced by the composition and concentration of symbionts, may contribute to competitive interactions among aphid genotypes and influence selection on virulent aphid populations.
Collapse
Affiliation(s)
- Rosanna Giordano
- Institute of Environment, Florida International University, Miami, FL, United States
- Puerto Rico Science Technology and Research Trust, San Juan, Puerto Rico
| | - Everett P. Weber
- Office of Institutional Research, Dartmouth College, Hanover, NH, United States
| | - Ryan Mitacek
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Alejandra Flores
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Alonso Ledesma
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Arun K. De
- Animal Sciences Division, ICAR-Central Island Agricultural Research Institute, Port Blair, India
| | | | - Felipe N. Soto-Adames
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL, United States
| | - Minh Q. Nguyen
- Neochromosome, Inc., Long Island City, NY, United States
| | - Curtis B. Hill
- Neochromosome, Inc., Long Island City, NY, United States
| | - Glen L. Hartman
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
9
|
Higashi CHV, Nichols WL, Chevignon G, Patel V, Allison SE, Kim KL, Strand MR, Oliver KM. An aphid symbiont confers protection against a specialized RNA virus, another increases vulnerability to the same pathogen. Mol Ecol 2023; 32:936-950. [PMID: 36458425 PMCID: PMC10107813 DOI: 10.1111/mec.16801] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Insects often harbour heritable symbionts that provide defence against specialized natural enemies, yet little is known about symbiont protection when hosts face simultaneous threats. In pea aphids (Acyrthosiphon pisum), the facultative endosymbiont Hamiltonella defensa confers protection against the parasitoid, Aphidius ervi, and Regiella insecticola protects against aphid-specific fungal pathogens, including Pandora neoaphidis. Here, we investigated whether these two common aphid symbionts protect against a specialized virus A. pisum virus (APV), and whether their antifungal and antiparasitoid services are impacted by APV infection. We found that APV imposed large fitness costs on symbiont-free aphids and these costs were elevated in aphids also housing H. defensa. In contrast, APV titres were significantly reduced and costs to APV infection were largely eliminated in aphids with R. insecticola. To our knowledge, R. insecticola is the first aphid symbiont shown to protect against a viral pathogen, and only the second arthropod symbiont reported to do so. In contrast, APV infection did not impact the protective services of either R. insecticola or H. defensa. To better understand APV biology, we produced five genomes and examined transmission routes. We found that moderate rates of vertical transmission, combined with horizontal transfer through food plants, were the major route of APV spread, although lateral transfer by parasitoids also occurred. Transmission was unaffected by facultative symbionts. In summary, the presence and species identity of facultative symbionts resulted in highly divergent outcomes for aphids infected with APV, while not impacting defensive services that target other enemies. These findings add to the diverse phenotypes conferred by aphid symbionts, and to the growing body of work highlighting extensive variation in symbiont-mediated interactions.
Collapse
Affiliation(s)
| | - William L Nichols
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Germain Chevignon
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Vilas Patel
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Suzanne E Allison
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Kyungsun Lee Kim
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Georgia, Athens, USA
| |
Collapse
|
10
|
Niu R, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Luo J, Cui J. Evaluation of Hamiltonella on Aphis gossypii fitness based on life table parameters and RNA sequencing. PEST MANAGEMENT SCIENCE 2023; 79:306-314. [PMID: 36151951 DOI: 10.1002/ps.7200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Insect endosymbionts are widespread in nature and known to play key roles in regulating host biology. As a secondary endosymbiont, bacteria in the genus Hamiltonella help cotton aphids (Aphis gossypii) defend against parasitism by parasitoid wasps, however, the potential negative impacts of these bacteria on cotton aphid biology remain largely unclear. RESULTS This study aims to evaluate the potential impacts of Hamiltonella on the growth and development of cotton aphids based on life table parameters and RNA sequencing. The results showed that infection with Hamiltonella resulted in smaller body type and lower body weight in aphids. Compared to the control group, there were significant differences in the finite and intrinsic rates of increase and mean generation time. Furthermore, the RNA sequencing data revealed that the genes related to energy synthesis and nutrient metabolism pathways were significantly downregulated and genes related to molting and nervous system pathways were significantly upregulated in the Hamiltonella population. CONCLUSION Our results confirm that Hamiltonella retarded the growth and development of cotton aphids accompanied by the downregulation of genes related to energy synthesis and nutrient metabolism, which provides new insights into aphid-symbiont interactions and may support the development of improved aphid management strategies. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruichang Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
11
|
Beekman MM, Donner SH, Litjens JJH, Dicke M, Zwaan BJ, Verhulst EC, Pannebakker BA. Do aphids in Dutch sweet pepper greenhouses carry heritable elements that protect them against biocontrol parasitoids? Evol Appl 2022; 15:1580-1593. [PMID: 36330308 PMCID: PMC9624084 DOI: 10.1111/eva.13347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022] Open
Abstract
Biological control (biocontrol) of crop pests is a sustainable alternative to the use of biodiversity and organismal health-harming chemical pesticides. Aphids can be biologically controlled with parasitoid wasps; however, variable results of parasitoid-based aphid biocontrol in greenhouses are reported. Aphids may display genetically encoded (endogenous) defences that increase aphid resistance against parasitoids as under high parasitoid pressure there will be selection for parasitoid-resistant aphids, potentially affecting the success of parasitoid-based aphid biocontrol in greenhouses. Additionally, aphids may carry secondary bacterial endosymbionts that protect them against parasitoids. We studied whether there is variation in either of these heritable elements in aphids in greenhouses of sweet pepper, an agro-economically important crop in the Netherlands that is prone to aphid pests and where pest management heavily relies on biocontrol. We sampled aphid populations in organic (biocontrol only) and conventional (biocontrol and pesticides) sweet pepper greenhouses in the Netherlands during the 2019 crop growth season. We assessed the aphid microbiome through both diagnostic PCR and 16S rRNA sequencing and did not detect any secondary endosymbionts in the two most encountered aphid species, Myzus persicae and Aulacorthum solani. We also compared multiple aphid lines collected from different greenhouses for variation in levels of endogenous-based resistance against the parasitoids commonly used as biocontrol agents. We found no differences in the levels of endogenous-based resistance between different aphid lines. This study does not support the hypothesis that protective endosymbionts or the presence of endogenous resistant aphid lines affects the success of parasitoid-based biocontrol of aphids in Dutch greenhouses. Future investigations will need to address what is causing the variable successes of aphid biocontrol and what (biological and management-related) lessons can be learned for aphid control in other crops, and biocontrol in general.
Collapse
Affiliation(s)
- Mariska M. Beekman
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Suzanne H. Donner
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Jordy J. H. Litjens
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Bas J. Zwaan
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| | - Eveline C. Verhulst
- Laboratory of EntomologyWageningen University & ResearchWageningenThe Netherlands
| | - Bart A. Pannebakker
- Laboratory of GeneticsWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
12
|
Clavé C, Sugio A, Morlière S, Pincebourde S, Simon J, Foray V. Physiological costs of facultative endosymbionts in aphids assessed from energy metabolism. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Corentin Clavé
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS Université de Tours Tours France
- Department of Agricultural Sciences University of Naples Federico II Portici Italy
| | - Akiko Sugio
- IGEPP, Agrocampus Ouest, INRA Université de Rennes 1 Le Rheu France
| | | | - Sylvain Pincebourde
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS Université de Tours Tours France
| | | | - Vincent Foray
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS Université de Tours Tours France
| |
Collapse
|
13
|
Bisschop K, Kortenbosch HH, van Eldijk TJB, Mallon CA, Salles JF, Bonte D, Etienne RS. Microbiome Heritability and Its Role in Adaptation of Hosts to Novel Resources. Front Microbiol 2022; 13:703183. [PMID: 35865927 PMCID: PMC9296072 DOI: 10.3389/fmicb.2022.703183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microbiomes are involved in most vital processes, such as immune response, detoxification, and digestion and are thereby elementary to organismal functioning and ultimately the host’s fitness. In turn, the microbiome may be influenced by the host and by the host’s environment. To understand microbiome dynamics during the process of adaptation to new resources, we performed an evolutionary experiment with the two-spotted spider mite, Tetranychus urticae. We generated genetically depleted strains of the two-spotted spider mite and reared them on their ancestral host plant and two novel host plants for approximately 12 generations. The use of genetically depleted strains reduced the magnitude of genetic adaptation of the spider mite host to the new resource and, hence, allowed for better detection of signals of adaptation via the microbiome. During the course of adaptation, we tested spider mite performance (number of eggs laid and longevity) and characterized the bacterial component of its microbiome (16S rRNA gene sequencing) to determine: (1) whether the bacterial communities were shaped by mite ancestry or plant environment and (2) whether the spider mites’ performance and microbiome composition were related. We found that spider mite performance on the novel host plants was clearly correlated with microbiome composition. Because our results show that only little of the total variation in the microbiome can be explained by the properties of the host (spider mite) and the environment (plant species) we studied, we argue that the bacterial community within hosts could be valuable for understanding a species’ performance on multiple resources.
