1
|
Leão CF, Lima Ribeiro MS, Moraes K, Gonçalves GSR, Lima MGM. Climate change and carnivores: shifts in the distribution and effectiveness of protected areas in the Amazon. PeerJ 2023; 11:e15887. [PMID: 37744233 PMCID: PMC10516102 DOI: 10.7717/peerj.15887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/20/2023] [Indexed: 09/26/2023] Open
Abstract
Background Carnivore mammals are animals vulnerable to human interference, such as climate change and deforestation. Their distribution and persistence are affected by such impacts, mainly in tropical regions such as the Amazon. Due to the importance of carnivores in the maintenance and functioning of the ecosystem, they are extremely important animals for conservation. We evaluated the impact of climate change on the geographic distribution of carnivores in the Amazon using Species Distribution Models (SDMs). Do we seek to answer the following questions: (1) What is the effect of climate change on the distribution of carnivores in the Amazon? (2) Will carnivore species lose or gain representation within the Protected Areas (PAs) of the Amazon in the future? Methods We evaluated the distribution area of 16 species of carnivores mammals in the Amazon, based on two future climate scenarios (RCP 4.5 and RCP 8.5) for the year 2070. For the construction of the SDMs we used bioclimatic and vegetation cover variables (land type). Based on these models, we calculated the area loss and climate suitability of the species, as well as the effectiveness of the protected areas inserted in the Amazon. We estimated the effectiveness of PAs on the individual persistence of carnivores in the future, for this, we used the SDMs to perform the gap analysis. Finally, we analyze the effectiveness of PAs in protecting taxonomic richness in future scenarios. Results The SDMs showed satisfactory predictive performance, with Jaccard values above 0.85 and AUC above 0.91 for all species. In the present and for the future climate scenarios, we observe a reduction of potencial distribution in both future scenarios (RCP4.5 and RCP8.5), where five species will be negatively affected by climate change in the RCP 4.5 future scenario and eight in the RCP 8.5 scenario. The remaining species stay stable in terms of total area. All species in the study showed a loss of climatic suitability. Some species lost almost all climatic suitability in the RCP 8.5 scenario. According to the GAP analysis, all species are protected within the PAs both in the current scenario and in both future climate scenarios. From the null models, we found that in all climate scenarios, the PAs are not efficient in protecting species richness.
Collapse
Affiliation(s)
- Camila Ferreira Leão
- Programa Pós-graduação em Ecologia, Universidade Federal do Pará, Belém, Pará, Brazil
- Laboratório de Biogeografia da Conservação e Macroecologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Kauê Moraes
- Laboratório de Biogeografia da Conservação e Macroecologia, Universidade Federal do Pará, Belém, Pará, Brazil
- Programa de Pós-graduação em Zoologia, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | | |
Collapse
|
2
|
Carvajal-Quintero J, Comte L, Giam X, Olden JD, Brose U, Erős T, Filipe AF, Fortin MJ, Irving K, Jacquet C, Larsen S, Ruhi A, Sharma S, Villalobos F, Tedesco PA. Scale of population synchrony confirms macroecological estimates of minimum viable range size. Ecol Lett 2023; 26:291-301. [PMID: 36468276 DOI: 10.1111/ele.14152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/11/2022]
Abstract
Global ecosystems are facing a deepening biodiversity crisis, necessitating robust approaches to quantifying species extinction risk. The lower limit of the macroecological relationship between species range and body size has long been hypothesized as an estimate of the relationship between the minimum viable range size (MVRS) needed for species persistence and the organismal traits that affect space and resource requirements. Here, we perform the first explicit test of this assumption by confronting the MVRS predicted by the range-body size relationship with an independent estimate based on the scale of synchrony in abundance among spatially separated populations of riverine fish. We provide clear evidence of a positive relationship between the scale of synchrony and species body size, and strong support for the MVRS set by the lower limit of the range-body size macroecological relationship. This MVRS may help prioritize first evaluations for unassessed or data-deficient taxa in global conservation assessments.
