1
|
Girardeau AR, Enochs GE, Saltz JB. Evolutionary feedbacks for Drosophila aggression revealed through experimental evolution. Proc Natl Acad Sci U S A 2025; 122:e2419068122. [PMID: 40273109 DOI: 10.1073/pnas.2419068122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/17/2025] [Indexed: 04/26/2025] Open
Abstract
Evolutionary feedbacks occur when evolution in one generation alters the environment experienced by subsequent generations and are an expected result of indirect genetic effects (IGEs). Hypotheses abound for the role of evolutionary feedbacks in climate change, agriculture, community dynamics, population persistence, social interactions, the genetic basis of evolution, and more, but evolutionary feedbacks have rarely been directly measured experimentally, leaving open questions about how feedbacks influence evolution. Using experimental evolution, we manipulated the social environment in which aggression was expressed and selected in fruit fly (Drosophila melanogaster) populations to allow or limit feedbacks. We selected for increased male-male aggression while allowing either positive, negative, or no feedbacks, alongside unselected controls. We show that populations undergoing negative feedbacks had the weakest evolutionary changes in aggression, while populations undergoing positive evolutionary feedbacks evolved supernormal aggression. Further, the underlying social dynamics evolved only in the negative feedbacks treatment. Our results demonstrate that IGE-mediated evolutionary feedbacks can alter the rate and pattern of behavioral evolution.
Collapse
Affiliation(s)
| | - Grace E Enochs
- Department of Biosciences, Rice University, Houston, TX 77005
| | - Julia B Saltz
- Department of Biosciences, Rice University, Houston, TX 77005
| |
Collapse
|
2
|
Hutchins M, Douglas T, Pollack L, Saltz JB. Genetic Variation in Male Aggression Is Influenced by Genotype of Prior Social Partners in Drosophila melanogaster. Am Nat 2024; 203:551-561. [PMID: 38635366 DOI: 10.1086/729463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
AbstractSocial behaviors can be influenced by the genotypes of interacting individuals through indirect genetic effects (IGEs) and can also display developmental plasticity. We investigated how developmental IGEs, which describe the effects of a prior social partner's genotype on later behavior, can influence aggression in male Drosophila melanogaster. We predicted that developmental IGEs cannot be estimated by simply extending the effects of contextual IGEs over time and instead have their own unique effects on behavior. On day 1 of the experiment, we measured aggressive behavior in 15 genotypic pairings (n = 600 males). On day 2, each of the males was paired with a new opponent, and aggressive behavior was again measured. We found contextual IGEs on day 1 of the experiment and developmental IGEs on day 2 of the experiment: the influence of the day 1 partner's genotype on the focal individual's day 2 behavior depended on the genotypic identity of both the day 1 partner and the focal male. Importantly, the developmental IGEs in our system produced fundamentally different dynamics than the contextual IGEs, as the presence of IGEs was altered over time. These findings represent some of the first empirical evidence demonstrating developmental IGEs, a first step toward incorporating developmental IGEs into our understanding of behavioral evolution.
Collapse
|
3
|
McLean EM, Moorad JA, Tung J, Archie EA, Alberts SC. Genetic variance and indirect genetic effects for affiliative social behavior in a wild primate. Evolution 2023; 77:1607-1621. [PMID: 37094802 PMCID: PMC10309972 DOI: 10.1093/evolut/qpad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
Affiliative social behaviors are linked to fitness components in multiple species. However, the role of genetic variance in shaping such behaviors remains largely unknown, limiting our understanding of how affiliative behaviors can respond to natural selection. Here, we employed the "animal model" to estimate environmental and genetic sources of variance and covariance in grooming behavior in the well-studied Amboseli wild baboon population. We found that the tendency for a female baboon to groom others ("grooming given") is heritable (h2 = 0.22 ± 0.048), and that several environmental variables-including dominance rank and the availability of kin as grooming partners-contribute to variance in this grooming behavior. We also detected small but measurable variance due to the indirect genetic effect of partner identity on the amount of grooming given within dyadic grooming partnerships. The indirect and direct genetic effects for grooming given were positively correlated (r = 0.74 ± 0.09). Our results provide insight into the evolvability of affiliative behavior in wild animals, including the possibility for correlations between direct and indirect genetic effects to accelerate the response to selection. As such they provide novel information about the genetic architecture of social behavior in nature, with important implications for the evolution of cooperation and reciprocity.
Collapse
Affiliation(s)
- Emily M McLean
- University Program in Genetics and Genomics, Duke University, Durham, NC, United States
- Division of Natural Sciences and Mathematics, Oxford College, Emory University, Oxford, GA, United States
| | - Jacob A Moorad
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, Scotland
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC, United States
- Department of Evolutionary Anthropology, Duke University, Durham, NC, United States
- Population Research Institute, Duke University, Durham, NC, United States
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC, United States
- Department of Evolutionary Anthropology, Duke University, Durham, NC, United States
- Population Research Institute, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Saltz JB, Palmer MS, Beaudrot L. Identifying the social context of single- and mixed-species group formation in large African herbivores. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220105. [PMID: 37066657 PMCID: PMC10107273 DOI: 10.1098/rstb.2022.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Despite continued interest in mixed-species groups, we still lack a unified understanding of how ecological and social processes work across scales to influence group formation. Recent work has revealed ecological correlates of mixed-species group formation, but the mechanisms by which concomitant social dynamics produce these patterns, if at all, is unknown. Here, we use camera trap data for six mammalian grazer species in Serengeti National Park. Building on previous work, we found that ecological variables, and especially forage quality, influenced the chances of species overlap over small spatio-temporal scales (i.e. on the scales of several metres and hours). Migratory species (gazelle, wildebeest and zebra) were more likely to have heterospecific partners available in sites with higher forage quality, but the opposite was true for resident species (buffalo, hartebeest and topi). These findings illuminate the circumstances under which mixed-species group formation is even possible. Next, we found that greater heterospecific availability was associated with an increased probability of mixed-species group formation in gazelle, hartebeest, wildebeest and zebra, but ecological variables did not further shape these patterns. Overall, our results are consistent with a model whereby ecological and social drivers of group formation are species-specific and operate on different spatio-temporal scales. This article is part of the theme issue 'Mixed-species groups and aggregations: shaping ecological and behavioural patterns and processes'.
