1
|
Lee M. Variable stressor exposure shapes fitness within and across generations. Sci Rep 2025; 15:3626. [PMID: 39880940 PMCID: PMC11779894 DOI: 10.1038/s41598-025-87334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Environmental variation has long been considered a key driver of evolutionary change, predicted to shape different strategies, such as genetic specialization, plasticity, or bet-hedging to maintain fitness. However, little evidence is available with regards to how the periodicity of stressors may impact fitness across generations. To address this gap, I conducted a reciprocal split-brood experiment using the freshwater crustacean, Daphnia magna, and an ecologically relevant environmental stressor, ultraviolet radiation (UVR). I exposed one group to constant and another group to fluctuating UVR conditions. Despite receiving the same dose of UVR, the first experimental generation displayed significant treatment-by-genotype interactions with respect to survival and reproductive output, as well as a delayed reproductive maturity under fluctuating UVR conditions. In the following experimental generation individuals exposed to fluctuating UVR exhibited higher fitness than those in a constant UVR regime. The ancestral conditions, i.e., maternal environment, however affected the survival probability and reproductive output, but did not significantly influence the maturation date. Overall, I demonstrate that the delivery of a stressor, not just its intensity, can have profound fitness consequences across generations, with important implications for seasonal succession of genotype-phenotype patterns in natural environments.
Collapse
Affiliation(s)
- Marcus Lee
- Aquatic Ecology, Department of Biology, Lund University, Lund, Sweden.
- Department of Biology, University of Texas at Arlington, Arlington, USA.
| |
Collapse
|
2
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Mackay TFC, Anholt RRH. Pleiotropy, epistasis and the genetic architecture of quantitative traits. Nat Rev Genet 2024; 25:639-657. [PMID: 38565962 PMCID: PMC11330371 DOI: 10.1038/s41576-024-00711-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Pleiotropy (whereby one genetic polymorphism affects multiple traits) and epistasis (whereby non-linear interactions between genetic polymorphisms affect the same trait) are fundamental aspects of the genetic architecture of quantitative traits. Recent advances in the ability to characterize the effects of polymorphic variants on molecular and organismal phenotypes in human and model organism populations have revealed the prevalence of pleiotropy and unexpected shared molecular genetic bases among quantitative traits, including diseases. By contrast, epistasis is common between polymorphic loci associated with quantitative traits in model organisms, such that alleles at one locus have different effects in different genetic backgrounds, but is rarely observed for human quantitative traits and common diseases. Here, we review the concepts and recent inferences about pleiotropy and epistasis, and discuss factors that contribute to similarities and differences between the genetic architecture of quantitative traits in model organisms and humans.
Collapse
Affiliation(s)
- Trudy F C Mackay
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| | - Robert R H Anholt
- Center for Human Genetics, Clemson University, Greenwood, SC, USA.
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.
| |
Collapse
|
4
|
Carscadden KA, Batstone RT, Hauser FE. Origins and evolution of biological novelty. Biol Rev Camb Philos Soc 2023; 98:1472-1491. [PMID: 37056155 DOI: 10.1111/brv.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
Understanding the origins and impacts of novel traits has been a perennial interest in many realms of ecology and evolutionary biology. Here, we build on previous evolutionary and philosophical treatments of this subject to encompass novelties across biological scales and eco-evolutionary perspectives. By defining novelties as new features at one biological scale that have emergent effects at other biological scales, we incorporate many forms of novelty that have previously been treated in isolation (such as novelty from genetic mutations, new developmental pathways, new morphological features, and new species). Our perspective is based on the fundamental idea that the emergence of a novelty, at any biological scale, depends on its environmental and genetic context. Through this lens, we outline a broad array of generative mechanisms underlying novelty and highlight how genomic tools are transforming our understanding of the origins of novelty. Lastly, we present several case studies to illustrate how novelties across biological scales and systems can be understood based on common mechanisms of change and their environmental and genetic contexts. Specifically, we highlight how gene duplication contributes to the evolution of new complex structures in visual systems; how genetic exchange in symbiosis alters functions of both host and symbiont, resulting in a novel organism; and how hybridisation between species can generate new species with new niches.