Collapse
Affiliation(s)
- Juan Carvajal-Quintero
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena- Leipzig, Leipzig, Germany.,Leipzig University, Leipzig, Germany
| | - Lise Comte
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Xingli Giam
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena- Leipzig, Leipzig, Germany.,Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tibor Erős
- Balaton Limnological Research Institute, ELKH, Tihany, Hungary
| | - Ana Filipa Filipe
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal.,Associate Laboratory TERRA, Lisbon, Portugal
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Katie Irving
- Department of Biology, Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Claire Jacquet
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Stefano Larsen
- Fondazione Edmund Mach, Research and Innovation Centre, San Michele all'Adige, Italy.,Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Albert Ruhi
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Sapna Sharma
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Fabricio Villalobos
- Laboratorio de Macroecología Evolutiva, Red de Biología Evolutiva, Instituto de Ecología, Veracruz, Mexico
| | - Pablo A Tedesco
- UMR EDB, IRD 253, CNRS 5174, UPS, Université Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
3
|
Hay EM, McGee MD, Chown SL. Geographic range size and speciation in honeyeaters. BMC Ecol Evol 2022; 22:86. [PMID: 35768772 PMCID: PMC9245323 DOI: 10.1186/s12862-022-02041-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Darwin and others proposed that a species' geographic range size positively influences speciation likelihood, with the relationship potentially dependent on the mode of speciation and other contributing factors, including geographic setting and species traits. Several alternative proposals for the influence of range size on speciation rate have also been made (e.g. negative or a unimodal relationship with speciation). To examine Darwin's proposal, we use a range of phylogenetic comparative methods, focusing on a large Australasian bird clade, the honeyeaters (Aves: Meliphagidae). RESULTS We consider the influence of range size, shape, and position (latitudinal and longitudinal midpoints, island or continental species), and consider two traits known to influence range size: dispersal ability and body size. Applying several analytical approaches, including phylogenetic Bayesian path analysis, spatiophylogenetic models, and state-dependent speciation and extinction models, we find support for both the positive relationship between range size and speciation rate and the influence of mode of speciation. CONCLUSIONS Honeyeater speciation rate differs considerably between islands and the continental setting across the clade's distribution, with range size contributing positively in the continental setting, while dispersal ability influences speciation regardless of setting. These outcomes support Darwin's original proposal for a positive relationship between range size and speciation likelihood, while extending the evidence for the contribution of dispersal ability to speciation.
Collapse
Affiliation(s)
- Eleanor M Hay
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| | - Matthew D McGee
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
4
|
Enriquez-Urzelai U, Boratyński Z. Energetic dissociation of individual and species ranges. Biol Lett 2022; 18:20210374. [PMID: 35168378 PMCID: PMC8847892 DOI: 10.1098/rsbl.2021.0374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
The use of energy is universal to all life forms and all levels of biological organization, potentially linking processes operating at variable scales. Individual and species ranges might be energetically constrained, yet divergent metabolic limitations at both scales can disassociate these individual and species traits. We analysed comparative energetic and range data to unravel the mechanistic basis of the dissociation between individual and species range sizes observed among mammalian species. Our results demonstrate that basal, or maintenance, metabolism negatively correlates with individual ranges, but, at the same time, it positively correlates with species ranges. High aerobic capacity, i.e. maximum metabolic rate, positively correlates with individual ranges, but it is weakly related to species range size. These antagonistic energetic constraints on both ranges could lead to a disassociation between individual and species traits and to a low covariation between home and species range sizes. We show that important organismal functions, such as basal and maximum metabolic rates, have the potential to unravel mechanisms operating at different levels of biological organization and to expose links between energy-dependent processes at different scales.