Collapse
Affiliation(s)
- Karen Bisschop
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, Belgium
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Aquatic Biology, Department of Biology, KU Leuven, Kortrijk, Belgium
- *Correspondence: Karen Bisschop,
| | - Hylke H. Kortenbosch
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Timo J. B. van Eldijk
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Cyrus A. Mallon
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Joana F. Salles
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, Belgium
| | - Rampal S. Etienne
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Hoang KL, King KC. Symbiont-mediated immune priming in animals through an evolutionary lens. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35442184 DOI: 10.1099/mic.0.001181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protective symbionts can defend hosts from parasites through several mechanisms, from direct interference to modulating host immunity, with subsequent effects on host and parasite fitness. While research on symbiont-mediated immune priming (SMIP) has focused on ecological impacts and agriculturally important organisms, the evolutionary implications of SMIP are less clear. Here, we review recent advances made in elucidating the ecological and molecular mechanisms by which SMIP occurs. We draw on current works to discuss the potential for this phenomenon to drive host, parasite, and symbiont evolution. We also suggest approaches that can be used to address questions regarding the impact of immune priming on host-microbe dynamics and population structures. Finally, due to the transient nature of some symbionts involved in SMIP, we discuss what it means to be a protective symbiont from ecological and evolutionary perspectives and how such interactions can affect long-term persistence of the symbiosis.
Collapse
Affiliation(s)
- Kim L Hoang
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Kayla C King
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
15
|
Ballinger MJ, Christian RC, Moore LD, Taylor DJ, Sabet A. Evolution and Diversity of Inherited Viruses in the Nearctic Phantom Midge, Chaoborus americanus. Virus Evol 2022; 8:veac018. [PMID: 35356639 PMCID: PMC8963322 DOI: 10.1093/ve/veac018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Inherited mutualists, parasites, and commensals occupy one of the most intimate ecological niches available to invertebrate-associated microbes. How this transmission environment influences microbial evolution is increasingly understood for inherited bacterial symbionts, but in viruses, research on the prevalence of vertical transmission and its effects on viral lineages is still maturing. The evolutionary stability of this strategy remains difficult to assess, although phylogenetic evidence of frequent host shifts and selective sweeps have been interpreted as strategies favoring parasite persistence. In this study, we describe and investigate a natural insect system in which species-wide sweeps have been restricted by the isolation of host populations. Previous work identified evidence of pronounced mitochondrial genetic structure among North American populations of the phantom midge, Chaoborus americanus. Here we take advantage of the geographical isolation in this species to investigate the diversity and persistence of its inherited virome. We identify eight novel RNA viruses from six families and use small RNA sequencing in reproductive tissues to provide evidence of vertical transmission. We report region-specific virus strains that mirror the continental phylogeography of the host, demonstrating that members of the inherited virome have independently persisted in parallel host lineages since they last shared a common ancestor in the Mid Pleistocene. We find that the small interfering RNA pathway, a frontline of antiviral defense in insects, targets members of this inherited virome. Finally, our results suggest that the Piwi-mediated RNA silencing pathway is unlikely to function as a general antiviral defense in Chaoborus, in contrast to its role in some mosquitoes. However, we also report that the PIWI-interacting RNA pathway generates abundant piRNAs from endogenous viral elements closely related to actively infecting inherited viruses, potentially helping to explain idiosyncratic patterns of virus-specific Piwi targeting in this insect.
Collapse
Affiliation(s)
- Matthew J Ballinger
- Department of Biological Sciences, Mississippi State University, Mississippi, USA
| | - Rebecca C Christian
- Department of Biological Sciences, Mississippi State University, Mississippi, USA
| | - Logan D Moore
- Department of Biological Sciences, Mississippi State University, Mississippi, USA
| | - Derek J Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, New York, USA
| | - Afsoon Sabet
- Department of Biological Sciences, Mississippi State University, Mississippi, USA
| |
Collapse
|
16
|
Forero-Junco LM, Alanin KWS, Djurhuus AM, Kot W, Gobbi A, Hansen LH. Bacteriophages Roam the Wheat Phyllosphere. Viruses 2022; 14:v14020244. [PMID: 35215838 PMCID: PMC8876510 DOI: 10.3390/v14020244] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
The phyllosphere microbiome plays an important role in plant fitness. Recently, bacteriophages have been shown to play a role in shaping the bacterial community composition of the phyllosphere. However, no studies on the diversity and abundance of phyllosphere bacteriophage communities have been carried out until now. In this study, we extracted, sequenced, and characterized the dsDNA and ssDNA viral community from a phyllosphere for the first time. We sampled leaves from winter wheat (Triticum aestivum), where we identified a total of 876 virus operational taxonomic units (vOTUs), mostly predicted to be bacteriophages with a lytic lifestyle. Remarkably, 848 of these vOTUs corresponded to new viral species, and we estimated a minimum of 2.0 × 106 viral particles per leaf. These results suggest that the wheat phyllosphere harbors a large and active community of novel bacterial viruses. Phylloviruses have potential applications as biocontrol agents against phytopathogenic bacteria or as microbiome modulators to increase plant growth-promoting bacteria.
Collapse
Affiliation(s)
- Laura Milena Forero-Junco
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (K.W.S.A.); (A.M.D.); (W.K.); (A.G.)
- Correspondence: (L.M.F.-J.); (L.H.H.)
| | - Katrine Wacenius Skov Alanin
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (K.W.S.A.); (A.M.D.); (W.K.); (A.G.)
- Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
| | - Amaru Miranda Djurhuus
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (K.W.S.A.); (A.M.D.); (W.K.); (A.G.)
| | - Witold Kot
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (K.W.S.A.); (A.M.D.); (W.K.); (A.G.)
| | - Alex Gobbi
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (K.W.S.A.); (A.M.D.); (W.K.); (A.G.)
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark; (K.W.S.A.); (A.M.D.); (W.K.); (A.G.)
- Correspondence: (L.M.F.-J.); (L.H.H.)
| |
Collapse
|
17
|
Kaech H, Jud S, Vorburger C. Similar cost of Hamiltonella defensa in experimental and natural aphid-endosymbiont associations. Ecol Evol 2022; 12:e8551. [PMID: 35127049 PMCID: PMC8796928 DOI: 10.1002/ece3.8551] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 01/25/2023] Open
Abstract
Endosymbiont-conferred resistance to parasitoids is common in aphids, but comes at a cost to the host in the absence of parasitoids. In black bean aphids (Aphis fabae), costs in terms of reduced lifespan and lifetime reproduction were demonstrated by introducing 11 isolates of the protective symbiont Hamiltonella defensa into previously uninfected aphid clones. Transfection of H. defensa isolates into a common genetic background allows to compare the costs of different endosymbiont isolates unconfounded by host genetic variation, but has been suggested to overestimate the realized costs of the endosymbiont in natural populations, because transfection creates new and potentially maladapted host-symbiont combinations that would be eliminated by natural selection in the field. In this experiment, we show that removing H. defensa isolates from their natural host clones with antibiotics results in a fitness gain that is comparable to the fitness loss from their introduction into two new clones. This suggests that estimating cost by transfecting endosymbiont isolates into a shared host genotype does not lead to gross overestimates of their realized costs, at least not in the two recipient genotypes used here. By comparing our data with data reported in previous publications using the same lines, we show that symbiont-induced costs may fluctuate over time. Thus, costs estimated after extended culture in the laboratory may not always be representative of the costs at the time of collection in the field. Finally, we report the accidental observation that two isolates from a distinct haplotype of H. defensa could not be removed by cefotaxime treatment, while all isolates from two other haplotypes were readily eliminated, which is suggestive of variation in susceptibility to this antibiotic in H. defensa.