Collapse
Affiliation(s)
- J. B. Saltz
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - M. S. Palmer
- Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - L. Beaudrot
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
5
|
Wice EW, Saltz JB. Indirect genetic effects for social network structure in Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220075. [PMID: 36802774 PMCID: PMC9939268 DOI: 10.1098/rstb.2022.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/16/2022] [Indexed: 02/21/2023] Open
Abstract
The position an individual holds in a social network is dependent on both its direct and indirect social interactions. Because social network position is dependent on the actions and interactions of conspecifics, it is likely that the genotypic composition of individuals within a social group impacts individuals' network positions. However, we know very little about whether social network positions have a genetic basis, and even less about how the genotypic makeup of a social group impacts network positions and structure. With ample evidence indicating that network positions influence various fitness metrics, studying how direct and indirect genetic effects shape network positions is crucial for furthering our understanding of how the social environment can respond to selection and evolve. Using replicate genotypes of Drosophila melanogaster fruit flies, we created social groups that varied in their genotypic makeup. Social groups were videoed, and networks were generated using motion-tracking software. We found that both an individual's own genotype and the genotypes of conspecifics in its social group affect its position within a social network. These findings provide an early example of how indirect genetic effects and social network theory can be linked, and shed new light on how quantitative genetic variation shapes the structure of social groups. This article is part of a discussion meeting issue 'Collective behaviour through time'.
Collapse
Affiliation(s)
- Eric Wesley Wice
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
6
|
de Groot C, Wijnhorst RE, Ratz T, Murray M, Araya-Ajoy YG, Wright J, Dingemanse NJ. The importance of distinguishing individual differences in 'social impact' versus 'social responsiveness' when quantifying indirect genetic effects on the evolution of social plasticity. Neurosci Biobehav Rev 2023; 144:104996. [PMID: 36526032 DOI: 10.1016/j.neubiorev.2022.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Social evolution and the dynamics of social interactions have previously been studied under the frameworks of quantitative genetics and behavioural ecology. In quantitative genetics, indirect genetic effects of social partners on the socially plastic phenotypes of focal individuals typically lack crucial detail already included in treatments of social plasticity in behavioural ecology. Specifically, whilst focal individuals (e.g. receivers) may show variation in their 'responsiveness' to the social environment, individual social partners (e.g. signallers) may have a differential 'impact' on focal phenotypes. Here we propose an integrative framework, that highlights the distinction between responsiveness versus impact in indirect genetic effects for a range of behavioural traits. We describe impact and responsiveness using a reaction norm approach and provide statistical models for the assessment of these effects of focal and social partner identity in different types of social interactions. By providing such a framework, we hope to stimulate future quantitative research investigating the causes and consequences of social interactions on phenotypic evolution.
Collapse
Affiliation(s)
- Corné de Groot
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany.
| | - Rori E Wijnhorst
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Tom Ratz
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| | - Myranda Murray
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Yimen G Araya-Ajoy
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Jonathan Wright
- Center for Biodiversity Dynamics (CBD), Department of Biology, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich (LMU), 82152 Planegg, Martinsried, Germany
| |
Collapse
|
7
|
Makowicz AM, Bierbach D, Richardson C, Hughes KA. Cascading indirect genetic effects in a clonal vertebrate. Proc Biol Sci 2022; 289:20220731. [PMID: 35858068 PMCID: PMC9277275 DOI: 10.1098/rspb.2022.0731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Understanding how individual differences arise and how their effects propagate through groups are fundamental issues in biology. Individual differences can arise from indirect genetic effects (IGE): genetically based variation in the conspecifics with which an individual interacts. Using a clonal species, the Amazon molly (Poecilia formosa), we test the hypothesis that IGE can propagate to influence phenotypes of the individuals that do not experience them firsthand. We tested this by exposing genetically identical Amazon mollies to conspecific social partners of different clonal lineages, and then moving these focal individuals to new social groups in which they were the only member to have experienced the IGE. We found that genetically different social environments resulted in the focal animals experiencing different levels of aggression, and that these IGE carried over into new social groups to influence the behaviour of naive individuals. These data reveal that IGE can cascade beyond the individuals that experience them. Opportunity for cascading IGE is ubiquitous, especially in species with long-distance dispersal or fission-fusion group dynamics. Cascades could amplify (or mitigate) the effects of IGE on trait variation and on evolutionary trajectories. Expansion of the IGE framework to include cascading and other types of carry-over effects will therefore improve understanding of individual variation and social evolution and allow more accurate prediction of population response to changing environments.
Collapse
Affiliation(s)
- Amber M. Makowicz
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, USA
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany,Excellence Cluster ‘Science of Intelligence,’ Technische Universität Berlin, Marchstraße 23, 10587 Berlin, Germany,Faculty of Life Sciences, Thaer-Institute, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | - Christian Richardson
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, USA
| | - Kimberly A. Hughes
- Department of Biological Sciences, Florida State University, 319 Stadium Drive, Tallahassee, FL 32304, USA
| |
Collapse
|
8
|
Bailey NW, Desjonquères C, Drago A, Rayner JG, Sturiale SL, Zhang X. A neglected conceptual problem regarding phenotypic plasticity's role in adaptive evolution: The importance of genetic covariance and social drive. Evol Lett 2021; 5:444-457. [PMID: 34621532 PMCID: PMC8484725 DOI: 10.1002/evl3.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
There is tantalizing evidence that phenotypic plasticity can buffer novel, adaptive genetic variants long enough to permit their evolutionary spread, and this process is often invoked in explanations for rapid adaptive evolution. However, the strength and generality of evidence for it is controversial. We identify a conceptual problem affecting this debate: recombination, segregation, and independent assortment are expected to quickly sever associations between genes controlling novel adaptations and genes contributing to trait plasticity that facilitates the novel adaptations by reducing their indirect fitness costs. To make clearer predictions about this role of plasticity in facilitating genetic adaptation, we describe a testable genetic mechanism that resolves the problem: genetic covariance between new adaptive variants and trait plasticity that facilitates their persistence within populations. We identify genetic architectures that might lead to such a covariance, including genetic coupling via physical linkage and pleiotropy, and illustrate the consequences for adaptation rates using numerical simulations. Such genetic covariances may also arise from the social environment, and we suggest the indirect genetic effects that result could further accentuate the process of adaptation. We call the latter mechanism of adaptation social drive, and identify methods to test it. We suggest that genetic coupling of plasticity and adaptations could promote unusually rapid ‘runaway’ evolution of novel adaptations. The resultant dynamics could facilitate evolutionary rescue, adaptive radiations, the origin of novelties, and other commonly studied processes.