Collapse
Affiliation(s)
- Urtzi Enriquez-Urzelai
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60365 Brno, Czech Republic
| | - Zbyszek Boratyński
- BIOPOLIS, CIBIO/InBio, Research Centre in Biodiversity and Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| |
Collapse
|
5
|
Smeraldo S, Bosso L, Salinas‐Ramos VB, Ancillotto L, Sánchez‐Cordero V, Gazaryan S, Russo D. Generalists yet different: distributional responses to climate change may vary in opportunistic bat species sharing similar ecological traits. Mamm Rev 2021. [DOI: 10.1111/mam.12247] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sonia Smeraldo
- Wildlife Research Unit Dipartimento di Agraria Università degli Studi di Napoli Federico II Via Università n. 100 80055 Portici Napoli Italy
| | - Luciano Bosso
- Wildlife Research Unit Dipartimento di Agraria Università degli Studi di Napoli Federico II Via Università n. 100 80055 Portici Napoli Italy
| | - Valeria B. Salinas‐Ramos
- Wildlife Research Unit Dipartimento di Agraria Università degli Studi di Napoli Federico II Via Università n. 100 80055 Portici Napoli Italy
| | - Leonardo Ancillotto
- Wildlife Research Unit Dipartimento di Agraria Università degli Studi di Napoli Federico II Via Università n. 100 80055 Portici Napoli Italy
| | - Víctor Sánchez‐Cordero
- Laboratorio de Sistemas de Información Geográfica Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Av. Universidad 04510 Ciudad de México Mexico
| | - Suren Gazaryan
- Institute of Ecology of Mountain Territories RAS Armand 37A360000 Nalchik Russia
| | - Danilo Russo
- Wildlife Research Unit Dipartimento di Agraria Università degli Studi di Napoli Federico II Via Università n. 100 80055 Portici Napoli Italy
- School of Biological Sciences University of Bristol 24 Tyndall Avenue BristolBS8 1TQUK
| |
Collapse
|
6
|
Westover ML, Smith FA. Investigating the role of environment in pika (Ochotona) body size patterns across taxonomic levels, space, and time. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Body size is an important trait in animals because it influences a multitude of additional life history traits. The causal mechanisms underlying body size patterns across spatial, temporal, and taxonomic hierarchies are debated, and of renewed interest in this era of climate change. Here, we tested multiple hypotheses regarding body mass patterns at the intraspecific and interspecific levels. We investigated body size patterns within a climate-sensitive small mammal species, Ochotona princeps (n = 2,873 individuals), across their range with local environmental variables. We also examined body mass of populations over time to determine if body size has evolved in situ in response to environmental change. At the interspecific level we compared the mean mass of 26 pika species (genus Ochotona) to determine if environmental temperatures, food availability, habitat variability, or range area influence body size. We found correlations between temperature, vegetation, and particularly precipitation variables, with body mass within O. princeps, but no linear relationship between body size and any climate or habitat variable for Ochotona species. Body size trends in relation to climate were stronger at the intraspecific than the interspecific level. Our results suggest that body size within O. princeps likely is related to food availability, and that body size evolution is not always a viable response to temperature change. Different mechanisms may be driving body size at the interspecific and intraspecific levels and factors other than environment, such as biotic interactions, may also be influential in determining body size over space and time.