Collapse
Affiliation(s)
- Heidi Kaech
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- D‐USYS, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Stephanie Jud
- D‐USYS, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| | - Christoph Vorburger
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- D‐USYS, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| |
Collapse
|
18
|
Boyd BM, Chevignon G, Patel V, Oliver KM, Strand MR. Evolutionary genomics of APSE: a tailed phage that lysogenically converts the bacterium Hamiltonella defensa into a heritable protective symbiont of aphids. Virol J 2021; 18:219. [PMID: 34758862 PMCID: PMC8579659 DOI: 10.1186/s12985-021-01685-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. Methods We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. Results Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae. Conclusions APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01685-y.
Collapse
Affiliation(s)
- Bret M Boyd
- Department of Entomology, University of Georgia Athens, Athens, GA, USA. .,Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA.
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Vilas Patel
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia Athens, Athens, GA, USA.
| |
Collapse
|
19
|
Sochard C, Bellec L, Simon JC, Outreman Y. Influence of "protective" symbionts throughout the different steps of an aphid-parasitoid interaction. Curr Zool 2021; 67:441-453. [PMID: 34616941 PMCID: PMC8489026 DOI: 10.1093/cz/zoaa053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
Microbial associates are widespread in insects, some conferring a protection to their hosts against natural enemies like parasitoids. These protective symbionts may affect the infection success of the parasitoid by modifying behavioral defenses of their hosts, the development success of the parasitoid by conferring a resistance against it or by altering life-history traits of the emerging parasitoids. Here, we assessed the effects of different protective bacterial symbionts on the entire sequence of the host-parasitoid interaction (i.e., from parasitoid attack to offspring emergence) between the pea aphid, Acyrthosiphon pisum, and its main parasitoid, Aphidius ervi and their impacts on the life-history traits of the emerging parasitoids. To test whether symbiont-mediated phenotypes were general or specific to particular aphid–symbiont associations, we considered several aphid lineages, each harboring a different strain of either Hamiltonella defensa or Regiella insecticola, two protective symbionts commonly found in aphids. We found that symbiont species and strains had a weak effect on the ability of aphids to defend themselves against the parasitic wasps during the attack and a strong effect on aphid resistance against parasitoid development. While parasitism resistance was mainly determined by symbionts, their effects on host defensive behaviors varied largely from one aphid–symbiont association to another. Also, the symbiotic status of the aphid individuals had no impact on the attack rate of the parasitic wasps, the parasitoid emergence rate from parasitized aphids nor the life-history traits of the emerging parasitoids. Overall, no correlations between symbiont effects on the different stages of the host–parasitoid interaction was observed, suggesting no trade-offs or positive associations between symbiont-mediated phenotypes. Our study highlights the need to consider various sequences of the host-parasitoid interaction to better assess the outcomes of protective symbioses and understand the ecological and evolutionary dynamics of insect–symbiont associations.
Collapse
Affiliation(s)
| | - Laura Bellec
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France
| | | | | |
Collapse
|
20
|
Drew GC, Stevens EJ, King KC. Microbial evolution and transitions along the parasite-mutualist continuum. Nat Rev Microbiol 2021; 19:623-638. [PMID: 33875863 PMCID: PMC8054256 DOI: 10.1038/s41579-021-00550-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Virtually all plants and animals, including humans, are home to symbiotic microorganisms. Symbiotic interactions can be neutral, harmful or have beneficial effects on the host organism. However, growing evidence suggests that microbial symbionts can evolve rapidly, resulting in drastic transitions along the parasite-mutualist continuum. In this Review, we integrate theoretical and empirical findings to discuss the mechanisms underpinning these evolutionary shifts, as well as the ecological drivers and why some host-microorganism interactions may be stuck at the end of the continuum. In addition to having biomedical consequences, understanding the dynamic life of microorganisms reveals how symbioses can shape an organism's biology and the entire community, particularly in a changing world.
Collapse
Affiliation(s)
| | | | - Kayla C King
- Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Kaech H, Dennis AB, Vorburger C. Triple RNA-Seq characterizes aphid gene expression in response to infection with unequally virulent strains of the endosymbiont Hamiltonella defensa. BMC Genomics 2021; 22:449. [PMID: 34134631 PMCID: PMC8207614 DOI: 10.1186/s12864-021-07742-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background Secondary endosymbionts of aphids provide benefits to their hosts, but also impose costs such as reduced lifespan and reproductive output. The aphid Aphis fabae is host to different strains of the secondary endosymbiont Hamiltonella defensa, which encode different putative toxins. These strains have very different phenotypes: They reach different densities in the host, and the costs and benefits (protection against parasitoid wasps) they confer to the host vary strongly. Results We used RNA-Seq to generate hypotheses on why four of these strains inflict such different costs to A. fabae. We found different H. defensa strains to cause strain-specific changes in aphid gene expression, but little effect of H. defensa on gene expression of the primary endosymbiont, Buchnera aphidicola. The highly costly and over-replicating H. defensa strain H85 was associated with strongly reduced aphid expression of hemocytin, a marker of hemocytes in Drosophila. The closely related strain H15 was associated with downregulation of ubiquitin-related modifier 1, which is related to nutrient-sensing and oxidative stress in other organisms. Strain H402 was associated with strong differential regulation of a set of hypothetical proteins, the majority of which were only differentially regulated in presence of H402. Conclusions Overall, our results suggest that costs of different strains of H. defensa are likely caused by different mechanisms, and that these costs are imposed by interacting with the host rather than the host’s obligatory endosymbiont B. aphidicola. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07742-8.
Collapse
Affiliation(s)
- Heidi Kaech
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland. .,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Alice B Dennis
- Institute of Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Christoph Vorburger
- Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,D-USYS, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
22
|
Baião GC, Janice J, Galinou M, Klasson L. Comparative Genomics Reveals Factors Associated with Phenotypic Expression of Wolbachia. Genome Biol Evol 2021; 13:6277727. [PMID: 34003269 DOI: 10.1093/gbe/evab111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/18/2022] Open
Abstract
Wolbachia is a widespread, vertically transmitted bacterial endosymbiont known for manipulating arthropod reproduction. Its most common form of reproductive manipulation is cytoplasmic incompatibility (CI), observed when a modification in the male sperm leads to embryonic lethality unless a compatible rescue factor is present in the female egg. CI attracts scientific attention due to its implications for host speciation and in the use of Wolbachia for controlling vector-borne diseases. However, our understanding of CI is complicated by the complexity of the phenotype, whose expression depends on both symbiont and host factors. In the present study, we perform a comparative analysis of nine complete Wolbachia genomes with known CI properties in the same genetic host background, Drosophila simulans STC. We describe genetic differences between closely related strains and uncover evidence that phages and other mobile elements contribute to the rapid evolution of both genomes and phenotypes of Wolbachia. Additionally, we identify both known and novel genes associated with the modification and rescue functions of CI. We combine our observations with published phenotypic information and discuss how variability in cif genes, novel CI-associated genes, and Wolbachia titer might contribute to poorly understood aspects of CI such as strength and bidirectional incompatibility. We speculate that high titer CI strains could be better at invading new hosts already infected with a CI Wolbachia, due to a higher rescue potential, and suggest that titer might thus be a relevant parameter to consider for future strategies using CI Wolbachia in biological control.
Collapse
Affiliation(s)
- Guilherme Costa Baião
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessin Janice
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Galinou
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Smith AH, O'Connor MP, Deal B, Kotzer C, Lee A, Wagner B, Joffe J, Woloszynek S, Oliver KM, Russell JA. Does getting defensive get you anywhere?-Seasonal balancing selection, temperature, and parasitoids shape real-world, protective endosymbiont dynamics in the pea aphid. Mol Ecol 2021; 30:2449-2472. [PMID: 33876478 DOI: 10.1111/mec.15906] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Facultative, heritable endosymbionts are found at intermediate prevalence within most insect species, playing frequent roles in their hosts' defence against environmental pressures. Focusing on Hamiltonella defensa, a common bacterial endosymbiont of aphids, we tested the hypothesis that such pressures impose seasonal balancing selection, shaping a widespread infection polymorphism. In our studied pea aphid (Acyrthosiphon pisum) population, Hamiltonella frequencies ranged from 23.2% to 68.1% across a six-month longitudinal survey. Rapid spikes and declines were often consistent across fields, and we estimated that selection coefficients for Hamiltonella-infected aphids changed sign within this field season. Prior laboratory research suggested antiparasitoid defence as the major Hamiltonella benefit, and costs under parasitoid absence. While a prior field study suggested these forces can sometimes act as counter-weights in a regime of seasonal balancing selection, our present survey showed no significant relationship between parasitoid wasps and Hamiltonella prevalence. Field cage experiments provided some explanation: parasitoids drove modest ~10% boosts to Hamiltonella frequencies that would be hard to detect under less controlled conditions. They also showed that Hamiltonella was not always costly under parasitoid exclusion, contradicting another prediction. Instead, our longitudinal survey - and two overwintering studies - showed temperature to be the strongest predictor of Hamiltonella prevalence. Matching some prior lab discoveries, this suggested that thermally sensitive costs and benefits, unrelated to parasitism, can shape Hamiltonella dynamics. These results add to a growing body of evidence for rapid, seasonal adaptation in multivoltine organisms, suggesting that such adaptation can be mediated through the diverse impacts of heritable bacterial endosymbionts.