Collapse
Affiliation(s)
- Kelly A Carscadden
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900 Pleasant St, Boulder, CO, 80309, USA
| | - Rebecca T Batstone
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL, 61801, USA
| | - Frances E Hauser
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| |
Collapse
|
5
|
Santos J, Matos M, Flatt T, Chelo IM. Microbes are potential key players in the evolution of life histories and aging in Caenorhabditis elegans. Ecol Evol 2023; 13:e10537. [PMID: 37753311 PMCID: PMC10518755 DOI: 10.1002/ece3.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Microbes can have profound effects on host fitness and health and the appearance of late-onset diseases. Host-microbe interactions thus represent a major environmental context for healthy aging of the host and might also mediate trade-offs between life-history traits in the evolution of host senescence. Here, we have used the nematode Caenorhabditis elegans to study how host-microbe interactions may modulate the evolution of life histories and aging. We first characterized the effects of two non-pathogenic and one pathogenic Escherichia coli strains, together with the pathogenic Serratia marcescens DB11 strain, on population growth rates and survival of C. elegans from five different genetic backgrounds. We then focused on an outbred C. elegans population, to understand if microbe-specific effects on the reproductive schedule and in traits such as developmental rate and survival were also expressed in the presence of males and standing genetic variation, which could be relevant for the evolution of C. elegans and other nematode species in nature. Our results show that host-microbe interactions have a substantial host-genotype-dependent impact on the reproductive aging and survival of the nematode host. Although both pathogenic bacteria reduced host survival in comparison with benign strains, they differed in how they affected other host traits. Host fertility and population growth rate were affected by S. marcescens DB11 only during early adulthood, whereas this occurred at later ages with the pathogenic E. coli IAI1. In both cases, these effects were largely dependent on the host genotypes. Given such microbe-specific genotypic differences in host life history, we predict that the evolution of reproductive schedules and senescence might be critically contingent on host-microbe interactions in nature.
Collapse
Affiliation(s)
- Josiane Santos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Margarida Matos
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Ivo M. Chelo
- cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability InstituteLisboaPortugal
- Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisboaPortugal
| |
Collapse
|
6
|
Dasgupta P, Halder S, Dari D, Nabeel P, Vajja SS, Nandy B. Evolution of a novel female reproductive strategy in Drosophila melanogaster populations subjected to long-term protein restriction. Evolution 2022; 76:1836-1848. [PMID: 35796749 DOI: 10.1111/evo.14560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/19/2022] [Indexed: 01/22/2023]
Abstract
Reproductive output is often constrained by availability of macronutrients, especially protein. Long-term protein restriction, therefore, is expected to select for traits maximizing reproduction even under nutritional challenge. We subjected four replicate populations of Drosophila melanogaster to a complete deprivation of yeast supplement, thereby mimicking a protein-restricted ecology. Following 24 generations, compared to their matched controls, females from experimental populations showed increased reproductive output early in life, both in presence and absence of yeast supplement. The observed increase in reproductive output was without associated alterations in egg size, development time, preadult survivorship, body mass at eclosion, and life span of the females. Further, selection was ineffective on lifelong cumulative fecundity. However, females from experiment regime were found to have a significantly faster rate of reproductive senescence following the attainment of the reproductive peak early in life. Therefore, adaptation to yeast deprivation ecology in our study involved a novel reproductive strategy whereby females attained higher reproductive output early in life followed by faster reproductive aging. To the best of our knowledge, this is one of the cleanest demonstrations of optimization of fitness by fine-tuning of reproductive schedule during adaptation to a prolonged nutritional deprivation.
Collapse
Affiliation(s)
- Purbasha Dasgupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Subhasish Halder
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Debapriya Dari
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| | - Poolakkal Nabeel
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Central University of Kerala, Tejaswini Hills,Periye, Kasaragod, Kerala, 671316, India
| | - Sai Samhitha Vajja
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India.,Current Address: Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, 462066, India
| | - Bodhisatta Nandy
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur, 760010, India
| |
Collapse
|
7
|
Narayan VP, Wilson AJ, Chenoweth SF. Genetic and social contributions to sex differences in lifespan in Drosophila serrata. J Evol Biol 2022; 35:657-663. [PMID: 35290690 PMCID: PMC9314142 DOI: 10.1111/jeb.13992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/01/2023]
Abstract
Sex differences in lifespan remain an intriguing puzzle in evolutionary biology. While explanations range from sex differences in selection to sex differences in the expression of recessive lifespan‐altering mutations (via X‐linkage), little consensus has been reached. One unresolved issue is the extent to which genetic influences on lifespan dimorphism are modulated by the environment. For example, studies have shown that sex differences in lifespan can either increase or decrease depending upon the social environment. Here, we took an experimental approach, manipulating multiple axes of the social environment across inbred long‐ and short‐lived genotypes and their reciprocal F1s in the fly Drosophila serrata. Our results reveal strong genetic effects and subtle yet significant genotype‐by‐environment interactions for male and female lifespan, specifically due to both population density and mating status. Further, our data do not support the idea that unconditional expression of deleterious X‐linked recessive alleles in heterogametic males accounts for lower male lifespan.