Collapse
Affiliation(s)
- Nathan W Bailey
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Camille Desjonquères
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom.,Department of Biological Sciences University of Wisconsin-Milwaukee Milwaukee Wisconsin 53201
| | - Ana Drago
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Jack G Rayner
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| | - Samantha L Sturiale
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom.,Current Address: Department of Biology Georgetown University Washington DC 20057
| | - Xiao Zhang
- School of Biology University of St Andrews St Andrews KY16 9TH United Kingdom
| |
Collapse
|
9
|
Honey bee colony aggression and indirect genetic effects. Proc Natl Acad Sci U S A 2020; 117:18148-18150. [PMID: 32690713 DOI: 10.1073/pnas.2012366117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Jaffe A, Burns MP, Saltz JB. Genotype-by-genotype epistasis for exploratory behaviour in D. simulans. Proc Biol Sci 2020; 287:20200057. [PMID: 32517624 DOI: 10.1098/rspb.2020.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Social interactions can influence the expression and underlying genetic basis of many traits. Yet, empirical investigations of indirect genetic effects (IGEs) and genotype-by-genotype epistasis-quantitative genetics parameters representing the role of genetic variation in a focal individual and its interacting partners in producing the observed trait values-are still scarce. While it is commonly observed that an individual's traits are influenced by the traits of interacting conspecifics, representing social plasticity, studying this social plasticity and its quantitative-genetic basis is notoriously challenging. These challenges are compounded when individuals interact in groups, rather than (simpler) dyads. Here, we investigate the genetic architecture of social plasticity for exploratory behaviour, one of the most intensively studied behaviours in recent decades. Using genotypes of Drosophila simulans, we measured genotypes both alone, and in social groups representing a mix of two genotypes. We found that females adjusted their exploratory behaviour based on the behaviour of others in the group, representing social plasticity. However, the direction of this plasticity depended on the identity of group members: focal individuals were more likely to emerge from a refuge if group members who were the same genotype as the focal remained inside for longer. By contrast, focal individuals were less likely to emerge from a refuge if partner-genotype group members remained inside for longer. Exploratory behaviour also depended on the identities of both genotypes that composed the group. Together, these findings demonstrate genotype-by-genotype epistasis for exploratory behaviour both within and among groups.
Collapse
Affiliation(s)
- Allison Jaffe
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Madeline P Burns
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Julia B Saltz
- Department of BioSciences, Rice University, 6100 Main Street, Houston, TX 77005, USA
| |
Collapse
|
11
|
Burns MP, Cavallaro FD, Saltz JB. Does Divergence in Habitat Breadth Associate with Species Differences in Decision Making in Drosophila Sechellia and Drosophila Simulans? Genes (Basel) 2020; 11:genes11050528. [PMID: 32397481 PMCID: PMC7288451 DOI: 10.3390/genes11050528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 01/14/2023] Open
Abstract
Decision making is involved in many behaviors contributing to fitness, such as habitat choice, mate selection, and foraging. Because of this, high decision-making accuracy (i.e., selecting the option most beneficial for fitness) should be under strong selection. However, decision making is energetically costly, often involving substantial time and energy to survey the environment to obtain high-quality information. Thus, for high decision making accuracy to evolve, its benefits should outweigh its costs. Inconsistency in the net benefits of decision making across environments is hypothesized to be an important means for maintaining variation in this trait. However, very little is known about how environmental factors influence the evolution of decision making to produce variation among individuals, genotypes, and species. Here, we compared two recently diverged species of Drosophila differing substantially in habitat breadth and degree of environmental predictability and variability: Drosophilasechellia and Drosophilasimulans. We found that the species evolving under higher environmental unpredictability and variability showed higher decision-making accuracy, but not higher environmental sampling.
Collapse
|
12
|
Lane SM, Wilson AJ, Briffa M. Analysis of direct and indirect genetic effects in fighting sea anemones. Behav Ecol 2020; 31:540-547. [PMID: 32210526 PMCID: PMC7083097 DOI: 10.1093/beheco/arz217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/05/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Theoretical models of animal contests such as the Hawk-Dove game predict that variation in fighting behavior will persist due to mixed evolutionarily stable strategies (ESS) under certain conditions. However, the genetic basis for this variation is poorly understood and a mixed ESS for fighting can be interpreted in more than one way. Specifically, we do not know whether variation in aggression within a population arises from among-individual differences in fixed strategy (determined by an individual's genotype-direct genetic effects [DGEs]), or from within-individual variation in strategy across contests. Furthermore, as suggested by developments of the original Hawk-Dove model, within-individual variation in strategy may be dependent on the phenotype and thus genotype of the opponent (indirect genetic effects-IGEs). Here we test for the effect of DGEs and IGEs during fights in the beadlet sea anemone Actinia equina. By exploiting the unusual reproductive system of sea anemones, combined with new molecular data, we investigate the role of both additive (DGE + IGE) and non-additive (DGE × IGE) genetic effects on fighting parameters, the latter of which have been hypothesized but never tested for explicitly. We find evidence for heritable variation in fighting ability and that fight duration increases with relatedness. Fighting success is influenced additively by DGEs and IGEs but we found no evidence for non-additive IGEs. These results indicate that variation in fighting behavior is driven by additive indirect genetic effects (DGE + IGE), and support a core assumption of contest theory that strategies are fixed by DGEs.
Collapse
Affiliation(s)
- Sarah M Lane
- School of Biological and Marine Sciences, Animal Behaviour Research Group, University of Plymouth, Plymouth, Devon, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter (Penryn Campus), Cornwall, UK
| | - Mark Briffa
- School of Biological and Marine Sciences, Animal Behaviour Research Group, University of Plymouth, Plymouth, Devon, UK
| |
Collapse
|
13
|
Geiger AP, Saltz JB. Strong and weak cross‐sex correlations govern the quantitative‐genetic architecture of social group choice in
Drosophila melanogaster. Evolution 2019; 74:145-155. [DOI: 10.1111/evo.13887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Adam P. Geiger
- Rice University 6100 Main Street Houston TX 77005
- Present address: Facebook 300 W 6th St (Lavaca) Austin TX 78701
| | | |
Collapse
|
14
|
Kilgour RJ, Norris DR, McAdam AG. Carry-over effects of resource competition and social environment on aggression. Behav Ecol 2019. [DOI: 10.1093/beheco/arz170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Aggressive behavior is common in many species and is often adaptive because it enables individuals to gain access to limited resources. However, aggression is also highly plastic and the degree of plasticity could be influenced by factors such as resource limitation and the social environment. In this study, we examined how the effects of social experience and resource limitation could persist to affect future aggressive interactions. Using naturally inbred strains of Drosophila melanogaster that differ in aggressiveness, we manipulated the level of available resources by varying fly density (two treatments: high and low per capita resources) and group composition by varying strain frequency (five treatments: homogeneous strains, or mixed at 1:3, 1:1 or 3:1 ratios of the more aggressive to less-aggressive strain). For each treatment group, we measured aggression before and after flies were placed through a 4-day period of fixed resources. There was no consistent effect of resource competition on aggression. Instead, changes in aggression depended on resource availability in combination with group composition. In homogeneous groups made up of only one strain, all males became more aggressive following the fixed-resource period, regardless of fly density. In mixed-strain treatments at high density, we observed plastic shifts in aggression of males from both strains, but the direction of plastic responses depended on social composition. Our results show that aggression may not only be influenced by the intensity of previous competitive experiences caused by resource limitation, but also through social effects caused by the composition of the group.
