1
|
James CC, Barton AD, Allen LZ, Lampe RH, Rabines A, Schulberg A, Zheng H, Goericke R, Goodwin KD, Allen AE. Influence of nutrient supply on plankton microbiome biodiversity and distribution in a coastal upwelling region. Nat Commun 2022; 13:2448. [PMID: 35508497 PMCID: PMC9068609 DOI: 10.1038/s41467-022-30139-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/11/2022] [Indexed: 01/04/2023] Open
Abstract
The ecological and oceanographic processes that drive the response of pelagic ocean microbiomes to environmental changes remain poorly understood, particularly in coastal upwelling ecosystems. Here we show that seasonal and interannual variability in coastal upwelling predicts pelagic ocean microbiome diversity and community structure in the Southern California Current region. Ribosomal RNA gene sequencing, targeting prokaryotic and eukaryotic microbes, from samples collected seasonally during 2014-2020 indicate that nitracline depth is the most robust predictor of spatial microbial community structure and biodiversity in this region. Striking ecological changes occurred due to the transition from a warm anomaly during 2014-2016, characterized by intense stratification, to cooler conditions in 2017-2018, representative of more typical upwelling conditions, with photosynthetic eukaryotes, especially diatoms, changing most strongly. The regional slope of nitracline depth exerts strong control on the relative proportion of highly diverse offshore communities and low biodiversity, but highly productive nearshore communities.
Collapse
Affiliation(s)
- Chase C James
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Andrew D Barton
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- Section of Ecology, Behavior and Evolution, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Lisa Zeigler Allen
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Robert H Lampe
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Ariel Rabines
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Anne Schulberg
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Hong Zheng
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States
| | - Ralf Goericke
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States
| | - Kelly D Goodwin
- Atlantic Oceanographic and Meteorological Laboratory, (Stationed at Southwest Fisheries Science Center), 4301 Rickenbacker Cswy, Miami, FL, 33149, United States
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, United States.
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, United States.
| |
Collapse
|
2
|
Shoemaker LG, Hallett LM, Zhao L, Reuman DC, Wang S, Cottingham KL, Hobbs RJ, Castorani MCN, Downing AL, Dudney JC, Fey SB, Gherardi LA, Lany N, Portales-Reyes C, Rypel AL, Sheppard LW, Walter JA, Suding KN. The long and the short of it: Mechanisms of synchronous and compensatory dynamics across temporal scales. Ecology 2022; 103:e3650. [PMID: 35112356 PMCID: PMC9285558 DOI: 10.1002/ecy.3650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/23/2021] [Indexed: 11/07/2022]
Abstract
Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale‐specific patterns, including different environmental drivers, diverse life histories, dispersal, and non‐stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long‐term drivers and may miss the importance of short‐term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems.
Collapse
Affiliation(s)
| | - Lauren M Hallett
- Environmental Studies Program and Department of Biology, University of Oregon, Eugene, Oregon, USA
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Daniel C Reuman
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Higuchi Hall, 2101 Constant Ave, Lawrence, Kansas, USA
| | - Shaopeng Wang
- Department of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Kathryn L Cottingham
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Richard J Hobbs
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Max C N Castorani
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Amy L Downing
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Joan C Dudney
- Department of Plant Sciences, UC Davis, Davis, California, United States.,Department of Environmental Science Policy and Management, University of California at Berkeley, Berkeley, California, USA
| | - Samuel B Fey
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Laureano A Gherardi
- Global Drylands Center and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Nina Lany
- Department of Forestry, Michigan State University, East Lansing, Michigan, USA
| | - Cristina Portales-Reyes
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota, USA
| | - Andrew L Rypel
- Department of Fish, Wildlife & Conservation Biology, and Center for Watershed Sciences, University of California, Davis, California, USA
| | - Lawrence W Sheppard
- Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, Higuchi Hall, 2101 Constant Ave, Lawrence, Kansas, USA
| | - Jonathan A Walter
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA.,Ronin Institute for Independent Scholarship, Montclair, New Jersey, United States
| | - Katharine N Suding
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
3
|
Animal board invited review: OneARK: Strengthening the links between animal production science and animal ecology. Animal 2020; 15:100053. [PMID: 33515992 DOI: 10.1016/j.animal.2020.100053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