Collapse
Affiliation(s)
- Vikram P Narayan
- The School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia.,College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Alastair J Wilson
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Stephen F Chenoweth
- The School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
8
|
Kramer BH, Doorn GSV, Arani BMS, Pen I. Eusociality and the evolution of aging in superorganisms. Am Nat 2022; 200:63-80. [DOI: 10.1086/719666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Séité S, Harrison MC, Sillam-Dussès D, Lupoli R, Van Dooren TJM, Robert A, Poissonnier LA, Lemainque A, Renault D, Acket S, Andrieu M, Viscarra J, Sul HS, de Beer ZW, Bornberg-Bauer E, Vasseur-Cognet M. Lifespan prolonging mechanisms and insulin upregulation without fat accumulation in long-lived reproductives of a higher termite. Commun Biol 2022; 5:44. [PMID: 35027667 PMCID: PMC8758687 DOI: 10.1038/s42003-021-02974-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Kings and queens of eusocial termites can live for decades, while queens sustain a nearly maximal fertility. To investigate the molecular mechanisms underlying their long lifespan, we carried out transcriptomics, lipidomics and metabolomics in Macrotermes natalensis on sterile short-lived workers, long-lived kings and five stages spanning twenty years of adult queen maturation. Reproductives share gene expression differences from workers in agreement with a reduction of several aging-related processes, involving upregulation of DNA damage repair and mitochondrial functions. Anti-oxidant gene expression is downregulated, while peroxidability of membranes in queens decreases. Against expectations, we observed an upregulated gene expression in fat bodies of reproductives of several components of the IIS pathway, including an insulin-like peptide, Ilp9. This pattern does not lead to deleterious fat storage in physogastric queens, while simple sugars dominate in their hemolymph and large amounts of resources are allocated towards oogenesis. Our findings support the notion that all processes causing aging need to be addressed simultaneously in order to prevent it.
Collapse
Affiliation(s)
- Sarah Séité
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France
- University of Paris-Est, Créteil, France
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - David Sillam-Dussès
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, UR4443, Villetaneuse, France
| | - Roland Lupoli
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France
- University of Paris-Est, Créteil, France
| | - Tom J M Van Dooren
- UMR UPMC 113, IRD 242, UPEC, CNRS 7618, INRA 1392, PARIS 7 113, Institute of Ecology and Environmental Sciences of Paris, Paris, France
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Alain Robert
- University Sorbonne Paris Nord, Laboratory of Experimental and Comparative Ethology, UR4443, Villetaneuse, France
| | - Laure-Anne Poissonnier
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Arnaud Lemainque
- Genoscope, François-Jacob Institute of Biology, Alternative Energies and Atomic Energy Commission, University of Paris-Saclay, Evry, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystems, biodiversity, evolution) - UMR, 6553, Rennes, France
- University Institute of France, Paris, France
| | - Sébastien Acket
- University of Technology of Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Royallieu research Center, Compiègne, France
| | - Muriel Andrieu
- Cochin Institute, UMR INSERM U1016, CNRS 8104, University of Paris Descartes, CYBIO Platform, Paris, France
| | - José Viscarra
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Hei Sook Sul
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, CA, USA
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mireille Vasseur-Cognet
- UMR IRD 242, UPEC, CNRS 7618, UPMC 113, INRAe 1392, Paris 7 113, Institute of Ecology and Environmental Sciences of Paris, Bondy, France.
- University of Paris-Est, Créteil, France.