Collapse
Affiliation(s)
- Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Michael P O'Connor
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Brooke Deal
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Coleman Kotzer
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Amanda Lee
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Barrett Wagner
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | | | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
24
|
Transmission of the wMel Wolbachia strain is modulated by its titre and by immune genes in Drosophila melanogaster (Wolbachia density and transmission). J Invertebr Pathol 2021; 181:107591. [PMID: 33882275 DOI: 10.1016/j.jip.2021.107591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022]
Abstract
Wolbachia are common intracellular endosymbionts of arthropods, but the interactions between Wolbachia and arthropods are only partially understood. The fruit fly Drosophila melanogaster is a model insect for understanding Wolbachia-host interactions. Here the native wMel strain of D. melanogaster was isolated and then different initial titres of wMel were artificially transferred back into antibiotics-treated fruit flies. Our purpose was to examine the interactions between the injected wMel in a density gradient and the recipient host during trans-generational transmission. The results showed that the trans-generational transmission rates of wMel and titres of wMel exhibited a fluctuating trend over nine generations, and the titres of wMel displayed a similar fluctuating trans-generational trend. There was a significant positive correlation between the transmission rate and the titre of wMel. Reciprocal crossings between wMel-transinfected and uninfected fruit flies revealed that wMel could induce cytoplasmic incompatibility (CI) at different initial titres, but the intensity of CI was not significantly correlated with the initial titre of wMel. Quantitative PCR analysis showed that the immune genes Drsl5 and Spn38F displayed a significant transcriptional response to wMel transfection, with an obvious negative correlation with the titre of wMel at the 3rd and 4th generations. Furthermore, RNA interference-mediated knockdown of Drsl5 and Spn38F elicited a drastic increase in the titre of wMel. In combination, our study suggests that the trans-generational transmission of wMel is modulated by its density, and the immune genes are involved in the regulation of Wolbachia density.
Collapse
|
25
|
Hoang KL, Gerardo NM, Morran LT. Association with a novel protective microbe facilitates host adaptation to a stressful environment. Evol Lett 2021; 5:118-129. [PMID: 33868708 PMCID: PMC8045907 DOI: 10.1002/evl3.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Protective symbionts can allow hosts to occupy otherwise uninhabitable niches. Despite the importance of symbionts in host evolution, we know little about how these associations arise. Encountering a microbe that can improve host fitness in a stressful environment may favor persistent interactions with that microbe, potentially facilitating a long-term association. The bacterium Bacillus subtilis protects Caenorhabditis elegans nematodes from heat shock by increasing host fecundity compared to the nonprotective Escherichia coli. In this study, we ask how the protection provided by the bacterium affects the host's evolutionary trajectory. Because of the stark fitness contrast between hosts heat shocked on B. subtilis versus E. coli, we tested whether the protection conferred by the bacteria could increase the rate of host adaptation to a stressful environment. We passaged nematodes on B. subtilis or E. coli, under heat stress or standard conditions for 20 host generations of selection. When assayed under heat stress, we found that hosts exhibited the greatest fitness increase when evolved with B. subtilis under stress compared to when evolved with E. coli or under standard (nonstressful) conditions. Furthermore, despite not directly selecting for increased B. subtilis fitness, we found that hosts evolved to harbor more B. subtilis as they adapted to heat stress. Our findings demonstrate that the context under which hosts evolve is important for the evolution of beneficial associations and that protective microbes can facilitate host adaptation to stress. In turn, such host adaptation can benefit the microbe.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
- Department of ZoologyUniversity of OxfordOxfordOX1 3SZUnited Kingdom
| | | | - Levi T. Morran
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
| |
Collapse
|
26
|
Gerardo NM, Hoang KL, Stoy KS. Evolution of animal immunity in the light of beneficial symbioses. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190601. [PMID: 32772666 DOI: 10.1098/rstb.2019.0601] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Immune system processes serve as the backbone of animal defences against pathogens and thus have evolved under strong selection and coevolutionary dynamics. Most microorganisms that animals encounter, however, are not harmful, and many are actually beneficial. Selection should act on hosts to maintain these associations while preventing exploitation of within-host resources. Here, we consider how several key aspects of beneficial symbiotic associations may shape host immune system evolution. When host immunity is used to regulate symbiont populations, there should be selection to evolve and maintain targeted immune responses that recognize symbionts and suppress but not eliminate symbiont populations. Associating with protective symbionts could relax selection on the maintenance of redundant host-derived immune responses. Alternatively, symbionts could facilitate the evolution of host immune responses if symbiont-conferred protection allows for persistence of host populations that can then adapt. The trajectory of immune system evolution will likely differ based on the type of immunity involved, the symbiont transmission mode and the costs and benefits of immune system function. Overall, the expected influence of beneficial symbiosis on immunity evolution depends on how the host immune system interacts with symbionts, with some interactions leading to constraints while others possibly relax selection on immune system maintenance. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Nicole M Gerardo
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Kim L Hoang
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Kayla S Stoy
- Department of Biology, Emory University, O. Wayne Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Paraburkholderia Symbionts Display Variable Infection Patterns That Are Not Predictive of Amoeba Host Outcomes. Genes (Basel) 2020; 11:genes11060674. [PMID: 32575747 PMCID: PMC7349545 DOI: 10.3390/genes11060674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/07/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Symbiotic interactions exist within a parasitism to mutualism continuum that is influenced, among others, by genes and context. Dynamics of intracellular invasion, replication, and prevalence may underscore both host survivability and symbiont stability. More infectious symbionts might exert higher corresponding costs to hosts, which could ultimately disadvantage both partners. Here, we quantify infection patterns of diverse Paraburkholderia symbiont genotypes in their amoeba host Dictyostelium discoideum and probe the relationship between these patterns and host outcomes. We exposed D. discoideum to thirteen strains of Paraburkholderia each belonging to one of the three symbiont species found to naturally infect D. discoideum: Paraburkholderia agricolaris, Paraburkholderia hayleyella, and Paraburkholderia bonniea. We quantified the infection prevalence and intracellular density of fluorescently labeled symbionts along with the final host population size using flow cytometry and confocal microscopy. We find that infection phenotypes vary across symbiont strains. Symbionts belonging to the same species generally display similar infection patterns but are interestingly distinct when it comes to host outcomes. This results in final infection loads that do not strongly correlate to final host outcomes, suggesting other genetic factors that are not a direct cause or consequence of symbiont abundance impact host fitness.
Collapse
|
28
|
Rouïl J, Jousselin E, Coeur d’acier A, Cruaud C, Manzano-Marín A. The Protector within: Comparative Genomics of APSE Phages across Aphids Reveals Rampant Recombination and Diverse Toxin Arsenals. Genome Biol Evol 2020; 12:878-889. [PMID: 32386316 PMCID: PMC7313666 DOI: 10.1093/gbe/evaa089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Phages can fundamentally alter the physiology and metabolism of their hosts. Although these phages are ubiquitous in the bacterial world, they have seldom been described among endosymbiotic bacteria. One notable exception is the APSE phage that is found associated with the gammaproteobacterial Hamiltonella defensa, hosted by several insect species. This secondary facultative endosymbiont is not necessary for the survival of its hosts but can infect certain individuals or even whole populations. Its infection in aphids is often associated with protection against parasitoid wasps. This protective phenotype has actually been linked to the infection of the symbiont strain with an APSE, which carries a toxin cassette that varies among so-called "types." In the present work, we seek to expand our understanding of the diversity of APSE phages as well as the relations of their Hamiltonella hosts. For this, we assembled and annotated the full genomes of 16 APSE phages infecting Hamiltonella symbionts across ten insect species. Molecular and phylogenetic analyses suggest that recombination has occurred repeatedly among lineages. Comparative genomics of the phage genomes revealed two variable regions that are useful for phage typing. Additionally, we find that mobile elements could play a role in the acquisition of new genes in the toxin cassette. Altogether, we provide an unprecedented view of APSE diversity and their genome evolution across aphids. This genomic investigation will provide a valuable resource for the design and interpretation of experiments aiming at understanding the protective phenotype these phages confer to their insect hosts.
