1
|
Dejean A, Azémar F, Naskrecki P, Tindo M, Rossi V, Faucher C, Gryta H. Mutualistic interactions between ants and fungi: A review. Ecol Evol 2023; 13:e10386. [PMID: 37529578 PMCID: PMC10375366 DOI: 10.1002/ece3.10386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
The large amount of dead plant biomass caused by the final extinction events triggered a fungi proliferation that mostly differentiated into saprophytes degrading organic matter; others became parasites, predators, likely commensals, and mutualists. Among the last, many have relationships with ants, the most emblematic seen in the Neotropical myrmicine Attina that cultivate Basidiomycota for food. Among them, leaf-cutting, fungus-growing species illustrate an ecological innovation because they grow fungal gardens from fresh plant material rather than arthropod frass and plant debris. Myrmecophytes shelter "plant-ants" in hollow structures, the domatia, whose inner walls are lined with thin-walled Ascomycota hyphae that, in certain cases, are eaten by the ants, showing a form of convergence. Typically, these Ascomycota have antibacterial properties illustrating cases of farming for protection. Ant gardens, or mutualistic associations between certain ant species and epiphytes, shelter endophytic fungi that promote the growth of the epiphytes. Because the cell walls of certain Ascomycota hyphae remain sturdy after the death of the mycelium, they form resistant fibers used by ants to reinforce their constructions (e.g., galleries, shelters for tended hemipterans, and carton nests). Thus, we saw cases of "true" fungal agriculture involving planting, cultivating, and harvesting Basidiomycota for food with Attina. A convergence with "plant-ants" feeding on Ascomycota whose antibacterial activity is generally exploited (i.e., farming for protection). The growth of epiphytes was promoted by endophytic fungi in ant gardens. Finally, farming for structural materials occurred with, in one case, a leaf-cutting, fungus-growing ant using Ascomycota fibers to reinforce its nests.
Collapse
Affiliation(s)
- Alain Dejean
- Laboratoire Écologie Fonctionnelle et EnvironnementUniversité de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS)ToulouseFrance
- UMR EcoFoG, AgroParisTechCirad, CNRS, INRA, Université des Antilles, Université de GuyaneKourouFrance
| | - Frédéric Azémar
- Laboratoire Écologie Fonctionnelle et EnvironnementUniversité de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UPS)ToulouseFrance
| | - Piotr Naskrecki
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Maurice Tindo
- Laboratory of Biology and Physiology of Animal Organisms, Faculty of ScienceUniversity of DoualaDoualaCameroon
| | - Vivien Rossi
- Remote Sensing and Forest Ecology Lab, Higher Teacher's Training CollegeMarien Ngouabi UniversityBrazzavilleDemocratic Republic of the Congo
- R U Forests and Societies, CIRADBrazzavilleDemocratic Republic of the Congo
| | - Christian Faucher
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174) CNRSIRD, Université Toulouse 3ToulouseFrance
| | - Hervé Gryta
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174) CNRSIRD, Université Toulouse 3ToulouseFrance
| |
Collapse
|
2
|
Leroy C. Fungi in ant-plant interactions: a key to enhancing plant nutrient-acquisition strategies. THE NEW PHYTOLOGIST 2023; 238:1752-1754. [PMID: 36939144 DOI: 10.1111/nph.18830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Céline Leroy
- AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34000, France
- EcoFoG, AgroParisTech, CIRAD, CNRS, INRAE, Université des Antilles, Université de Guyane, Campus Agronomique, Kourou, 97310, France
| |
Collapse
|
3
|
Leroy C, Maes AQ, Louisanna E, Carrias J, Céréghino R, Corbara B, Séjalon‐Delmas N. Ants mediate community composition of root‐associated fungi in an ant‐plant mutualism. Biotropica 2022. [DOI: 10.1111/btp.13079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Céline Leroy
- AMAP Univ Montpellier, CIRAD, CNRS, INRAE, IRD Montpellier France
- ECOFOG, AgroParisTech, CIRAD, CNRS, INRAE, Université de Guyane Université des Antilles Kourou France
| | | | - Eliane Louisanna
- ECOFOG, AgroParisTech, CIRAD, CNRS, INRAE, Université de Guyane Université des Antilles Kourou France
| | | | - Régis Céréghino
- Laboratoire Écologie Fonctionnelle et Environnement, CNRS Université Paul Sabatier Toulouse 3 Toulouse France
| | - Bruno Corbara
- LMGE, CNRS Université Clermont Auvergne Clermont‐Ferrand France
| | | |
Collapse
|
4
|