Collapse
Affiliation(s)
- R J Kilgour
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - D R Norris
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - A G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Jäger HY, Han CS, Dingemanse NJ. Social experiences shape behavioral individuality and within-individual stability. Behav Ecol 2019. [DOI: 10.1093/beheco/arz042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Individual repeatability characterizes many behaviors. Repeatable behavior may result from repeated social interactions among familiar group members, owing to adaptive social niche specialization. In the context of aggression, in species like field crickets, social niche specialization should also occur when individuals repeatedly interact with unfamiliar individuals. This would require the outcome of social interactions to have carry-over effects on fighting ability and aggressiveness in subsequent interactions, leading to long-term among-individual differentiation. To test this hypothesis, we randomly assigned freshly emerged adult males of the southern field cricket Gryllus bimaculatus to either a solitary or social treatment. In social treatment, males interacted with a same-sex partner but experienced a new partner every 3 days. After 3 weeks of treatment, we repeatedly subjected treated males to dyadic interactions to measure aggression. During this time, we also continuously measured the 3-daily rate of carbohydrate and protein consumption. Individual differentiation was considerably higher among males reared in the social versus solitary environment for aggressiveness but not for nutrient intake. Simultaneously, social experience led to lower within-individual stability (i.e., increased within-individual variance) in carbohydrate intake. Past social experiences, thus, shaped both behavioral individuality and stability. While previous research has emphasized behavioral individuality resulting from repeated interactions among familiar individuals, our study implies that behavioral individuality, in the context of aggression, may generally result from social interactions, whether with familiar or unfamiliar individuals. Our findings thus imply that social interactions may have a stronger effect on individual differentiation than previously appreciated.
Collapse
Affiliation(s)
- Heidi Y Jäger
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Chang S Han
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
16
|
Briley DA, Livengood J, Derringer J, Tucker-Drob EM, Fraley RC, Roberts BW. Interpreting Behavior Genetic Models: Seven Developmental Processes to Understand. Behav Genet 2019; 49:196-210. [PMID: 30467668 PMCID: PMC6904232 DOI: 10.1007/s10519-018-9939-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 11/16/2018] [Indexed: 01/18/2023]
Abstract
Behavior genetic findings figure in debates ranging from urgent public policy matters to perennial questions about the nature of human agency. Despite a common set of methodological tools, behavior genetic studies approach scientific questions with potentially divergent goals. Some studies may be interested in identifying a complete model of how individual differences come to be (e.g., identifying causal pathways among genotypes, environments, and phenotypes across development). Other studies place primary importance on developing models with predictive utility, in which case understanding of underlying causal processes is not necessarily required. Although certainly not mutually exclusive, these two goals often represent tradeoffs in terms of costs and benefits associated with various methodological approaches. In particular, given that most empirical behavior genetic research assumes that variance can be neatly decomposed into independent genetic and environmental components, violations of model assumptions have different consequences for interpretation, depending on the particular goals. Developmental behavior genetic theories postulate complex transactions between genetic variation and environmental experiences over time, meaning assumptions are routinely violated. Here, we consider two primary questions: (1) How might the simultaneous operation of several mechanisms of gene-environment (GE)-interplay affect behavioral genetic model estimates? (2) At what level of GE-interplay does the 'gloomy prospect' of unsystematic and non-replicable genetic associations with a phenotype become an unavoidable certainty?
Collapse
Affiliation(s)
- Daniel A Briley
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA.
| | - Jonathan Livengood
- Department of Philosophy, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jaime Derringer
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA
| | - Elliot M Tucker-Drob
- Department of Psychology and Population Research Center, University of Texas at Austin, Austin, TX, USA
| | - R Chris Fraley
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA
| | - Brent W Roberts
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA
| |
Collapse
|
17
|
Carter MJ, Wilson AJ, Moore AJ, Royle NJ. The role of indirect genetic effects in the evolution of interacting reproductive behaviors in the burying beetle, Nicrophorus vespilloides. Ecol Evol 2019; 9:998-1009. [PMID: 30805136 PMCID: PMC6374716 DOI: 10.1002/ece3.4731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/07/2022] Open
Abstract
Social interactions can give rise to indirect genetic effects (IGEs), which occur when genes expressed in one individual affect the phenotype of another individual. The evolutionary dynamics of traits can be altered when there are IGEs. Sex often involves indirect effects arising from first-order (current) or second-order (prior) social interactions, yet IGEs are infrequently quantified for reproductive behaviors. Here, we use experimental populations of burying beetles that have experienced bidirectional selection on mating rate to test for social plasticity and IGEs associated with focal males mating with a female either without (first-order effect) or with (second-order effect) prior exposure to a competitor, and resource defense behavior (first-order effect). Additive IGEs were detected for mating rate arising from (first-order) interactions with females. For resource defense behavior, a standard variance partitioning analysis provided no evidence of additive genetic variance-either direct or indirect. However, behavior was predicted by focal size relative to that of the competitor, and size is also heritable. Assuming that behavior is causally dependent on relative size, this implies that both DGEs and IGEs do occur (and may potentially interact). The relative contribution of IGEs may differ among social behaviors related to mating which has consequences for the evolutionary trajectories of multivariate traits.