Collapse
Affiliation(s)
- Jeff Rouïl
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Emmanuelle Jousselin
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Armelle Coeur d’acier
- UMR 1062 Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, France
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François-Jacob, Commissariat à l’Energie Atomique (CEA), Université Paris-Saclay, Évry, France
| | | |
Collapse
|
29
|
Higashi CHV, Barton BT, Oliver KM. Warmer nights offer no respite for a defensive mutualism. J Anim Ecol 2020; 89:1895-1905. [DOI: 10.1111/1365-2656.13238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/28/2020] [Indexed: 01/01/2023]
Affiliation(s)
| | - Brandon T. Barton
- Department of Biological Sciences Mississippi State University Mississippi State MS USA
| | - Kerry M. Oliver
- Department of Entomology University of Georgia Athens GA USA
| |
Collapse
|
30
|
The Hypercomplex Genome of an Insect Reproductive Parasite Highlights the Importance of Lateral Gene Transfer in Symbiont Biology. mBio 2020; 11:mBio.02590-19. [PMID: 32209690 PMCID: PMC7157526 DOI: 10.1128/mbio.02590-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The biology of many bacteria is critically dependent on genes carried on plasmid and phage mobile elements. These elements shuttle between microbial species, thus providing an important source of biological innovation across taxa. It has recently been recognized that mobile elements are also important in symbiotic bacteria, which form long-lasting interactions with their host. In this study, we report a bacterial symbiont genome that carries a highly complex array of these elements. Arsenophonus nasoniae is the son-killer microbe of the parasitic wasp Nasonia vitripennis and exists with the wasp throughout its life cycle. We completed its genome with the aid of recently developed long-read technology. This assembly contained over 50 chromosomal regions of phage origin and 17 extrachromosomal elements within the genome, encoding many important traits at the host-microbe interface. Thus, the biology of this symbiont is enabled by a complex array of mobile elements. Mobile elements—plasmids and phages—are important components of microbial function and evolution via traits that they encode and their capacity to shuttle genetic material between species. We here report the unusually rich array of mobile elements within the genome of Arsenophonus nasoniae, the son-killer symbiont of the parasitic wasp Nasonia vitripennis. This microbe’s genome has the highest prophage complement reported to date, with over 50 genomic regions that represent either intact or degraded phage material. Moreover, the genome is predicted to include 17 extrachromosomal genetic elements, which carry many genes predicted to be important at the microbe-host interface, derived from a diverse assemblage of insect-associated gammaproteobacteria. In our system, this diversity was previously masked by repetitive mobile elements that broke the assembly derived from short reads. These findings suggest that other complex bacterial genomes will be revealed in the era of long-read sequencing.
Collapse
|
31
|
Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, Oliver KM. Cultivation-Assisted Genome of Candidatus Fukatsuia symbiotica; the Enigmatic "X-Type" Symbiont of Aphids. Genome Biol Evol 2020; 11:3510-3522. [PMID: 31725149 PMCID: PMC7145644 DOI: 10.1093/gbe/evz252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Heritable symbionts are common in terrestrial arthropods and often provide beneficial services to hosts. Unlike obligate, nutritional symbionts that largely persist under strict host control within specialized host cells, heritable facultative symbionts exhibit large variation in within-host lifestyles and services rendered with many retaining the capacity to transition among roles. One enigmatic symbiont, Candidatus Fukatsuia symbiotica, frequently infects aphids with reported roles ranging from pathogen, defensive symbiont, mutualism exploiter, and nutritional co-obligate symbiont. Here, we used an in vitro culture-assisted protocol to sequence the genome of a facultative strain of Fukatsuia from pea aphids (Acyrthosiphon pisum). Phylogenetic and genomic comparisons indicate that Fukatsuia is an aerobic heterotroph, which together with Regiella insecticola and Hamiltonella defensa form a clade of heritable facultative symbionts within the Yersiniaceae (Enterobacteriales). These three heritable facultative symbionts largely share overlapping inventories of genes associated with housekeeping functions, metabolism, and nutrient acquisition, while varying in complements of mobile DNA. One unusual feature of Fukatsuia is its strong tendency to occur as a coinfection with H. defensa. However, the overall similarity of gene inventories among aphid heritable facultative symbionts suggests that metabolic complementarity is not the basis for coinfection, unless playing out on a H. defensa strain-specific basis. We also compared the pea aphid Fukatsuia with a strain from the aphid Cinara confinis (Lachninae) where it is reported to have transitioned to co-obligate status to support decaying Buchnera function. Overall, the two genomes are very similar with no clear genomic signatures consistent with such a transition, which suggests co-obligate status in C. confinis was a recent event.
Collapse
Affiliation(s)
- Vilas Patel
- Department of Entomology, University of Georgia
| | | | | | | | | | | | | |
Collapse
|
32
|
More Is Not Always Better: Coinfections with Defensive Symbionts Generate Highly Variable Outcomes. Appl Environ Microbiol 2020; 86:AEM.02537-19. [PMID: 31862723 DOI: 10.1128/aem.02537-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
Animal-associated microbes are highly variable, contributing to a diverse set of symbiont-mediated phenotypes. Given that host and symbiont genotypes, and their interactions, can impact symbiont-based phenotypes across environments, there is potential for extensive variation in fitness outcomes. Pea aphids, Acyrthosiphon pisum, host a diverse assemblage of heritable facultative symbionts (HFS) with characterized roles in host defense. Protective phenotypes have been largely studied as single infections, but pea aphids often carry multiple HFS species, and particular combinations may be enriched or depleted compared to expectations based on chance. Here, we examined the consequences of single infection versus coinfection with two common HFS exhibiting variable enrichment, the antiparasitoid Hamiltonella defensa and the antipathogen Regiella insecticola, across three host genotypes and environments. As expected, single infections with either H. defensa or R. insecticola raised defenses against their respective targets. Single infections with protective H. defensa lowered aphid fitness in the absence of enemy challenge, while R. insecticola was comparatively benign. However, as a coinfection, R. insecticola ameliorated H. defensa infection costs. Coinfected aphids continued to receive antiparasitoid protection from H. defensa, but protection was weakened by R. insecticola in two clones. Notably, H. defensa eliminated survival benefits conferred after pathogen exposure by coinfecting R. insecticola Since pathogen sporulation was suppressed by R. insecticola in coinfected aphids, the poor performance likely stemmed from H. defensa-imposed costs rather than weakened defenses. Our results reveal a complex set of coinfection outcomes which may partially explain natural infection patterns and suggest that symbiont-based phenotypes may not be easily predicted based solely on infection status.IMPORTANCE The hyperdiverse arthropods often harbor maternally transmitted bacteria that protect against natural enemies. In many species, low-diversity communities of heritable symbionts are common, providing opportunities for cooperation and conflict among symbionts, which can impact the defensive services rendered. Using the pea aphid, a model for defensive symbiosis, we show that coinfections with two common defensive symbionts, the antipathogen Regiella and the antiparasite Hamiltonella, produce outcomes that are highly variable compared to single infections, which consistently protect against designated enemies. Compared to single infections, coinfections often reduced defensive services during enemy challenge yet improved aphid fitness in the absence of enemies. Thus, infection with multiple symbionts does not necessarily create generalist aphids with "Swiss army knife" defenses against numerous enemies. Instead, particular combinations of symbionts may be favored for a variety of reasons, including their abilities to lessen the costs of other defensive symbionts when enemies are not present.