Wild and farmed animals are key elements of natural and managed ecosystems that deliver functions such as pollination, pest control and nutrient cycling within the broader roles they play in contributing to biodiversity and to every category of ecosystem services. They are subjected to global changes with a profound impact on the natural range and viability of animal species, the emergence and spatial distribution of pathogens, land use, ecosystem services and farming sustainability. We urgently need to improve our understanding of how animal populations can respond adaptively and therefore sustainably to these new selective pressures. In this context, we explored the common points between animal production science and animal ecology to identify promising avenues of synergy between communities through the transfer of concepts and/or methodologies, focusing on seven concepts that link both disciplines. Animal adaptability, animal diversity (both within and between species), selection, animal management, animal monitoring, agroecology and viability risks were identified as key concepts that should serve the cross-fertilization of both fields to improve ecosystem resilience and farming sustainability. The need for breaking down interdisciplinary barriers is illustrated by two representative examples: i) the circulation and reassortment of pathogens between wild and domestic animals and ii) the role of animals in nutrient cycles, i.e. recycling nitrogen, phosphorus and carbon through, for example, contribution to soil fertility and carbon sequestration. Our synthesis identifies the need for knowledge integration techniques supported by programmes and policy tools that reverse the fragmentation of animal research toward a unification into a single Animal Research Kinship, OneARK, which sets new objectives for future science policy. At the interface of animal ecology and animal production science, our article promotes an effective application of the agroecology concept to animals and the use of functional diversity to increase resilience in both wild and farmed systems. It also promotes the use of novel monitoring technologies to quantify animal welfare and factors affecting fitness. These measures are needed to evaluate viability risk, predict and potentially increase animal adaptability and improve the management of wild and farmed systems, thereby responding to an increasing demand of society for the development of a sustainable management of systems.
Collapse
|
4
|
Siple MC, Essington TE, Barnett LAK, Scheuerell MD. Limited evidence for sardine and anchovy asynchrony: re-examining an old story. Proc Biol Sci 2020; 287:20192781. [PMID: 32156216 DOI: 10.1098/rspb.2019.2781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Asynchronous fluctuations in abundance between species with similar ecological roles can stabilize food webs and support coexistence. Sardine (Sardinops spp.) and anchovy (Engraulis spp.) have long been used as an example of this pattern because low-frequency variation in catches of these species appears to occur out of phase, suggesting that fisheries and generalist predators could be buffered against shifts in productivity of a single species. Using landings data and biomass and recruitment estimates from five regions, we find that species do not have equivalent peak abundances, suggesting that high abundance in one species does not compensate for low abundance in the other. We find that globally there is a stronger pattern of asynchrony in landings compared to biomass, such that landings data have exaggerated the patterns of asynchrony. Finally, we show that power to detect decadal asynchrony is poor, requiring a time series more than twice the length of the period of fluctuation. These results indicate that it is unlikely that the dynamics of these two species are compensatory enough to buffer fisheries and predators from changes in abundance, and that the measurements of asynchrony have largely been a statistical artefact of using short time series and landings data to infer ecology.
Collapse
Affiliation(s)
- Margaret C Siple
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Timothy E Essington
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Lewis A K Barnett
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA
| | - Mark D Scheuerell
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| |
Collapse
|
5
|
Havenhand JN, Filipsson HL, Niiranen S, Troell M, Crépin AS, Jagers S, Langlet D, Matti S, Turner D, Winder M, de Wit P, Anderson LG. Ecological and functional consequences of coastal ocean acidification: Perspectives from the Baltic-Skagerrak System. AMBIO 2019; 48:831-854. [PMID: 30506502 PMCID: PMC6541583 DOI: 10.1007/s13280-018-1110-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/21/2018] [Accepted: 10/03/2018] [Indexed: 05/03/2023]
Abstract
Ocean temperatures are rising; species are shifting poleward, and pH is falling (ocean acidification, OA). We summarise current understanding of OA in the brackish Baltic-Skagerrak System, focussing on the direct, indirect and interactive effects of OA with other anthropogenic drivers on marine biogeochemistry, organisms and ecosystems. Substantial recent advances reveal a pattern of stronger responses (positive or negative) of species than ecosystems, more positive responses at lower trophic levels and strong indirect interactions in food-webs. Common emergent themes were as follows: OA drives planktonic systems toward the microbial loop, reducing energy transfer to zooplankton and fish; and nutrient/food availability ameliorates negative impacts of OA. We identify several key areas for further research, notably the need for OA-relevant biogeochemical and ecosystem models, and understanding the ecological and evolutionary capacity of Baltic-Skagerrak ecosystems to respond to OA and other anthropogenic drivers.