Collapse
Affiliation(s)
- Mauricio J. Carter
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Present address:
Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la VidaUniversidad Andrés BelloRepública 440SantiagoChile
| | | | - Allen J. Moore
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
- Present address:
Department of EntomologyCollege of Agricultural and Environmental SciencesUniversity of GeorgiaAthensGA30602‐7503USA
| | - Nick J. Royle
- Centre for Ecology and ConservationUniversity of ExeterPenrynUK
| |
Collapse
|
18
|
Han CS, Tuni C, Ulcik J, Dingemanse NJ. Increased developmental density decreases the magnitude of indirect genetic effects expressed during agonistic interactions in an insect. Evolution 2018; 72:2435-2448. [PMID: 30221347 DOI: 10.1111/evo.13600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
Abstract
The expression of aggression depends not only on the direct genetic effects (DGEs) of an individual's genes on its own behavior, but also on indirect genetic effects (IGEs) caused by heritable phenotypes expressed by social partners. IGEs can affect the amount of heritable variance on which selection can act. Despite the important roles of IGEs in the evolutionary process, it remains largely unknown whether the strength of IGEs varies across life stages or competitive regimes. Based on manipulations of nymphal densities and > 3000 pair-wise aggression tests across multiple life stages, we experimentally demonstrate that IGEs on aggression are stronger in field crickets (Gryllus bimaculatus) that develop at lower densities than in those that develop at higher densities, and that these effects persist with age. The existence of density-dependent IGEs implies that social interactions strongly determine the plastic expression of aggression when competition for resources is relaxed. A more competitive (higher density) rearing environment may fail to provide crickets with sufficient resources to develop social cognition required for strong IGEs. The contribution of IGEs to evolutionary responses was greater at lower densities. Our study thereby demonstrates the importance of considering IGEs in density-dependent ecological and evolutionary processes.
Collapse
Affiliation(s)
- Chang S Han
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany.,Current Address: School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Cristina Tuni
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Jakob Ulcik
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig-Maximilians University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
19
|
Saltz JB, Bell AM, Flint J, Gomulkiewicz R, Hughes KA, Keagy J. Why does the magnitude of genotype-by-environment interaction vary? Ecol Evol 2018; 8:6342-6353. [PMID: 29988442 PMCID: PMC6024136 DOI: 10.1002/ece3.4128] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/27/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Genotype-by-environment interaction (G × E), that is, genetic variation in phenotypic plasticity, is a central concept in ecology and evolutionary biology. G×E has wide-ranging implications for trait development and for understanding how organisms will respond to environmental change. Although G × E has been extensively documented, its presence and magnitude vary dramatically across populations and traits. Despite this, we still know little about why G × E is so evident in some traits and populations, but minimal or absent in others. To encourage synthetic research in this area, we review diverse hypotheses for the underlying biological causes of variation in G × E. We extract common themes from these hypotheses to develop a more synthetic understanding of variation in G × E and suggest some important next steps.
Collapse
Affiliation(s)
| | - Alison M. Bell
- University of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Jonathan Flint
- University of California Los AngelesLos AngelesCalifornia
| | | | | | - Jason Keagy
- University of Illinois at Urbana‐ChampaignUrbanaIllinois
| |
Collapse
|
20
|
Culumber ZW, Kraft B, Lemakos V, Hoffner E, Travis J, Hughes KA. GxG epistasis in growth and condition and the maintenance of genetic polymorphism in
Gambusia holbrooki. Evolution 2018; 72:1146-1154. [DOI: 10.1111/evo.13474] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Zachary W. Culumber
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee FL 32306
| | - Brittany Kraft
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee FL 32306
| | - Valerie Lemakos
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee FL 32306
| | - Erika Hoffner
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee FL 32306
| | - Joseph Travis
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee FL 32306
| | - Kimberly A. Hughes
- Department of Biological Science Florida State University 319 Stadium Drive Tallahassee FL 32306
| |
Collapse
|
21
|
Keiser CN, Rudolf VHW, Sartain E, Every ER, Saltz JB. Social context alters host behavior and infection risk. Behav Ecol 2018. [DOI: 10.1093/beheco/ary060] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Carl N Keiser
- Rice University Academy of Fellows, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | | | - Emma R Every
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Julia B Saltz
- Department of BioSciences, Rice University, Houston, TX, USA
| |
Collapse
|
22
|
Kilgour RJ, McAdam AG, Betini GS, Norris DR. Experimental evidence that density mediates negative frequency-dependent selection on aggression. J Anim Ecol 2018; 87:1091-1101. [PMID: 29446094 DOI: 10.1111/1365-2656.12813] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/25/2018] [Indexed: 11/28/2022]
Abstract
Aggression can be beneficial in competitive environments if aggressive individuals are more likely to access resources than non-aggressive individuals. However, variation in aggressive behaviour persists within populations, suggesting that high levels of aggression might not always be favoured. The goal of this study was to experimentally assess the effects of population density and phenotypic frequency on selection on aggression in a competitive environment. We compared survival of two strains of Drosophila melanogaster that differ in aggression across three density treatments and five frequency treatments (single strain groups, equal numbers of each strain and strains mixed at 3:1 and 1:3 ratios) during a period of limited resources. While there was no difference in survival across single-strain treatments, survival was strongly density dependent, with declining survival as density increased. Furthermore, at medium and high densities, there was evidence of negative frequency-dependent selection, where rare strains experienced greater survival than common strains. However, there was no evidence of negative frequency-dependent selection at low density. Our results indicate that the benefits of aggression during periods of limited resources can depend on the interaction between the phenotypic composition of populations and population density, both of which are mechanisms that could maintain variation in aggressive behaviours within natural populations.
Collapse
Affiliation(s)
- R Julia Kilgour
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Andrew G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Gustavo S Betini
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - D Ryan Norris
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
23
|
Genomic tools for behavioural ecologists to understand repeatable individual differences in behaviour. Nat Ecol Evol 2018; 2:944-955. [PMID: 29434349 DOI: 10.1038/s41559-017-0411-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022]
Abstract
Behaviour is a key interface between an animal's genome and its environment. Repeatable individual differences in behaviour have been extensively documented in animals, but the molecular underpinnings of behavioural variation among individuals within natural populations remain largely unknown. Here, we offer a critical review of when molecular techniques may yield new insights, and we provide specific guidance on how and whether the latest tools available are appropriate given different resources, system and organismal constraints, and experimental designs. Integrating molecular genetic techniques with other strategies to study the proximal causes of behaviour provides opportunities to expand rapidly into new avenues of exploration. Such endeavours will enable us to better understand how repeatable individual differences in behaviour have evolved, how they are expressed and how they can be maintained within natural populations of animals.