Collapse
|
33
|
Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Appl Environ Microbiol 2019; 85:AEM.00992-19. [PMID: 31492669 DOI: 10.1128/aem.00992-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/03/2019] [Indexed: 01/27/2023] Open
Abstract
In deep-sea hydrothermal vent environments, sulfur-oxidizing bacteria belonging to the clade SUP05 are crucial symbionts of invertebrate animals. Marine viruses, as the most abundant biological entities in the ocean, play essential roles in regulating the sulfur metabolism of the SUP05 bacteria. To date, vent sponge-associated SUP05 and their phages have not been well documented. The current study analyzed microbiomes of Haplosclerida sponges from hydrothermal vents in the Okinawa Trough and recovered the dominant SUP05 genome, designated VS-SUP05. Phylogenetic analysis showed that VS-SUP05 was closely related to endosymbiotic SUP05 strains from mussels living in deep-sea hydrothermal vent fields. Homology and metabolic pathway comparisons against free-living and symbiotic SUP05 strains revealed that the VS-SUP05 genome shared many features with the deep-sea mussel symbionts. Supporting a potentially symbiotic lifestyle, the VS-SUP05 genome contained genes involved in the synthesis of essential amino acids and cofactors that are desired by the host. Analysis of sponge-associated viral sequences revealed putative VS-SUP05 phages, all of which were double-stranded viruses belonging to the families Myoviridae, Siphoviridae, Podoviridae, and Microviridae Among the phage sequences, one contig contained metabolic genes (iscR, iscS, and iscU) involved in iron-sulfur cluster formation. Interestingly, genome sequence comparison revealed horizontal transfer of the iscS gene among phages, VS-SUP05, and other symbiotic SUP05 strains, indicating an interaction between marine phages and SUP05 symbionts. Overall, our findings confirm the presence of SUP05 bacteria and their phages in sponges from deep-sea vents and imply a beneficial interaction that allows adaptation of the host sponge to the hydrothermal vent environment.IMPORTANCE Chemosynthetic SUP05 bacteria dominate the microbial communities of deep-sea hydrothermal vents around the world, SUP05 bacteria utilize reduced chemical compounds in vent fluids and commonly form symbioses with invertebrate organisms. This symbiotic relationship could be key to adapting to such unique and extreme environments. Viruses are the most abundant biological entities on the planet and have been identified in hydrothermal vent environments. However, their interactions with the symbiotic microbes of the SUP05 clade, along with their role in the symbiotic system, remain unclear. Here, using metagenomic sequence-based analyses, we determined that bacteriophages may support metabolism in SUP05 bacteria and play a role in the sponge-associated symbiosis system in hydrothermal vent environments.
Collapse
|
34
|
Mathé‐Hubert H, Kaech H, Hertaeg C, Jaenike J, Vorburger C. Nonrandom associations of maternally transmitted symbionts in insects: The roles of drift versus biased cotransmission and selection. Mol Ecol 2019; 28:5330-5346. [DOI: 10.1111/mec.15206] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Hugo Mathé‐Hubert
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Heidi Kaech
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Institute of Integrative Biology Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| | - Corinne Hertaeg
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Institute of Agricultural Sciences Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| | - John Jaenike
- Department of Biology University of Rochester Rochester NY USA
| | - Christoph Vorburger
- Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Institute of Integrative Biology Department of Environmental Systems Science ETH Zürich Zürich Switzerland
| |
Collapse
|
35
|
Lynn-Bell NL, Strand MR, Oliver KM. Bacteriophage acquisition restores protective mutualism. Microbiology (Reading) 2019; 165:985-989. [DOI: 10.1099/mic.0.000816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Michael R. Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
36
|
Jagdale SS, Joshi RS. Facilitator roles of viruses in enhanced insect resistance to biotic stress. CURRENT OPINION IN INSECT SCIENCE 2019; 33:111-116. [PMID: 31358189 DOI: 10.1016/j.cois.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 06/10/2023]
Abstract
Virus-insect interactions are primarily parasitic, yet diverse mutualistic interactions, some of which are symbiogenic, also occur. These viruses can modify insect physiology and behavior so that hosts can gain resistance against various biotic challenges like pathogen and parasites. In the recent past, many insect mutualistic viruses have been reported. Viruses can show symbiogenic interactions with some insects, which have been explored at the molecular level. However, understanding about molecular mechanisms for many of the mutualistic viruses is still enigmatic. Exploration of these interactions and its mechanism can shed light on phenomenon of virus mediated biotic stress resistance in insects.
Collapse
Affiliation(s)
- Shounak S Jagdale
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India
| | - Rakesh S Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; Biochemical Sciences Division, CSIR National Chemical Laboratory, Pune 411008, Maharashtra, India.
| |
Collapse
|
37
|
Hafer N, Vorburger C. Diversity begets diversity: do parasites promote variation in protective symbionts? CURRENT OPINION IN INSECT SCIENCE 2019; 32:8-14. [PMID: 31113636 DOI: 10.1016/j.cois.2018.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
Insects commonly possess heritable microbial symbionts that increase their resistance to particular parasites. A diverse community of defensive symbionts may thus provide hosts with effective and specific protection against multiple parasites, although costs might constrain the accumulation of many symbionts. In parallel to the allelic diversity in the MHC complex of the vertebrate immune system, parasite diversity could be the driving force behind symbiont diversity. There is indeed evidence that parasites have the ability to drive frequencies of defensive symbionts in their hosts, and that these symbionts influence parasite communities, but direct evidence that parasite diversity can promote symbiont diversity is still lacking. We provide suggestions to investigate this potential link.
Collapse
Affiliation(s)
- Nina Hafer
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| | - Christoph Vorburger
- EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Integrative Biology, ETH Zürich, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
38
|
Hoang KL, Gerardo NM, Morran LT. The effects of Bacillus subtilis on Caenorhabditis elegans fitness after heat stress. Ecol Evol 2019; 9:3491-3499. [PMID: 30962907 PMCID: PMC6434544 DOI: 10.1002/ece3.4983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 01/21/2023] Open
Abstract
Microbes can provide their hosts with protection from biotic and abiotic factors. While many studies have examined how certain bacteria can increase host lifespan, fewer studies have examined how host reproduction can be altered. The nematode Caenorhabditis elegans has been a particularly useful model system to examine how bacteria affect the fitness of their hosts under different contexts. Here, we examine how the bacterium Bacillus subtilis, compared to the standard C. elegans lab diet, Escherichia coli, affects C. elegans survival and reproduction after experiencing a period of intense heat stress. We find that under standard conditions, nematodes reared on B. subtilis produce fewer offspring than when reared on E. coli.However, despite greater mortality rates on B. subtilis after heat shock, young adult nematodes produced more offspring after heat shock when fed B. subtilis compared to E. coli. Because offspring production is necessary for host population growth and evolution, the reproductive advantage conferred by B. subtilis supersedes the survival advantage of E. coli. Furthermore, we found that nematodes must be reared on B. subtilis (particularly at the early stages of development) and not merely be exposed to the bacterium during heat shock, to obtain the reproductive benefits provided by B. subtilis. Taken together, our findings lend insight into the importance of environmental context and interaction timing in shaping the protective benefits conferred by a microbe toward its host.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia
| | | | | |
Collapse
|
39
|
Kampfraath AA, Klasson L, Anvar SY, Vossen RHAM, Roelofs D, Kraaijeveld K, Ellers J. Genome expansion of an obligate parthenogenesis-associated Wolbachia poses an exception to the symbiont reduction model. BMC Genomics 2019; 20:106. [PMID: 30727958 PMCID: PMC6364476 DOI: 10.1186/s12864-019-5492-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Theory predicts that dependency within host-endosymbiont interactions results in endosymbiont genome size reduction. Unexpectedly, the largest Wolbachia genome was found in the obligate, parthenogenesis-associated wFol. In this study, we investigate possible processes underlying this genome expansion by comparing a re-annotated wFol genome to other Wolbachia genomes. In addition, we also search for candidate genes related to parthenogenesis induction (PI). Results Within wFol, we found five phage WO regions representing 25.4% of the complete genome, few pseudogenized genes, and an expansion of DNA-repair genes in comparison to other Wolbachia. These signs of genome conservation were mirrored in the wFol host, the springtail F. candida, which also had an expanded DNA-repair gene family and many horizontally transferred genes. Across all Wolbachia genomes, there was a strong correlation between gene numbers of Wolbachia strains and their hosts. In order to identify genes with a potential link to PI, we assembled the genome of an additional PI strain, wLcla. Comparisons between four PI Wolbachia, including wFol and wLcla, and fourteen non-PI Wolbachia yielded a small set of potential candidate genes for further investigation. Conclusions The strong similarities in genome content of wFol and its host, as well as the correlation between host and Wolbachia gene numbers suggest that there may be some form of convergent evolution between endosymbiont and host genomes. If such convergent evolution would be strong enough to overcome the evolutionary forces causing genome reduction, it would enable expanded genomes within long-term obligate endosymbionts. Electronic supplementary material The online version of this article (10.1186/s12864-019-5492-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A A Kampfraath
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - L Klasson
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - S Y Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - R H A M Vossen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - D Roelofs
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - K Kraaijeveld
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J Ellers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Li S, Liu D, Zhang R, Zhai Y, Huang X, Wang D, Shi X. Effects of a presumably protective endosymbiont on life-history characters and their plasticity for its host aphid on three plants. Ecol Evol 2018; 8:13004-13013. [PMID: 30619600 PMCID: PMC6308870 DOI: 10.1002/ece3.4754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/30/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022] Open
Abstract
Hamiltonella defensa is well known for its protective roles against parasitoids for its aphid hosts, but its functional roles in insect-plant interactions are less understood. Thus, the impact of H. defensa infections on life-history characters and the underlying genetic variation for the grain aphid, Sitobion avenae (Fabricius), was explored on three plants (i.e., wheat, oat, and rye). Compared to cured lines, H. defensa infected lines of S. avenae had lower fecundity on wheat and oat, but not on rye, suggesting an infection cost for the aphid on susceptible host plants. However, when tested on rye, the infected lines showed a shorter developmental time for the nymphal stage than corresponding cured lines, showing some benefit for S. avenae carrying the endosymbiont on resistant host plants. The infection of H. defensa altered genetic variation underlying its host S. avenea's life-history characters, which was shown by differences in heritabilities and genetic correlations of life-history characters between S. avenae lines infected and cured of the endosymbiont. This was further substantiated by disparity in G-matrices of their life-history characters for the two types of aphid lines. The G-matrices for life-history characters of aphid lines infected with and cured of H. defensa were significantly different from each other on rye, but not on oat, suggesting strong plant-dependent effects. The developmental durations of infected S. avenae lines showed a lower plasticity compared with those of corresponding cured lines, and this could mean higher adaptability for the infected lines.Overall, our results showed novel functional roles of a common secondary endosymbiont (i.e., H. defensa) in plant-insect interactions, and its infections could have significant consequences for the evolutionary ecology of its host insect populations in nature.