Collapse
Affiliation(s)
- Jonathan N. Havenhand
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296 Gothenburg, Sweden
| | | | - Susa Niiranen
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
| | - Max Troell
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Science, Lilla Frescativägen 4, 10405 Stockholm, Sweden
| | - Anne-Sophie Crépin
- Beijer Institute of Ecological Economics, Royal Swedish Academy of Science, Lilla Frescativägen 4, 10405 Stockholm, Sweden
| | - Sverker Jagers
- Department of Political Sciences, University of Gothenburg, Box 711, Sprängkullsgatan 19, 40530 Gothenburg, Sweden
| | - David Langlet
- Department of Law, University of Gothenburg, Box 650, 40530 Gothenburg, Sweden
| | - Simon Matti
- Department of Political Sciences, Luleå University of Technology, 97187 Luleå, Sweden
| | - David Turner
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| | - Monika Winder
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Pierre de Wit
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296 Gothenburg, Sweden
| | - Leif G. Anderson
- Department of Marine Sciences, University of Gothenburg, Box 461, 40530 Gothenburg, Sweden
| |
Collapse
|
6
|
Törnroos A, Pecuchet L, Olsson J, Gårdmark A, Blomqvist M, Lindegren M, Bonsdorff E. Four decades of functional community change reveals gradual trends and low interlinkage across trophic groups in a large marine ecosystem. GLOBAL CHANGE BIOLOGY 2019; 25:1235-1246. [PMID: 30570820 PMCID: PMC6850384 DOI: 10.1111/gcb.14552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/02/2018] [Accepted: 11/30/2018] [Indexed: 05/27/2023]
Abstract
The rate at which biological diversity is altered on both land and in the sea, makes temporal community development a critical and fundamental part of understanding global change. With advancements in trait-based approaches, the focus on the impact of temporal change has shifted towards its potential effects on the functioning of the ecosystems. Our mechanistic understanding of and ability to predict community change is still impeded by the lack of knowledge in long-term functional dynamics that span several trophic levels. To address this, we assessed species richness and multiple dimensions of functional diversity and dynamics of two interacting key organism groups in the marine food web: fish and zoobenthos. We utilized unique time series-data spanning four decades, from three environmentally distinct coastal areas in the Baltic Sea, and assembled trait information on six traits per organism group covering aspects of feeding, living habit, reproduction and life history. We identified gradual long-term trends, rather than abrupt changes in functional diversity (trait richness, evenness, dispersion) trait turnover, and overall multi-trait community composition. The linkage between fish and zoobenthic functional community change, in terms of correlation in long-term trends, was weak, with timing of changes being area and trophic group specific. Developments of fish and zoobenthos traits, particularly size (increase in small size for both groups) and feeding habits (e.g. increase in generalist feeding for fish and scavenging or predation for zoobenthos), suggest changes in trophic pathways. We summarize our findings by highlighting three key aspects for understanding functional change across trophic groups: (a) decoupling of species from trait richness, (b) decoupling of richness from density and (c) determining of turnover and multi-trait dynamics. We therefore argue for quantifying change in multiple functional measures to help assessments of biodiversity change move beyond taxonomy and single trophic groups.
Collapse
Affiliation(s)
- Anna Törnroos
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
- Centre for Ocean Life, DTU‐AquaKngs. LyngbyDenmark
| | - Laurene Pecuchet
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
- Centre for Ocean Life, DTU‐AquaKngs. LyngbyDenmark
| | - Jens Olsson
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | | | | | - Erik Bonsdorff
- Environmental and Marine BiologyÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
7
|
Pervasive iron limitation at subsurface chlorophyll maxima of the California Current. Proc Natl Acad Sci U S A 2018; 115:13300-13305. [PMID: 30530699 PMCID: PMC6310781 DOI: 10.1073/pnas.1813192115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vertical distribution of phytoplankton cells and chlorophyll concentrations throughout the sunlit water column is rarely uniform. In many ocean regions, chlorophyll concentrations peak in distinct and persistent layers deep below the surface called subsurface chlorophyll maximum layers (SCMLs). SCML formation is hypothesized to reflect the consequences of phytoplankton light/macronutrient colimitation, behavior, and/or photoacclimation. We discovered unexpectedly persistent and widespread phytoplankton iron limitation and iron/light colimitation in SCMLs of the California Current and at the edge of the North Pacific Subtropical Gyre using shipboard incubations, metatranscriptomics, and biogeochemical proxies. These results suggest that interactions and feedbacks between iron and light availability play an important and previously unrecognized role in controlling the productivity and biogeochemical dynamics of SCMLs. Subsurface chlorophyll maximum layers (SCMLs) are nearly ubiquitous in stratified water columns and exist at horizontal scales ranging from the submesoscale to the extent of oligotrophic gyres. These layers of heightened chlorophyll and/or phytoplankton concentrations are generally thought to be a consequence of a balance between light energy from above and a limiting nutrient flux from below, typically nitrate (NO3). Here we present multiple lines of evidence demonstrating that iron (Fe) limits or with light colimits phytoplankton communities in SCMLs along a primary productivity gradient from coastal to oligotrophic offshore waters in the southern California Current ecosystem. SCML phytoplankton responded markedly to added Fe or Fe/light in experimental incubations and transcripts of diatom and picoeukaryote Fe stress genes were strikingly abundant in SCML metatranscriptomes. Using a biogeochemical proxy with data from a 40-y time series, we find that diatoms growing in California Current SCMLs are persistently Fe deficient during the spring and summer growing season. We also find that the spatial extent of Fe deficiency within California Current SCMLs has significantly increased over the last 25 y in line with a regional climate index. Finally, we show that diatom Fe deficiency may be common in the subsurface of major upwelling zones worldwide. Our results have important implications for our understanding of the biogeochemical consequences of marine SCML formation and maintenance.