Collapse
|
24
|
Larson SM, Ruiz-Lambides A, Platt ML, Brent LJ. Social network dynamics precede a mass eviction in group-living rhesus macaques. Anim Behav 2018; 136:185-193. [PMID: 29887618 PMCID: PMC5990275 DOI: 10.1016/j.anbehav.2017.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Network dynamics can reveal information about the adaptive function of social behaviour and the extent to which social relationships can flexibly respond to extrinsic pressures. Changes in social networks occur following changes to the social and physical environment. By contrast, we have limited understanding of whether changes in social networks precede major group events. Permanent evictions can be important determinants of gene flow and population structure and are a clear example of an event that might be preceded by social network dynamics. Here we examined the social networks of a group of rhesus macaques, Macaca mulatta, in the 2 years leading up to the eviction of 22% of adult females, which are the philopatric sex. We found that females engaged in the same amount of aggression and grooming in the 2 years leading up to the eviction but that there were clear changes in their choice of social partners. Females that would eventually be evicted received more aggression from lower-ranking females as the eviction approached. Evicted females also became more discriminating in their grooming relationships in the year nearer the split, showing a greater preference for one another and becoming more cliquish. Put simply, the females that would later be evicted continued to travel with the rest of the group as the eviction approached but were less likely to interact with other group members in an affiliative manner. These results have potential implications for understanding group cohesion and the balance between cooperation and competition that mediates social groups.
Collapse
Affiliation(s)
- Sam M. Larson
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, U.S.A
| | | | - Michael L. Platt
- Departments of Neuroscience, Psychology, and Marketing, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Lauren J.N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, U.K
| |
Collapse
|
25
|
Ruland C, Berlandi J, Eikmeier K, Weinert T, Lin FJ, Ambree O, Seggewiss J, Paulus W, Jeibmann A. Decreased cerebral Irp-1B limits impact of social isolation in wild type and Alzheimer's disease modeled in Drosophila melanogaster. GENES BRAIN AND BEHAVIOR 2018; 17:e12451. [PMID: 29251829 DOI: 10.1111/gbb.12451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 11/27/2022]
Abstract
Environmental factors, such as housing conditions and cognitively stimulating activities, have been shown to affect behavioral phenotypes and to modulate neurodegenerative conditions such as Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder affecting cognitive functions. Epidemiological evidence and experimental studies using rodent models have indicated that social interaction reduces development and progression of disease. Drosophila models of Aβ42-associated AD lead to AD-like phenotypes, such as long-term memory impairment, locomotor and survival deficits, while effects of environmental conditions on AD-associated phenotypes have not been assessed in the fly. Here, we show that single housing reduced survival and motor performance of Aβ42 expressing and control flies. Gene expression analyses of Aβ42 expressing and control flies that had been exposed to different housing conditions showed upregulation of Iron regulatory protein 1B (Irp-1B) in fly brains following single housing. Downregulating Irp-1B in neurons of single-housed Aβ42 expressing and control flies rescued both survival and motor performance deficits. Thus, we provide novel evidence that increased cerebral expression of Irp-1B may underlie worsened behavioral outcome in socially deprived flies and can additionally modulate AD-like phenotypes.
Collapse
Affiliation(s)
- C Ruland
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.,Department of Psychiatry, University of Münster, Münster, Germany
| | - J Berlandi
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - K Eikmeier
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - T Weinert
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - F J Lin
- Department of Biology, Coastal Carolina University, Conway, South Carolina
| | - O Ambree
- Department of Psychiatry, University of Münster, Münster, Germany.,Department of Behavioral Biology, University of Osnabrück, Osnabrück, Germany
| | - J Seggewiss
- Institute for Human Genetics, University Hospital Münster, Münster, Germany
| | - W Paulus
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - A Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
26
|
Signor SA, Abbasi M, Marjoram P, Nuzhdin SV. Conservation of social effects (Ψ ) between two species of Drosophila despite reversal of sexual dimorphism. Ecol Evol 2017; 7:10031-10041. [PMID: 29238534 PMCID: PMC5723616 DOI: 10.1002/ece3.3523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022] Open
Abstract
Indirect genetic effects (IGEs) describe the effect of the genes of social partners on the phenotype of a focal individual. Here, we measure indirect genetic effects using the “coefficient of interaction” (Ψ) to test whether Ψ evolved between Drosophila melanogaster and D. simulans. We compare Ψ for locomotion between ethanol and nonethanol environments in both species, but only D. melanogaster utilizes ethanol ecologically. We find that while sexual dimorphism for locomotion has been reversed in D. simulans, there has been no evolution of social effects between these two species. What did evolve was the interaction between genotype‐specific Ψ and the environment, as D. melanogaster varies unpredictably between environments and D. simulans does not. In this system, this suggests evolutionary lability of sexual dimorphism but a conservation of social effects, which brings forth interesting questions about the role of the social environment in sexual selection.