Afkhami ME, Friesen ML, Stinchcombe JR. Multiple Mutualism Effects generate synergistic selection and strengthen fitness alignment in the interaction between legumes, rhizobia and mycorrhizal fungi. Ecol Lett 2021; 24:1824-1834. [PMID: 34110064 DOI: 10.1111/ele.13814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/02/2021] [Indexed: 01/05/2023]
Abstract
Nearly all organisms participate in multiple mutualisms, and complementarity within these complex interactions can result in synergistic fitness effects. However, it remains largely untested how multiple mutualisms impact eco-evolutionary dynamics in interacting species. We tested how multiple microbial mutualists-N-fixing bacteria and mycorrrhizal fungi-affected selection and heritability of traits in their shared host plant (Medicago truncatula), as well as fitness alignment between partners. Our results demonstrate for the first time that multiple mutualisms synergistically affect the selection and heritability of host traits and enhance fitness alignment between mutualists. Specifically, we found interaction with multiple microbial symbionts doubled the strength of natural selection on a plant architectural trait, resulted in 2- to 3-fold higher heritability of plant reproductive success, and more than doubled fitness alignment between N-fixing bacteria and plants. These findings show synergism generated by multiple mutualisms extends to key components of microevolutionary change, emphasising the importance of multiple mutualism effects on evolutionary trajectories.
Collapse
Affiliation(s)
| | - Maren L Friesen
- Department of Plant Pathology, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Abstract
AbstractA microbiome rife with enemies of the host should cause selection for defensive traits in symbionts, yet such complex environments are also predicted to select for greater symbiont virulence. Why then do we so often observe defensive mutualists that protect hosts while causing little to no damage? To address this question, we build a symbiont-centered model that incorporates the evolution of two independent symbiont traits: defense and virulence. Virulence is modeled as a continuous trait spanning parasitism (positive virulence) and mutualism (negative virulence), thus accounting for the entire range of direct effects that symbionts have on host mortality. Defense is modeled as a continuous trait that ameliorates the costs to the host associated with infection by a deleterious parasite. We show that the evolution of increased defense in one symbiont may lead to the evolution of lower virulence in both symbionts and even facilitate pathogens evolving to mutualism. However, results are context dependent, and when defensive traits are costly, the evolution of greater defense may also lead to the evolution of greater virulence, breaking the common expectation that defensive symbionts are necessarily mutualists toward the host.
Collapse
|
6
|
de Aguiar HJAC, Barros LAC, Silveira LI, Petitclerc F, Etienne S, Orivel J. Cytogenetic data for sixteen ant species from North-eastern Amazonia with phylogenetic insights into three subfamilies. COMPARATIVE CYTOGENETICS 2020; 14:43-60. [PMID: 32021662 PMCID: PMC6989564 DOI: 10.3897/compcytogen.v14i1.46692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Ants play essential roles in most terrestrial ecosystems and may be considered pests for agriculture and agroforestry. Recent morphological and molecular data have challenged conventional ant phylogeny and the interpretation of karyotypic variations. Existing Neotropical ant cytogenetic data focus on Atlantic rainforest species, and provide evolutionary and taxonomic insight. However, there are data for only 18 Amazonian species. In this study, we describe the karyotypes of 16 ant species belonging to 12 genera and three subfamilies, collected in the Brazilian state of Amapá, and in French Guiana. The karyotypes of six species are described for the first time, including that of the South American genus Allomerus Mayr, 1878. The karyotype of Crematogaster Lund, 1831 is also described for the first time for the New World. For other species, extant data for geographically distinct populations was compared with our own data, e.g. for the leafcutter ants Acromyrmex balzani (Emery, 1890) and Atta sexdens (Linnaeus, 1758). The information obtained for the karyotype of Dolichoderus imitator Emery, 1894 differs from extant data from the Atlantic forest, thereby highlighting the importance of population cytogenetic approaches. This study also emphasizes the need for good chromosome preparations for studying karyotype structure.