Collapse
|
8
|
Lindegren M, Checkley DM, Koslow JA, Goericke R, Ohman MD. Climate-mediated changes in marine ecosystem regulation during El Niño. GLOBAL CHANGE BIOLOGY 2018; 24:796-809. [PMID: 29156088 DOI: 10.1111/gcb.13993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
The degree to which ecosystems are regulated through bottom-up, top-down, or direct physical processes represents a long-standing issue in ecology, with important consequences for resource management and conservation. In marine ecosystems, the role of bottom-up and top-down forcing has been shown to vary over spatio-temporal scales, often linked to highly variable and heterogeneously distributed environmental conditions. Ecosystem dynamics in the Northeast Pacific have been suggested to be predominately bottom-up regulated. However, it remains unknown to what extent top-down regulation occurs, or whether the relative importance of bottom-up and top-down forcing may shift in response to climate change. In this study, we investigate the effects and relative importance of bottom-up, top-down, and physical forcing during changing climate conditions on ecosystem regulation in the Southern California Current System (SCCS) using a generalized food web model. This statistical approach is based on nonlinear threshold models and a long-term data set (~60 years) covering multiple trophic levels from phytoplankton to predatory fish. We found bottom-up control to be the primary mode of ecosystem regulation. However, our results also demonstrate an alternative mode of regulation represented by interacting bottom-up and top-down forcing, analogous to wasp-waist dynamics, but occurring across multiple trophic levels and only during periods of reduced bottom-up forcing (i.e., weak upwelling, low nutrient concentrations, and primary production). The shifts in ecosystem regulation are caused by changes in ocean-atmosphere forcing and triggered by highly variable climate conditions associated with El Niño. Furthermore, we show that biota respond differently to major El Niño events during positive or negative phases of the Pacific Decadal Oscillation (PDO), as well as highlight potential concerns for marine and fisheries management by demonstrating increased sensitivity of pelagic fish to exploitation during El Niño.
Collapse
Affiliation(s)
- Martin Lindegren
- Centre for Ocean Life, c/o National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - David M Checkley
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Julian A Koslow
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Ralf Goericke
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| | - Mark D Ohman
- Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| |
Collapse
|
9
|
Clausen LW, Rindorf A, van Deurs M, Dickey-Collas M, Hintzen NT. Shifts in North Sea forage fish productivity and potential fisheries yield. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.13038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lotte W. Clausen
- International Council for the Exploration of the Sea (ICES); Copenhagen V Denmark
- National Institute for Aquatic resources; Technical University of Denmark; Lyngby Denmark
| | - Anna Rindorf
- National Institute for Aquatic resources; Technical University of Denmark; Lyngby Denmark
| | - Mikael van Deurs
- National Institute for Aquatic resources; Technical University of Denmark; Lyngby Denmark
| | - Mark Dickey-Collas
- International Council for the Exploration of the Sea (ICES); Copenhagen V Denmark
- National Institute for Aquatic resources; Technical University of Denmark; Lyngby Denmark
| | | |
Collapse
|
10
|
Kaplan IC, Koehn LE, Hodgson EE, Marshall KN, Essington TE. Modeling food web effects of low sardine and anchovy abundance in the California Current. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|