- INSERM, Paris, France.
| |
Collapse
|
10
|
Gascoigne SJL, Uwera Nalukwago DI, Barbosa F. Larval Density, Sex, and Allocation Hierarchy Affect Life History Trait Covariances in a Bean Beetle. Am Nat 2022; 199:291-301. [DOI: 10.1086/717639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Samuel J. L. Gascoigne
- Department of Biology, Lake Forest College, Lake Forest, Illinois 60045
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, United Kingdom
| | | | - Flavia Barbosa
- Department of Biology, Lake Forest College, Lake Forest, Illinois 60045
| |
Collapse
|
11
|
Hime GR, Stonehouse SLA, Pang TY. Alternative models for transgenerational epigenetic inheritance: Molecular psychiatry beyond mice and man. World J Psychiatry 2021; 11:711-735. [PMID: 34733638 PMCID: PMC8546770 DOI: 10.5498/wjp.v11.i10.711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mental illness remains the greatest chronic health burden globally with few in-roads having been made despite significant advances in genomic knowledge in recent decades. The field of psychiatry is constantly challenged to bring new approaches and tools to address and treat the needs of vulnerable individuals and subpopulations, and that has to be supported by a continuous growth in knowledge. The majority of neuropsychiatric symptoms reflect complex gene-environment interactions, with epigenetics bridging the gap between genetic susceptibility and environmental stressors that trigger disease onset and drive the advancement of symptoms. It has more recently been demonstrated in preclinical models that epigenetics underpins the transgenerational inheritance of stress-related behavioural phenotypes in both paternal and maternal lineages, providing further supporting evidence for heritability in humans. However, unbiased prospective studies of this nature are practically impossible to conduct in humans so preclinical models remain our best option for researching the molecular pathophysiologies underlying many neuropsychiatric conditions. While rodents will remain the dominant model system for preclinical studies (especially for addressing complex behavioural phenotypes), there is scope to expand current research of the molecular and epigenetic pathologies by using invertebrate models. Here, we will discuss the utility and advantages of two alternative model organisms-Caenorhabditis elegans and Drosophila melanogaster-and summarise the compelling insights of the epigenetic regulation of transgenerational inheritance that are potentially relevant to human psychiatry.
Collapse
Affiliation(s)
- Gary R Hime
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
| | - Sophie LA Stonehouse
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| | - Terence Y Pang
- Department of Anatomy and Physiology, The University of Melbourne, Parkville 3010, VIC, Australia
- Mental Health Theme, The Florey Institute of Neuroscience and Mental Health, Parkville 3052, VIC, Australia
| |
Collapse
|
12
|
Carlsson H, Ivimey-Cook E, Duxbury EML, Edden N, Sales K, Maklakov AA. Ageing as "early-life inertia": Disentangling life-history trade-offs along a lifetime of an individual. Evol Lett 2021; 5:551-564. [PMID: 34621540 PMCID: PMC8484722 DOI: 10.1002/evl3.254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
The theory that ageing evolves because of competitive resource allocation between the soma and the germline has been challenged by studies showing that somatic maintenance can be improved without impairing reproduction. However, it has been suggested that cost‐free improvement in somatic maintenance is possible only under a narrow range of benign conditions. Here, we show that experimental downregulation of insulin/IGF‐1 signaling (IIS) in C. elegans nematodes, a robustly reproducible life span‐ and health span‐extending treatment, reduces fitness in a complex variable environment when initiated during development but does not reduce fitness when initiated in adulthood. Thus, our results show that the costs and benefits of reduced IIS can be uncoupled when organisms inhabit variable environments, and, therefore, do not provide support for the resource allocation theory. Our findings support the theory that the force of natural selection on gene expression in evolutionarily conserved signaling pathways that shape life‐history traits declines after the onset of reproduction resulting in organismal senescence.