Collapse
Affiliation(s)
- Shirong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Rongfang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Yingting Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Xianliang Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Da Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| |
Collapse
|
41
|
Brandt JW, Chevignon G, Oliver KM, Strand MR. Culture of an aphid heritable symbiont demonstrates its direct role in defence against parasitoids. Proc Biol Sci 2018; 284:rspb.2017.1925. [PMID: 29093227 DOI: 10.1098/rspb.2017.1925] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/05/2017] [Indexed: 12/21/2022] Open
Abstract
Heritable symbionts are common in insects with many contributing to host defence. Hamiltonella defensa is a facultative, bacterial symbiont of the pea aphid, Acyrthosiphon pisum that provides protection against the endoparasitoid wasp Aphidius ervi Protection levels vary among strains of H. defensa that are differentially infected by bacteriophages named APSEs. By contrast, little is known about mechanism(s) of resistance owing to the intractability of host-restricted microbes for functional study. Here, we developed methods for culturing strains of H. defensa that varied in the presence and type of APSE. Most H. defensa strains proliferated at 27°C in co-cultures with the TN5 cell line or as pure cultures with no insect cells. The strain infected by APSE3, which provides high levels of protection in vivo, produced a soluble factor(s) that disabled development of A. ervi embryos independent of any aphid factors. Experimental transfer of APSE3 also conferred the ability to disable A. ervi development to a phage-free strain of H. defensa Altogether, these results provide a critical foundation for characterizing symbiont-derived factor(s) involved in host protection and other functions. Our results also demonstrate that phage-mediated transfer of traits provides a mechanism for innovation in host restricted symbionts.
Collapse
Affiliation(s)
- Jayce W Brandt
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Germain Chevignon
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
42
|
Zouari S, Ben Halima MK, Reyes-Prieto M, Latorre A, Gil R. Natural Occurrence of Secondary Bacterial Symbionts in Aphids from Tunisia, with a Focus on Genus Hyalopterus. ENVIRONMENTAL ENTOMOLOGY 2018; 47:325-333. [PMID: 29506121 DOI: 10.1093/ee/nvy005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aphids (Hemiptera: Aphididae) can harbor two types of bacterial symbionts. In addition to the obligate endosymbiont Buchnera aphidicola Munson, Baumann and Kinsey 1991 (Enterobacteriales: Enterobacteriaceae), several facultative symbiotic bacteria, called secondary (S) symbionts, have been identified among many important pest aphid species. To determine interpopulational diversity of S-symbionts, we carried out a survey in a total of 18 populations of six aphid species collected from six localities in Tunisia, by performing a diagnostic polymerase chain reaction analysis of partial 16S-23S rRNA operon sequences. While 61.7% of individuals contained only Buchnera, three S-symbionts were found at different frequencies. Arsenophonus sp. Gherna et al. 1991 (Enterobacteriales: Enterobacteriaceae) was found in all species under study except for Acyrtosiphon pisum (Harris 1776) (Aphidinae: Macrosiphini); Serratia symbiotica Moran et al. 2005 (Enterobacteriales: Enterobacteriaceae) was present in all analyzed individuals of A. pisum but only sporadically in Aphis spiraecola (Patch 1914) (Aphidinae: Aphidini) and Hyalopterus amygdali (Blanchard 1840) (Aphidinae: Aphidini), while Hamiltonella defensa Moran et al. 2005 (Enterobacteriales: Enterobacteriaceae) was found in all analyzed individuals of one population of Aphis gossypii (Glover 1877) (Aphidinae: Aphidini) and sporadically in two populations of Hyalopterus. The lysogenic bacteriophage APSE-1 (A. pisum secondary endosymbiont, type 1) was detected in the three populations infected with H. defensa. This bacteriophage has been associated with moderate protection against braconid parasitoids in pea aphids. The high prevalence of Arsenophonus sp. in our samples is in accordance with previous studies indicating that, among gammaproteobacteria, this genus is one of the most widespread insect facultative symbionts.
Collapse
Affiliation(s)
- Sana Zouari
- UR13AGRO3: Cultures maraîchères conventionnelles et biologiques. Institut Supérieur Agronomique (ISA) de Chott Mariem, Université de Sousse Tunisie, Chott Mariem, Tunisia
| | - Monia Kamel Ben Halima
- UR13AGRO3: Cultures maraîchères conventionnelles et biologiques. Institut Supérieur Agronomique (ISA) de Chott Mariem, Université de Sousse Tunisie, Chott Mariem, Tunisia
| | - Mariana Reyes-Prieto
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Paterna (Valencia) Spain
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Paterna (Valencia) Spain
- Área de Genómica y Salud, FISABIO - Salud Pública, València, Spain
| | - Rosario Gil
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València/CSIC, Paterna (Valencia) Spain
| |
Collapse
|
43
|
Rock DI, Smith AH, Joffe J, Albertus A, Wong N, O'Connor M, Oliver KM, Russell JA. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol Ecol 2018; 27:2039-2056. [PMID: 29215202 DOI: 10.1111/mec.14449] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 01/11/2023]
Abstract
Animal-associated microbiomes are often comprised of structured, multispecies communities, with particular microbes showing trends of co-occurrence or exclusion. Such structure suggests variable community stability, or variable costs and benefits-possibilities with implications for symbiont-driven host adaptation. In this study, we performed systematic screening for maternally transmitted, facultative endosymbionts of the pea aphid, Acyrthosiphon pisum. Sampling across six locales, with up to 5 years of collection in each, netted significant and consistent trends of community structure. Co-infections between Serratia symbiotica and Rickettsiella viridis were more common than expected, while Rickettsia and X-type symbionts colonized aphids with Hamiltonella defensa more often than expected. Spiroplasma co-infected with other endosymbionts quite rarely, showing tendencies to colonize as a single species monoculture. Field estimates of maternal transmission rates help to explain our findings: while Serratia and Rickettsiella improved each other's transmission, Spiroplasma reduced transmission rates of co-infecting endosymbionts. In summary, our findings show that North American pea aphids harbour recurring combinations of facultative endosymbionts. Common symbiont partners play distinct roles in pea aphid biology, suggesting the creation of "generalist" aphids receiving symbiont-based defence against multiple ecological stressors. Multimodal selection, at the host level, may thus partially explain our results. But more conclusively, our findings show that within-host microbe interactions, and their resulting impacts on transmission rates, are an important determinant of community structure. Widespread distributions of heritable symbionts across plants and invertebrates hint at the far-reaching implications for these findings, and our work further shows the benefits of symbiosis research within a natural context.