Collapse
Affiliation(s)
| | - Luísa Antônia Campos Barros
- Universidade Federal do Amapá, Campus Binacional – Oiapoque, BR 156, n°3051 Bairro Universidade, 68980-000, Oiapoque, Amapá, Brazil
| | - Linda Inês Silveira
- Laboratório de Sistemática Molecular Beagle, Universidade Federal de Viçosa, Departamento de Biologia Animal, Av. P. H. Rolfs, s/n, 35570-900, Viçosa, Minas Gerais, Brazil
| | - Frédéric Petitclerc
- CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Sandrine Etienne
- INRA, UMR EcoFoG, AgroParisTech, CIRAD, CNRS, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Jérôme Orivel
- CNRS, UMR EcoFoG, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| |
Collapse
|
7
|
Ruiz-González MX, Leroy C, Dejean A, Gryta H, Jargeat P, Armijos Carrión AD, Orivel J. Do Host Plant and Associated Ant Species Affect Microbial Communities in Myrmecophytes? INSECTS 2019; 10:insects10110391. [PMID: 31698729 PMCID: PMC6920819 DOI: 10.3390/insects10110391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 11/16/2022]
Abstract
Ant-associated microorganisms can play crucial and often overlooked roles, and given the diversity of interactions that ants have developed, the study of the associated microbiomes is of interest. We focused here on specialist plant-ant species of the genus Allomerus that grow a fungus to build galleries on their host-plant stems. Allomerus-inhabited domatia, thus, might be a rich arena for microbes associated with the ants, the plant, and the fungus. We investigated the microbial communities present in domatia colonised by four arboreal ants: Allomerus decemarticulatus, A. octoarticulatus, A. octoarticulatus var. demerarae, and the non-fungus growing plant-ant Azteca sp. cf. depilis, inhabiting Hirtella physophora or Cordia nodosa in French Guiana. We hypothesized that the microbial community will differ among these species. We isolated microorganisms from five colonies of each species, sequenced the 16S rRNA or Internal TranscribedSpacer (ITS) regions, and described both the alpha and beta diversities. We identified 69 microbial taxa, which belong to five bacterial and two fungal phyla. The most diverse phyla were Proteobacteria and Actinobacteria. The microbial community of Azteca cf. depilis and Allomerus spp. differed in composition and richness. Geographical distance affected microbial communities and richness but plant species did not. Actinobacteria were only associated with Allomerus spp.
Collapse
Affiliation(s)
- Mario X. Ruiz-González
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
- Correspondence: (M.X.R.-G.); (J.O.); Tel.: +593-7-3701444 (M.X.R.-G.); +594-594-32-92-96 (J.O.)
| | - Céline Leroy
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, 34000 Montpellier, France;
- CNRS, UMR EcoFoG, Agroparistech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, 97379 Kourou, France
| | - Alain Dejean
- CNRS, UMR EcoFoG, Agroparistech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, 97379 Kourou, France
- Ecolab, Université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France;
| | - Hervé Gryta
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université de Toulouse, 31062 Toulouse, France; (H.G.); (P.J.)
| | - Patricia Jargeat
- Laboratoire Evolution & Diversité Biologique (EDB UMR 5174), CNRS, IRD, Université de Toulouse, 31062 Toulouse, France; (H.G.); (P.J.)
| | - Angelo D. Armijos Carrión
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Daxuedonglu 100, Nanning 530005, Guangxi, China;
| | - Jérôme Orivel
- CNRS, UMR EcoFoG, Agroparistech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, 97379 Kourou, France
- Correspondence: (M.X.R.-G.); (J.O.); Tel.: +593-7-3701444 (M.X.R.-G.); +594-594-32-92-96 (J.O.)