Collapse
Affiliation(s)
- Sarah A Signor
- Program in Molecular and Computational Biology Dornsife College of Letters, Arts and Sciences University of Southern California Los Angeles CA USA
| | - Mohammad Abbasi
- Graduate Program in Computational Biology Dornsife College of Letters, Arts and Sciences University of Southern California Los Angeles CA USA
| | - Paul Marjoram
- Program in Molecular and Computational Biology Dornsife College of Letters, Arts and Sciences University of Southern California Los Angeles CA USA.,Department of Preventive Medicine Keck School of Medicine University of Southern California Los Angeles CA USA
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology Dornsife College of Letters, Arts and Sciences University of Southern California Los Angeles CA USA
| |
Collapse
|
27
|
Bailey NW, Marie-Orleach L, Moore AJ. Indirect genetic effects in behavioral ecology: does behavior play a special role in evolution? Behav Ecol 2017. [DOI: 10.1093/beheco/arx127] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Nathan W Bailey
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | | | - Allen J Moore
- Department of Genetics, University of Georgia, Athens, GA USA
- Department of Entomology, University of Georgia, Athens, GA USA
| |
Collapse
|
28
|
Fisher DN, McAdam AG. Social traits, social networks and evolutionary biology. J Evol Biol 2017; 30:2088-2103. [DOI: 10.1111/jeb.13195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 01/20/2023]
Affiliation(s)
- D. N. Fisher
- Department for Integrative Biology; University of Guelph; Guelph Ontario Canada
| | - A. G. McAdam
- Department for Integrative Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
29
|
Siracusa E, Boutin S, Humphries MM, Gorrell JC, Coltman DW, Dantzer B, Lane JE, McAdam AG. Familiarity with neighbours affects intrusion risk in territorial red squirrels. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
30
|
Marie-Orleach L, Vogt-Burri N, Mouginot P, Schlatter A, Vizoso DB, Bailey NW, Schärer L. Indirect genetic effects and sexual conflicts: Partner genotype influences multiple morphological and behavioral reproductive traits in a flatworm. Evolution 2017; 71:1232-1245. [PMID: 28252800 DOI: 10.1111/evo.13218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/14/2017] [Accepted: 02/26/2017] [Indexed: 01/07/2023]
Abstract
The expression of an individual's phenotypic traits can be influenced by genes expressed in its social partners. Theoretical models predict that such indirect genetic effects (IGEs) on reproductive traits should play an important role in determining the evolutionary outcome of sexual conflict. However, empirical tests of (i) whether reproductive IGEs exist, (ii) how they vary among genotypes, and (iii) whether they are uniform for different types of reproductive traits are largely lacking. We addressed this in a series of experiments in the simultaneously hermaphroditic flatworm Macrostomum lignano. We found strong evidence for IGEs on both morphological and behavioral reproductive traits. Partner genotype had a significant impact on the testis size of focal individuals-varying up to 2.4-fold-suggesting that IGEs could mediate sexual conflicts that target the male sex function. We also found that time to first copulation was affected by a genotype × genotype interaction between mating partners, and that partner genotype affected the propensity to copulate and perform the postcopulatory suck behavior, which may mediate conflicts over the fate of received ejaculate components. These findings provide clear empirical evidence for IGEs on multiple behavioral and morphological reproductive traits, which suggests that the evolutionary dynamics of these traits could be altered by genes contained in the social environment.
Collapse
Affiliation(s)
- Lucas Marie-Orleach
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland.,Centre for Biological Diversity, School of Biology, University of St. Andrews, United Kingdom
| | - Nadja Vogt-Burri
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| | - Pierick Mouginot
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland.,General and Systematic Zoology, Museum and Zoological Institute, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
| | - Aline Schlatter
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| | - Dita B Vizoso
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| | - Nathan W Bailey
- Centre for Biological Diversity, School of Biology, University of St. Andrews, United Kingdom
| | - Lukas Schärer
- Evolutionary Biology, Zoological Institute, University of Basel, Switzerland
| |
Collapse
|
31
|
Martin ES, Long TAF. Are flies kind to kin? The role of intra- and inter-sexual relatedness in mediating reproductive conflict. Proc Biol Sci 2017; 282:20151991. [PMID: 26674954 DOI: 10.1098/rspb.2015.1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
As individual success often comes at the expense of others, interactions between the members of a species are frequently antagonistic, especially in the context of reproduction. In theory, this conflict may be reduced in magnitude when kin interact, as cooperative behaviour between relatives can result in increased inclusive fitness. Recent tests of the potential role of cooperative behaviour between brothers in Drosophila melanogaster have proved to be both exciting and controversial. We set out to replicate these experiments, which have profound implications for the study of kin selection and sexual conflict, and to expand upon them by also examining the potential role of kinship between males and females in reproductive interactions. While we did observe reduced fighting and courtship effort between competing brothers, contrary to previous studies we did not detect any fitness benefit to females as a result of the modification of male antagonistic behaviours. Furthermore, we did not observe any differential treatment of females by their brothers, as would be expected if the intensity of sexual conflict was mediated by kin selection. In the light of these results, we propose an alternative explanation for observed differences in male-male conflict and provide preliminary empirical support for this hypothesis.
Collapse
Affiliation(s)
- Emily S Martin
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2 L 3C5
| | - Tristan A F Long
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2 L 3C5
| |
Collapse
|
32
|
Anderson BB, Scott A, Dukas R. Indirect genetic effects on the sociability of several group members. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Saltz JB. Genetic variation in social environment construction influences the development of aggressive behavior in Drosophila melanogaster. Heredity (Edinb) 2016; 118:340-347. [PMID: 27848947 DOI: 10.1038/hdy.2016.101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Individuals are not merely subject to their social environments; they choose and create them, through a process called social environment (or social niche) construction. When genotypes differ in social environment-constructing behaviors, different genotypes are expected to experience different social environments. As social experience often affects behavioral development, quantitative genetics and psychology theories predict that genetic variation in social environment construction should have an important role in determining phenotypic variation; however, this hypothesis has not been tested directly. I identify multiple mechanisms of social environment construction that differ among natural genotypes of Drosophila melanogaster and investigate their consequences for the development of aggressive behavior. Male genotypes differed in the group sizes that they preferred and in their aggressive behavior; both of these behaviors influenced social experience, demonstrating that these behaviors function as social environment-constructing traits. Further, the effects of social experience-as determined in part by social environment construction-carried over to affect focal male aggression at a later time and with a new opponent. These results provide manipulative experimental support for longstanding hypotheses in psychology, that genetic variation in social environment construction has a causal role in behavioral development. More broadly, these results imply that studies of the genetic basis of complex traits should be expanded to include mechanisms by which genetic variation shapes the environments that individuals experience.
Collapse
Affiliation(s)
- J B Saltz
- Biosciences at Rice University, Houston, TX, USA
| |
Collapse
|
34
|
Kraft B, Williams E, Lemakos VA, Travis J, Hughes KA. Genetic Color Morphs in the Eastern Mosquitofish Experience Different Social Environments in the Wild and Laboratory. Ethology 2016. [DOI: 10.1111/eth.12531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Brittany Kraft
- Department of Biological Science Florida State University Tallahassee FL USA
| | - Emily Williams
- Department of Biology New York University New York NY USA
| | - Valerie A. Lemakos
- Department of Biological Science Florida State University Tallahassee FL USA
| | - Joseph Travis
- Department of Biological Science Florida State University Tallahassee FL USA
| | - Kimberly A. Hughes
- Department of Biological Science Florida State University Tallahassee FL USA
| |
Collapse
|
35
|
Signor SA, Arbeitman MN, Nuzhdin SV. Gene networks and developmental context: the importance of understanding complex gene expression patterns in evolution. Evol Dev 2016; 18:201-9. [PMID: 27161950 DOI: 10.1111/ede.12187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Animal development is the product of distinct components and interactions-genes, regulatory networks, and cells-and it exhibits emergent properties that cannot be inferred from the components in isolation. Often the focus is on the genotype-to-phenotype map, overlooking the process of development that turns one into the other. We propose a move toward micro-evolutionary analysis of development, incorporating new tools that enable cell type resolution and single-cell microscopy. Using the sex determination pathway in Drosophila to illustrate potential avenues of research, we highlight some of the questions that these emerging technologies can address. For example, they provide an unprecedented opportunity to study heterogeneity within cell populations, and the potential to add the dimension of time to gene regulatory network analysis. Challenges still remain in developing methods to analyze this data and to increase the throughput. However this line of research has the potential to bridge the gaps between previously more disparate fields, such as population genetics and development, opening up new avenues of research.