Collapse
Affiliation(s)
- Danielle I Rock
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Amie Albertus
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Narayan Wong
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | | | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
44
|
|
45
|
Chevignon G, Boyd BM, Brandt JW, Oliver KM, Strand MR. Culture-Facilitated Comparative Genomics of the Facultative Symbiont Hamiltonella defensa. Genome Biol Evol 2018; 10:786-802. [PMID: 29452355 PMCID: PMC5841374 DOI: 10.1093/gbe/evy036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
Many insects host facultative, bacterial symbionts that confer conditional fitness benefits to their hosts. Hamiltonella defensa is a common facultative symbiont of aphids that provides protection against parasitoid wasps. Protection levels vary among strains of H. defensa that are also differentially infected by bacteriophages named APSEs. However, little is known about trait variation among strains because only one isolate has been fully sequenced. Generating complete genomes for facultative symbionts is hindered by relatively large genome sizes but low abundances in hosts like aphids that are very small. Here, we took advantage of methods for culturing H. defensa outside of aphids to generate complete genomes and transcriptome data for four strains of H. defensa from the pea aphid Acyrthosiphon pisum. Chosen strains also spanned the breadth of the H. defensa phylogeny and differed in strength of protection conferred against parasitoids. Results indicated that strains shared most genes with roles in nutrient acquisition, metabolism, and essential housekeeping functions. In contrast, the inventory of mobile genetic elements varied substantially, which generated strain specific differences in gene content and genome architecture. In some cases, specific traits correlated with differences in protection against parasitoids, but in others high variation between strains obscured identification of traits with likely roles in defense. Transcriptome data generated continuous distributions to genome assemblies with some genes that were highly expressed and others that were not. Single molecule real-time sequencing further identified differences in DNA methylation patterns and restriction modification systems that provide defense against phage infection.
Collapse
Affiliation(s)
| | - Bret M Boyd
- Department of Entomology, University of Georgia
| | | | | | | |
Collapse
|
46
|
Jagdale SS, Joshi RS. Enemies with benefits: mutualistic interactions of viruses with lower eukaryotes. Arch Virol 2018; 163:821-830. [PMID: 29307090 DOI: 10.1007/s00705-017-3686-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/06/2017] [Indexed: 11/29/2022]
Abstract
Viruses represent some of the deadliest pathogens known to science. Recently they have been reported to have mutualistic interactions with their hosts, providing them direct or indirect benefits. The mutualism and symbiogenesis of such viruses with lower eukaryotic partners such as fungi, yeast, and insects have been reported but the full mechanism of interaction often remains an enigma. In many instances, these viral interactions provide resistance against several biotic and abiotic stresses, which could be the prime reason for the ecological success and positive selection of the hosts. These viruses modulate host metabolism and behavior, so both can obtain maximum benefits from the environment. They bring about micro- and macro-level changes in the hosts, benefiting their adaptation, reproduction, development, and survival. These virus-host interactions can be bilateral or tripartite with a variety of interacting partners. Exploration of these interactions can shed light on one of the well-coordinated biological phenomena of co-evolution and can be highly utilized for various applications in agriculture, fermentation and the pharmaceutical industries.
Collapse
Affiliation(s)
- Shounak S Jagdale
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Rakesh S Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
47
|
Doremus MR, Smith AH, Kim KL, Holder AJ, Russell JA, Oliver KM. Breakdown of a defensive symbiosis, but not endogenous defences, at elevated temperatures. Mol Ecol 2017; 27:2138-2151. [DOI: 10.1111/mec.14399] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/17/2017] [Indexed: 02/05/2023]
Affiliation(s)
| | | | - Kyungsun L. Kim
- Department of Entomology University of Georgia Athens GA USA
| | | | | | - Kerry M. Oliver
- Department of Entomology University of Georgia Athens GA USA
| |
Collapse
|
48
|
Chamberland VF, Latijnhouwers KRW, Huisman J, Hartmann AC, Vermeij MJA. Costs and benefits of maternally inherited algal symbionts in coral larvae. Proc Biol Sci 2017; 284:20170852. [PMID: 28659451 PMCID: PMC5489732 DOI: 10.1098/rspb.2017.0852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/26/2017] [Indexed: 12/21/2022] Open
Abstract
Many marine invertebrates provide their offspring with symbionts. Yet the consequences of maternally inherited symbionts on larval fitness remain largely unexplored. In the stony coral Favia fragum (Esper 1797), mothers produce larvae with highly variable amounts of endosymbiotic algae, and we examined the implications of this variation in symbiont density on the performance of F. fragum larvae under different environmental scenarios. High symbiont densities prolonged the period that larvae actively swam and searched for suitable settlement habitats. Thermal stress reduced survival and settlement success in F. fragum larvae, whereby larvae with high symbiont densities suffered more from non-lethal stress and were five times more likely to die compared with larvae with low symbiont densities. These results show that maternally inherited algal symbionts can be either beneficial or harmful to coral larvae depending on the environmental conditions at hand, and suggest that F. fragum mothers use a bet-hedging strategy to minimize risks associated with spatio-temporal variability in their offspring's environment.
Collapse
Affiliation(s)
- Valérie F Chamberland
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
- SECORE International, 4673 Northwest Parkway, Hilliard, OH 43026, USA
- CARMABI Foundation, PO Box 2090, Piscaderabaai z/n, Willemstad, Curaçao
| | - Kelly R W Latijnhouwers
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
| | - Jef Huisman
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
| | - Aaron C Hartmann
- Smithsonian Institution, National Museum of Natural History, 10th Street and Constitution Avenue NW, Washington, DC 20560, USA
- San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark J A Vermeij
- Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 700, 1098 XH Amsterdam, The Netherlands
- CARMABI Foundation, PO Box 2090, Piscaderabaai z/n, Willemstad, Curaçao
| |
Collapse
|
49
|
Martinez AJ, Doremus MR, Kraft LJ, Kim KL, Oliver KM. Multi‐modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J Anim Ecol 2017; 87:464-477. [DOI: 10.1111/1365-2656.12675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/21/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Adam J. Martinez
- Department of Entomology University of Georgia Athens GA USA
- Department of Evolutionary Ecology Johannes Gutenberg University Mainz Germany
| | | | - Laura J. Kraft
- Department of Entomology University of Georgia Athens GA USA
| | - Kyungsun L. Kim
- Department of Entomology University of Georgia Athens GA USA
| | - Kerry M. Oliver
- Department of Entomology University of Georgia Athens GA USA
| |
Collapse
|
50
|
Aphid Heritable Symbiont Exploits Defensive Mutualism. Appl Environ Microbiol 2017; 83:AEM.03276-16. [PMID: 28159793 DOI: 10.1128/aem.03276-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
Insects and other animals commonly form symbioses with heritable bacteria, which can exert large influences on host biology and ecology. The pea aphid, Acyrthosiphon pisum, is a model for studying effects of infection with heritable facultative symbionts (HFS), and each of its seven common HFS species has been reported to provide resistance to biotic or abiotic stresses. However, one common HFS, called X-type, rarely occurs as a single infection in field populations and instead typically superinfects individual aphids with Hamiltonella defensa, another HFS that protects aphids against attack by parasitic wasps. Using experimental aphid lines comprised of all possible infection combinations in a uniform aphid genotype, we investigated whether the most common strain of X-type provides any of the established benefits associated with aphid HFS as a single infection or superinfection with H. defensa We found that X-type does not confer protection to any tested threats, including parasitoid wasps, fungal pathogens, or thermal stress. Instead, component fitness assays identified large costs associated with X-type infection, costs which were ameliorated in superinfected aphids. Together these findings suggest that X-type exploits the aphid/H. defensa mutualism and is maintained primarily as a superinfection by "hitchhiking" via the mutualistic benefits provided by another HFS. Exploitative symbionts potentially restrict the functions and distributions of mutualistic symbioses with effects that extend to other community members.IMPORTANCE Maternally transmitted bacterial symbionts are widespread and can have major impacts on the biology of arthropods, including insects of medical and agricultural importance. Given that host fitness and symbiont fitness are tightly linked, inherited symbionts can spread within host populations by providing beneficial services. Many insects, however, are frequently infected with multiple heritable symbiont species, providing potential alternative routes of symbiont maintenance. Here we show that a common pea aphid symbiont called X-type likely employs an exploitative strategy of hitchhiking off the benefits of a protective symbiont, Hamiltonella Infection with X-type provides none of the benefits conferred by other aphid symbionts and instead results in large fitness costs, costs lessened by superinfection with Hamiltonella These findings are corroborated by natural infections in field populations, where X-type is mostly found superinfecting aphids with Hamiltonella Exploitative symbionts may be common in hosts with communities of heritable symbionts and serve to hasten the breakdown of mutualisms.
Collapse
|