Collapse
Affiliation(s)
- Marie L Westover
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Felisa A Smith
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
7
|
Zhu XM, Du Y, Qu YF, Li H, Gao JF, Lin CX, Ji X, Lin LH. The geographical diversification in varanid lizards: the role of mainland versus island in driving species evolution. Curr Zool 2020; 66:165-171. [PMID: 32226443 PMCID: PMC7083093 DOI: 10.1093/cz/zoaa002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/19/2020] [Indexed: 11/13/2022] Open
Abstract
Monitor lizards (Varanidae) inhabit both the mainland and islands of all geological types and have diversified into an exceptionally wide range of body sizes, thus providing an ideal model for examining the role of mainland versus island in driving species evolution. Here we use phylogenetic comparative methods to examine whether a link exists between body size-driven diversification and body size-frequency distributions in varanid lizards and to test the hypothesis that island lizards differ from mainland species in evolutionary processes, body size, and life-history traits (offspring number and size). We predict that: 1) since body size drives rapid diversification in groups, a link exists between body size-driven diversification and body size-frequency distributions; 2) because of various environments on island, island species will have higher speciation, extinction, and dispersal rates, compared with mainland species; 3) as a response to stronger intraspecific competition, island species will maximize individual ability associated with body size to outcompete closely-related species, and island species will produce smaller clutches of larger eggs to increase offspring quality. Our results confirm that the joint effect of differential macroevolutionary rates shapes the species richness pattern of varanid lizards. There is a link between body size-driven diversification and body size-frequency distributions, and the speciation rate is maximized at medium body sizes. Island species will have higher speciation, equal extinction, and higher dispersal rates compared with mainland species. Smaller clutch size and larger hatchling in the island than in mainland species indicate that offspring quality is more valuable than offspring quantity for island varanids.
Collapse
Affiliation(s)
- Xia-Ming Zhu
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.,Hainan Key Laboratory for Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yan-Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jian-Fang Gao
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Chi-Xian Lin
- Hainan Key Laboratory for Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Long-Hui Lin
- Hangzhou Key Laboratory for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
8
|
Arias-Alzate A, González-Maya JF, Arroyo-Cabrales J, Medellín RA, Martínez-Meyer E. Environmental Drivers and Distribution Patterns of Carnivoran Assemblages (Mammalia: Carnivora) in the Americas: Past to Present. J MAMM EVOL 2020. [DOI: 10.1007/s10914-020-09496-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Fristoe TS, Botero CA. Alternative ecological strategies lead to avian brain size bimodality in variable habitats. Nat Commun 2019; 10:3818. [PMID: 31444351 PMCID: PMC6707158 DOI: 10.1038/s41467-019-11757-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
The ecological contexts that promote larger brains have received considerable attention, but those that result in smaller-than-expected brains have been largely overlooked. Here, we use a global sample of 2062 species to provide evidence that metabolic and life history tradeoffs govern the evolution of brain size in birds and play an important role in defining the ecological strategies capable of persisting in Earth's most thermally variable and unpredictable habitats. While some birds cope with extreme winter conditions by investing in large brains (e.g., greater capacity for planning, innovation, and behavioral flexibility), others have small brains and invest instead in traits that allow them to withstand or recover from potentially deadly events. Specifically, these species are restricted to large body sizes, diets consisting of difficult-to-digest but readily available foods, and high reproductive output. Overall, our findings highlight the importance of considering strategic tradeoffs when investigating potential drivers of brain size evolution.
Collapse
Affiliation(s)
- Trevor S Fristoe
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany.
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130-4899, USA.