| |
Collapse
|
8
|
Dejean A, Azémar F, Petitclerc F, Delabie JHC, Corbara B, Leroy C, Céréghino R, Compin A. Highly modular pattern in ant-plant interactions involving specialized and non-specialized myrmecophytes. Naturwissenschaften 2018; 105:43. [PMID: 29951968 DOI: 10.1007/s00114-018-1570-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
Because Tachia guianensis (Gentianaceae) is a "non-specialized myrmecophyte" associated with 37 ant species, we aimed to determine if its presence alters the ant guild associated with sympatric "specialized myrmecophytes" (i.e., plants sheltering a few ant species in hollow structures). The study was conducted in a hilly zone of a neotropical rainforest where two specialized myrmecophytes grow at the bottom of the slopes, another at mid-slope, and a fourth on the hilltops. Tachia guianensis, which occurred everywhere, had its own guild of associated ant species. A network analysis showed that its connections with the four other myrmecophytes were rare and weak, the whole resulting in a highly modular pattern of interactions with one module (i.e., subnetwork) per myrmecophyte. Three ant species parasitized three out of the four specialized myrmecophytes (low nestedness noted), but were not or barely associated with T. guianensis that therefore did not influence the parasitism of specialized myrmecophytes.
Collapse
Affiliation(s)
- Alain Dejean
- UPS-ECOLAB, CNRS, Université de Toulouse, 118 route de Narbonne, 31062, Toulouse, France.
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97310, Kourou, France.
| | - Frédéric Azémar
- UPS-ECOLAB, CNRS, Université de Toulouse, 118 route de Narbonne, 31062, Toulouse, France
| | - Frédéric Petitclerc
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, 97310, Kourou, France
| | - Jacques H C Delabie
- Laboratório de Mirmecologia, CEPEC-CEPLAC, Itabuna, Bahia, 45600-970, Brazil
- UESC-DCAA, Ilhéus, Bahia, 45662-900, Brazil
| | - Bruno Corbara
- CNRS, LMGE, Université Clermont Auvergne, F-63000, Clermont-Ferrand, France
| | - Céline Leroy
- AMAP, IRD, CIRAD, CNRS, INRA, Université de Montpellier, Montpellier, France
| | - Régis Céréghino
- UPS-ECOLAB, CNRS, Université de Toulouse, 118 route de Narbonne, 31062, Toulouse, France
| | - Arthur Compin
- UPS-ECOLAB, CNRS, Université de Toulouse, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
9
|
Dejean A, Compin A, Leponce M, Azémar F, Bonhomme C, Talaga S, Pelozuelo L, Hénaut Y, Corbara B. Ants impact the composition of the aquatic macroinvertebrate communities of a myrmecophytic tank bromeliad. C R Biol 2018; 341:200-207. [PMID: 29567468 DOI: 10.1016/j.crvi.2018.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/13/2018] [Accepted: 02/16/2018] [Indexed: 10/17/2022]
Abstract
In an inundated Mexican forest, 89 out of 92 myrmecophytic tank bromeliads (Aechmea bracteata) housed an associated ant colony: 13 sheltered Azteca serica, 43 Dolichoderus bispinosus, and 33 Neoponera villosa. Ant presence has a positive impact on the diversity of the aquatic macroinvertebrate communities (n=30 bromeliads studied). A Principal Component Analysis (PCA) showed that the presence and the species of ant are not correlated to bromeliad size, quantity of water, number of wells, filtered organic matter or incident radiation. The PCA and a generalized linear model showed that the presence of Azteca serica differed from the presence of the other two ant species or no ants in its effects on the aquatic invertebrate community (more predators). Therefore, both ant presence and species of ant affect the composition of the aquatic macroinvertebrate communities in the tanks of A. bracteata, likely due to ant deposition of feces and other waste in these tanks.