Collapse
Affiliation(s)
- Sarah A Signor
- Program in Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Michelle N Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Sergey V Nuzhdin
- Program in Molecular and Computation Biology, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA 90089, USA.,Applied Mathematics, Saint Petersburg State Polytechnical University, St. Petersburg, Russia
| |
Collapse
|
36
|
Schneider J, Atallah J, Levine JD. Social structure and indirect genetic effects: genetics of social behaviour. Biol Rev Camb Philos Soc 2016; 92:1027-1038. [PMID: 26990016 DOI: 10.1111/brv.12267] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
Abstract
The social environment modulates gene expression, physiology, behaviour and patterns of inheritance. For more than 50 years, this concept has been investigated using approaches that include partitioning the social component out of behavioural heritability estimates, studying maternal effects on offspring, and analysing dominance hierarchies. Recent advances have formalized this 'social environment effect' by providing a more nuanced approach to the study of social influences on behaviour while recognizing evolutionary implications. Yet, in most of these formulations, the dynamics of social interactions are not accounted for. Also, the reciprocity between individual behaviour and group-level interactions has been largely ignored. Consistent with evolutionary theory, the principles of social interaction are conserved across a broad range of taxa. While noting parallels in diverse organisms, this review uses Drosophila melanogaster as a case study to revisit what is known about social interaction paradigms. We highlight the benefits of integrating the history and pattern of interactions among individuals for dissecting molecular mechanisms that underlie social modulation of behaviour.
Collapse
Affiliation(s)
- Jonathan Schneider
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Jade Atallah
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Joel D Levine
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
37
|
|
38
|
Foley B, Saltz J, Nuzhdin S, Marjoram P. A Bayesian Approach to Social Structure Uncovers Cryptic Regulation of Group Dynamics in Drosophila melanogaster. Am Nat 2015; 185:797-808. [PMID: 25996864 PMCID: PMC4610401 DOI: 10.1086/681084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding the mechanisms that give rise to social structure is central to predicting the evolutionary and ecological outcomes of social interactions. Modeling this process is challenging, because all individuals simultaneously behave in ways that shape their social environments--a process called social niche construction (SNC). In earlier work, we demonstrated that aggression acts as an SNC trait in fruit flies (Drosophila melanogaster), but the mechanisms of that process remained cryptic. Here, we analyze how individual social group preferences generate overall social structure. We use a combination of agent-based simulation and approximate Bayesian computation to fit models to empirical data. We confirm that genetic variation in aggressive behavior influences social group structure. Furthermore, we find that female decamping due to male behavior may play an underappreciated role in structuring social groups. Male-male aggression may sometimes destabilize groups, but it may also be an SNC behavior for shaping desirable groups for females. Density intensifies female social preferences; thus, the role of female behavior in shaping group structure may become more important at high densities. Our ability to model the ontogeny of group structure demonstrates the utility of the Bayesian model-based approach in social behavioral studies.
Collapse
Affiliation(s)
- B.R. Foley
- Molecular and Computational Biology, Dept. of Biological Sciences, USC, Los Angeles, California 90089, USA
| | - J.B. Saltz
- Department of Biosciences, Rice University, Houston, Texas, 77005, USA
| | - S.V. Nuzhdin
- Molecular and Computational Biology, Dept. of Biological Sciences, USC, Los Angeles, California 90089, USA
| | - P. Marjoram
- Dept. of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, California 90089, USA
| |
Collapse
|
39
|
Stamps JA. Individual differences in behavioural plasticities. Biol Rev Camb Philos Soc 2015; 91:534-67. [PMID: 25865135 DOI: 10.1111/brv.12186] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 01/06/2023]
Abstract
Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural plasticities observed at a given age. Several authors have predicted correlations across individuals between different types of behavioural plasticities, i.e. that some individuals will be generally more plastic than others. However, empirical support for most of these predictions, including indirect evidence from studies of relationships between personality traits and plasticities, is currently sparse and equivocal. The final section of this review suggests how an appreciation of the similarities and differences between different types of behavioural plasticities may help theoreticians formulate testable models to explain the evolution of individual differences in behavioural plasticities and the evolutionary and ecological consequences of individual differences in behavioural plasticities.
Collapse
Affiliation(s)
- Judy A Stamps
- Department of Ecology and Evolution, University of California Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
40
|
Bengston SE, Jandt JM. The development of collective personality: the ontogenetic drivers of behavioral variation across groups. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00081] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Rosvall KA, Peterson MP. Behavioral effects of social challenges and genomic mechanisms of social priming: What's testosterone got to do with it? Curr Zool 2014; 60:791-803. [PMID: 27721823 DOI: 10.1093/czoolo/60.6.791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Social challenges from rival conspecifics are common in the lives of animals, and changes in an animal's social environment can influence physiology and behavior in ways that appear to be adaptive in the face of continued social instability (i.e. social priming). Recently, it has become clear that testosterone, long thought to be the primary mediator of these effects, may not always change in response to social challenges, an observation that highlights gaps in our understanding of the proximate mechanisms by which animals respond to their social environment. Here, our goal is to address the degree to which testosterone mediates organismal responses to social cues. To this end, we review the behavioral and physiological consequences of social challenges, as well as their underlying hormonal and gene regulatory mechanisms. We also present a new case study from a wild songbird, the dark-eyed junco (Junco hyemalis), in which we find largely divergent genome-wide transcriptional changes induced by social challenges and testosterone, respectively, in muscle and liver tissue. Our review underscores the diversity of mechanisms that link the dynamic social environment with an organisms' genomic, hormonal, and behavioral state. This diversity among species, and even among tissues within an organism, reveals new insights into the pattern and process by which evolution may alter proximate mechanisms of social priming.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Indiana University, Department of Biology and Center for the Integrative Study of Animal Behavior
| | | |
Collapse
|