| | - Carlos A Botero
- Department of Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130-4899, USA
| |
Collapse
|
10
|
Lyons SK, Smith FA, Ernest SKM. Macroecological patterns of mammals across taxonomic, spatial, and temporal scales. J Mammal 2019. [DOI: 10.1093/jmammal/gyy171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- S Kathleen Lyons
- University of Nebraska–Lincoln, School of Biological Sciences, St. Lincoln, NE
| | - Felisa A Smith
- University of New Mexico, Department of Biology, Albuquerque, NM
| | - S K Morgan Ernest
- University of Florida, Department of Wildlife Ecology and Conservation, Gainesville, FL
| |
Collapse
|
11
|
Inostroza-Michael O, Hernández CE, Rodríguez-Serrano E, Avaria-Llautureo J, Rivadeneira MM. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical furnariid birds. Evolution 2018; 72:1124-1133. [DOI: 10.1111/evo.13481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Oscar Inostroza-Michael
- Laboratorio de Ecologia Evolutiva y Filoinformtica; Departamento de Zoologia, Facultad de Ciencias Naturales y Oceanograficas, Universidad de Concepcion; Casilla 160-C Concepcion Chile
| | - Cristián E. Hernández
- Laboratorio de Ecologia Evolutiva y Filoinformtica; Departamento de Zoologia, Facultad de Ciencias Naturales y Oceanograficas, Universidad de Concepcion; Casilla 160-C Concepcion Chile
| | - Enrique Rodríguez-Serrano
- Laboratorio de Ecologia Evolutiva y Filoinformtica; Departamento de Zoologia, Facultad de Ciencias Naturales y Oceanograficas, Universidad de Concepcion; Casilla 160-C Concepcion Chile
| | - Jorge Avaria-Llautureo
- Laboratorio de Ecologia Evolutiva y Filoinformtica; Departamento de Zoologia, Facultad de Ciencias Naturales y Oceanograficas, Universidad de Concepcion; Casilla 160-C Concepcion Chile
| | - Marcelo M. Rivadeneira
- Laboratorio de Paleobiologia; Centro de Estudios Avanzados en Zonas Aridas (CEAZA); C.P. 178168 Coquimbo Chile
- Facultad de Ciencias del Mar; Universidad Catolica del Norte; Larrondo 1281 Coquimbo Chile
- Departamento de Biología; Universidad de La Serena; Av. Raul Bitrán 1305 La Serena Chile
| |
Collapse
|
12
|
Hayes JP, Feldman CR, Araújo MB. Mass‐independent maximal metabolic rate predicts geographic range size of placental mammals. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Jack P. Hayes
- Department of BiologyUniversity of Nevada Reno NV USA
| | | | - Miguel B. Araújo
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias NaturalesCSIC Madrid Spain
- Department of BiologyCenter for Macroecology, Evolution and ClimateUniversity of Copenhagen Copenhagen Denmark
- Rui Nabeiro Biodiversity ChairCIBIO‐InBIOUniversity of ÉvoraLargo dos Colegiais Évora Portugal
| |
Collapse
|
13
|
Meiri S, Bauer AM, Allison A, Castro-Herrera F, Chirio L, Colli G, Das I, Doan TM, Glaw F, Grismer LL, Hoogmoed M, Kraus F, LeBreton M, Meirte D, Nagy ZT, Nogueira CDC, Oliver P, Pauwels OSG, Pincheira-Donoso D, Shea G, Sindaco R, Tallowin OJS, Torres-Carvajal O, Trape JF, Uetz P, Wagner P, Wang Y, Ziegler T, Roll U. Extinct, obscure or imaginary: The lizard species with the smallest ranges. DIVERS DISTRIB 2017. [DOI: 10.1111/ddi.12678] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Shai Meiri
- School of Zoology; Tel Aviv University; Tel Aviv Israel
- The Steinhardt Museum of Natural History; Tel Aviv University; Tel Aviv Israel
| | - Aaron M. Bauer
- Department of Biology; Villanova University; Villanova PA USA
| | - Allen Allison
- Department of Vertebrate Zoology; Bishop Museum; Honolulu HI USA
| | - Fernando Castro-Herrera
- Physiology Sciences Department; School of Basic Sciences; Universidad del Valle; Cali Colombia
| | | | - Guarino Colli
- Department of Zoology; University of Brasília; Brasília Brazil
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation; Universiti Malaysia Sarawak; Kota Samarahan Sarawak Malaysia
| | - Tiffany M. Doan
- Division of Natural Sciences; New College of Florida; Sarasota FL USA
| | - Frank Glaw
- Zoologische Staatssammlung München; München Germany
| | - Lee L. Grismer
- Herpetology Laboratory; Department of Biology; La Sierra University; Riverside CA USA
| | | | - Fred Kraus
- Department of Ecology and Evolutionary Biology; University of Michigan; Ann-Arbor MI USA
| | | | - Danny Meirte
- Royal Museum for Central Africa; Tervuren Belgium
| | - Zoltán T. Nagy
- Department of Recent Vertebrates; Royal Belgian Institute of Natural Sciences; Brussels Belgium
| | | | - Paul Oliver
- Ecology and Evolution; Research School of Biology; Australian National University; Canberra ACT Australia