Collapse
Affiliation(s)
- Alain Dejean
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, université des Antilles, université de Guyane, 97310 Kourou, France; Ecolab, université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France.
| | - Arthur Compin
- Ecolab, université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Maurice Leponce
- Aquatic and Terrestrial Ecology, Royal Belgian Institute of Natural Sciences, 29, rue Vautier, 1000 Brussels, Belgium
| | - Frédéric Azémar
- Ecolab, université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Camille Bonhomme
- Ecolab, université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Stanislas Talaga
- Unité d'entomologie médicale, Institut Pasteur de la Guyane, 23, avenue Pasteur, BP 6010, 97306 Cayenne cedex, France
| | - Laurent Pelozuelo
- Ecolab, université de Toulouse, CNRS, INPT, UPS, 31062 Toulouse, France
| | - Yann Hénaut
- El Colegio de la Frontera Sur, Departamento de Conservaciòn de la Biodiversidad, Quintana Roo, Chetumal, Mexico
| | - Bruno Corbara
- Université Clermont Auvergne, CNRS, LMGE, 63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
Orivel J, Malé PJ, Lauth J, Roux O, Petitclerc F, Dejean A, Leroy C. Trade-offs in an ant-plant-fungus mutualism. Proc Biol Sci 2018; 284:rspb.2016.1679. [PMID: 28298342 DOI: 10.1098/rspb.2016.1679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 08/31/2016] [Indexed: 11/12/2022] Open
Abstract
Species engaged in multiple, simultaneous mutualisms are subject to trade-offs in their mutualistic investment if the traits involved in each interaction are overlapping, which can lead to conflicts and affect the longevity of these associations. We investigate this issue via a tripartite mutualism involving an ant plant, two competing ant species and a fungus the ants cultivate to build galleries under the stems of their host plant to capture insect prey. The use of the galleries represents an innovative prey capture strategy compared with the more typical strategy of foraging on leaves. However, because of a limited worker force in their colonies, the prey capture behaviour of the ants results in a trade-off between plant protection (i.e. the ants patrol the foliage and attack intruders including herbivores) and ambushing prey in the galleries, which has a cascading effect on the fitness of all of the partners. The quantification of partners' traits and effects showed that the two ant species differed in their mutualistic investment. Less investment in the galleries (i.e. in fungal cultivation) translated into more benefits for the plant in terms of less herbivory and higher growth rates and vice versa. However, the greater vegetative growth of the plants did not produce a positive fitness effect for the better mutualistic ant species in terms of colony size and production of sexuals nor was the mutualist compensated by the wider dispersal of its queens. As a consequence, although the better ant mutualist is the one that provides more benefits to its host plant, its lower host-plant exploitation does not give this ant species a competitive advantage. The local coexistence of the ant species is thus fleeting and should eventually lead to the exclusion of the less competitive species.
Collapse
Affiliation(s)
- Jérôme Orivel
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Pierre-Jean Malé
- UMR Evolution et Diversité Biologique, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Jérémie Lauth
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Olivier Roux
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Frédéric Petitclerc
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, 97379 Kourou Cedex, France
| | - Alain Dejean
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, 97379 Kourou Cedex, France.,Ecolab, Université de Toulouse, CNRS, INPT, UPS, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Céline Leroy
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP 316, 97379 Kourou Cedex, France.,IRD, UMR AMAP (botAnique et Modélisation de l'Architecture des Plantes et des Végétations), Boulevard de la Lironde, TA A-51/PS2, 34398 Montpellier Cedex 5, France
| |
Collapse
|
11
|
Arcila Hernández LM, Sanders JG, Miller GA, Ravenscraft A, Frederickson ME. Ant-plant mutualism: a dietary by-product of a tropical ant's macronutrient requirements. Ecology 2017; 98:3141-3151. [DOI: 10.1002/ecy.2036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Lina M. Arcila Hernández
- Department of Ecology & Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto Ontario M5S 3B2 Canada
| | - Jon G. Sanders
- Department of Organismic & Evolutionary Biology; Harvard University; 26 Oxford Street Cambridge Massachusetts 02138 USA
| | - Gabriel A. Miller
- Department of Organismic & Evolutionary Biology; Harvard University; 26 Oxford Street Cambridge Massachusetts 02138 USA
| | - Alison Ravenscraft
- Department of Organismic & Evolutionary Biology; Harvard University; 26 Oxford Street Cambridge Massachusetts 02138 USA
| | - Megan E. Frederickson
- Department of Ecology & Evolutionary Biology; University of Toronto; 25 Willcocks Street Toronto Ontario M5S 3B2 Canada
| |
Collapse
|
12
|
Dejean A, Petitclerc F, Compin A, Azémar F, Corbara B, Delabie JHC, Leroy C. Hollow Internodes Permit a Neotropical Understory Plant to Shelter Multiple Mutualistic Ant Species, Obtaining Protection and Nutrient Provisioning (Myrmecotrophy). Am Nat 2017; 190:E124-E131. [PMID: 29053365 DOI: 10.1086/693782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Neotropical understory plant Tachia guianensis (Gentianaceae)-known to shelter the colonies of several ant species in its hollow trunks and branches-does not provide them with food rewards (e.g., extrafloral nectar). We tested whether these ants are opportunistic nesters or whether mutualistic relationships exist as for myrmecophytes or plants sheltering ant colonies in specialized hollow structures in exchange for protection from enemies and/or nutrient provisioning (myrmecotrophy). We noted 37 ant species sheltering inside T. guianensis internodes, three of them accounting for 43.5% of the cases. They protect their host plants from leaf-cutting ant defoliation and termite damage because individuals devoid of associated ants suffered significantly more attacks. Using the stable isotope 15N, we experimentally showed that the tested ant species furnish their host plants with nutrients. Therefore, a mutualism exists. However, because it is associated with numerous ant species, T. guianensis can be considered a nonspecialized myrmecophyte.
Collapse
|
13
|
Mayer VE, Lauth J, Orivel J. Convergent structure and function of mycelial galleries in two unrelated Neotropical plant-ants. INSECTES SOCIAUX 2017; 64:365-371. [PMID: 28757658 PMCID: PMC5509771 DOI: 10.1007/s00040-017-0554-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 06/07/2023]
Abstract
The construction process and use of galleries by Azteca brevis (Myrmicinae: Dolichoderinae) inhabiting Tetrathylacium macrophyllum (Salicaceae) were compared with Allomerus decemarticulatus (Myrmicinae: Solenopsidini) galleries on Hirtella physophora (Chrysobalanaceae). Though the two ant species are phylogenetically distant, the gallery structure seems to be surprisingly similar and structurally convergent: both are pierced with numerous holes and both ant species use Chaetothyrialean fungi to strengthen the gallery walls. Al. decemarticulatus is known to use the galleries for prey capture and whether this is also the case for Az. brevis was tested in field experiments. We placed Atta workers as potential prey/threat on the galleries and recorded the behaviour of both ant species. We found considerable behavioural differences between them: Al. decemarticulatus was quicker and more efficient at capture than was Az. brevis. While most Atta workers were captured after the first 5 min by Al. decemarticulatus, significantly fewer were captured by Az. brevis even after 20 min. Moreover, the captured Atta were sometimes simply discarded and not taken to the nest by Az. brevis. As a consequence, the major function of the galleries built by Az. brevis may, therefore, be defense against intruders in contrast to Al. decemarticulatus which uses them mainly for prey capture. This may be due to a higher need for protein in Al. decemarticulatus compared to coccid-raising Az. brevis.
Collapse
Affiliation(s)
- V. E. Mayer
- Department of Botany and Biodiversity Research, Division of Structural and Functional Botany, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - J. Lauth
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP316, 97379 Kourou Cedex, France
| | - J. Orivel
- CNRS, UMR Ecologie des Forêts de Guyane, AgroParisTech, CIRAD, INRA, Université de Guyane, Université des Antilles, Campus Agronomique, BP316, 97379 Kourou Cedex, France
| |
Collapse
|