| | | | | | - Glenn Shea
- Faculty of Veterinary Science; University of Sydney; Sydney NSW Australia
| | | | | | - Omar Torres-Carvajal
- Museo de Zoología; Escuela de Ciencias Biológicas; Pontificia Universidad Católica del Ecuador; Quito Ecuador
| | | | - Peter Uetz
- Virginia Commonwealth University; Richmond VA USA
| | | | - Yuezhao Wang
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu China
| | - Thomas Ziegler
- AG Zoologischer Garten Köln; Cologne Germany
- Institute of Zoology; University of Cologne; Cologne Germany
| | - Uri Roll
- Mitrani Department of Desert Ecology; Ben Gurion University of the Negev; Beersheba Israel
- School of Geography & the Environment; University of Oxford; Oxford UK
| |
Collapse
|
14
|
Wild Felid Range Shift Due to Climatic Constraints in the Americas: a Bottleneck Explanation for Extinct Felids? J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9350-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Hilbers JP, Schipper AM, Hendriks AJ, Verones F, Pereira HM, Huijbregts MAJ. An allometric approach to quantify the extinction vulnerability of birds and mammals. Ecology 2016; 97:615-26. [PMID: 27197389 DOI: 10.1890/14-2019.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species-specific information. The framework facilitates the estimation of extinction vulnerabilities of data-deficient species. It may be applied to forecast extinction vulnerability in response to a changing environment, by incorporating quantitative relationships between wildlife demographic parameters and environmental drivers like habitat alteration, climate change, or hunting.
Collapse
|
16
|
Agosta SJ, Bernardo J, Ceballos G, Steele MA. A macrophysiological analysis of energetic constraints on geographic range size in mammals. PLoS One 2013; 8:e72731. [PMID: 24058444 PMCID: PMC3772909 DOI: 10.1371/journal.pone.0072731] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 07/12/2013] [Indexed: 11/29/2022] Open
Abstract
Physiological processes are essential for understanding the distribution and abundance of organisms, and recently, with widespread attention to climate change, physiology has been ushered back to the forefront of ecological thinking. We present a macrophysiological analysis of the energetics of geographic range size using combined data on body size, basal metabolic rate (BMR), phylogeny and range properties for 574 species of mammals. We propose three mechanisms by which interspecific variation in BMR should relate positively to geographic range size: (i) Thermal Plasticity Hypothesis, (ii) Activity Levels/Dispersal Hypothesis, and (iii) Energy Constraint Hypothesis. Although each mechanism predicts a positive correlation between BMR and range size, they can be further distinguished based on the shape of the relationship they predict. We found evidence for the predicted positive relationship in two dimensions of energetics: (i) the absolute, mass-dependent dimension (BMR) and (ii) the relative, mass-independent dimension (MIBMR). The shapes of both relationships were similar and most consistent with that expected from the Energy Constraint Hypothesis, which was proposed previously to explain the classic macroecological relationship between range size and body size in mammals and birds. The fact that this pattern holds in the MIBMR dimension indicates that species with supra-allometric metabolic rates require among the largest ranges, above and beyond the increasing energy demands that accrue as an allometric consequence of large body size. The relationship is most evident at high latitudes north of the Tropics, where large ranges and elevated MIBMR are most common. Our results suggest that species that are most vulnerable to extinction from range size reductions are both large-bodied and have elevated MIBMR, but also, that smaller species with elevated MIBMR are at heightened risk. We also provide insights into the global latitudinal trends in range size and MIBMR and more general issues of phylogenetic and geographic scale.
Collapse
Affiliation(s)
- Salvatore J. Agosta
- Center for Environmental Studies and Department of Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Joseph Bernardo
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Southern Appalachian Biodiversity Institute, Roan Mountain, Tennessee, United States of America
| | - Gerardo Ceballos
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autonoma de Mexico, México D.F., Mexico
| | - Michael A. Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| |
Collapse
|