Collapse
Affiliation(s)
- Hanne Carlsson
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | - Edward Ivimey-Cook
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | - Elizabeth M L Duxbury
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | - Nathan Edden
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | - Kris Sales
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| | - Alexei A Maklakov
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ United Kingdom
| |
Collapse
|
13
|
Yamamoto R, Palmer M, Koski H, Curtis-Joseph N, Tatar M. Aging modulated by the Drosophila insulin receptor through distinct structure-defined mechanisms. Genetics 2021; 217:6064149. [PMID: 33724413 PMCID: PMC8045697 DOI: 10.1093/genetics/iyaa037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
Mutations of the Drosophila melanogaster insulin/IGF signaling system slow aging, while also affecting growth and reproduction. To understand this pleiotropy, we produced an allelic series of single codon substitutions in the Drosophila insulin receptor, InR. We generated InR substitutions using homologous recombination and related each to emerging models of receptor tyrosine kinase structure and function. Three mutations when combined as trans-heterozygotes extended lifespan while retarding growth and fecundity. These genotypes reduced insulin-stimulated Akt phosphorylation, suggesting they impede kinase catalytic domain function. Among these genotypes, longevity was negatively correlated with egg production, consistent with life-history trade-off theory. In contrast, one mutation (InR353) was located in the kinase insert domain, a poorly characterized element found in all receptor tyrosine kinases. Remarkably, wild-type heterozygotes with InR353 robustly extended lifespan without affecting growth or reproduction and retained capacity to fully phosphorylate Akt. The Drosophila insulin receptor kinase insert domain contains a previously unrecognized SH2 binding motif. We propose the kinase insert domain interacts with SH2-associated adapter proteins to affect aging through mechanisms that retain insulin sensitivity and are independent of reproduction.
Collapse
Affiliation(s)
- Rochele Yamamoto
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Michael Palmer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Helen Koski
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Noelle Curtis-Joseph
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Lind MI, Carlsson H, Duxbury EML, Ivimey-Cook E, Maklakov AA. Cost-free lifespan extension via optimization of gene expression in adulthood aligns with the developmental theory of ageing. Proc Biol Sci 2021; 288:20201728. [PMID: 33529563 PMCID: PMC7893226 DOI: 10.1098/rspb.2020.1728] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Ageing evolves because the force of selection on traits declines with age but the proximate causes of ageing are incompletely understood. The 'disposable soma' theory of ageing (DST) upholds that competitive resource allocation between reproduction and somatic maintenance underpins the evolution of ageing and lifespan. In contrast, the developmental theory of ageing (DTA) suggests that organismal senescence is caused by suboptimal gene expression in adulthood. While the DST predicts the trade-off between reproduction and lifespan, the DTA predicts that age-specific optimization of gene expression can increase lifespan without reproduction costs. Here we investigated the consequences for lifespan, reproduction, egg size and individual fitness of early-life, adulthood and post-reproductive onset of RNAi knockdown of five 'longevity' genes involved in key biological processes in Caenorhabditis elegans. Downregulation of these genes in adulthood and/or during post-reproductive period increases lifespan, while we found limited evidence for a link between impaired reproduction and extended lifespan. Our findings demonstrate that suboptimal gene expression in adulthood often contributes to reduced lifespan directly rather than through competitive resource allocation between reproduction and somatic maintenance. Therefore, age-specific optimization of gene expression in evolutionarily conserved signalling pathways that regulate organismal life histories can increase lifespan without fitness costs.
Collapse
Affiliation(s)
- Martin I. Lind
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, SE-75236, Sweden
| | - Hanne Carlsson
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Edward Ivimey-Cook
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Alexei A. Maklakov
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
15
|
Yap KN, Yamada K, Zikeli S, Kiaris H, Hood WR. Evaluating endoplasmic reticulum stress and unfolded protein response through the lens of ecology and evolution. Biol Rev Camb Philos Soc 2020; 96:541-556. [PMID: 33164297 DOI: 10.1111/brv.12667] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Considerable progress has been made in understanding the physiological basis for variation in the life-history patterns of animals, particularly with regard to the roles of oxidative stress and hormonal regulation. However, an underappreciated and understudied area that could play a role in mediating inter- and intraspecific variation of life history is endoplasmic reticulum (ER) stress, and the resulting unfolded protein response (UPRER ). ER stress response and the UPRER maintain proteostasis in cells by reducing the intracellular load of secretory proteins and enhancing protein folding capacity or initiating apoptosis in cells that cannot recover. Proper modulation of the ER stress response and execution of the UPRER allow animals to respond to intracellular and extracellular stressors and adapt to constantly changing environments. ER stress responses are heritable and there is considerable individual variation in UPRER phenotype in animals, suggesting that ER stress and UPRER phenotype can be subjected to natural selection. The variation in UPRER phenotype presumably reflects the way animals respond to ER stress and environmental challenges. Most of what we know about ER stress and the UPRER in animals has either come from biomedical studies using cell culture or from experiments involving conventional laboratory or agriculturally important models that exhibit limited genetic diversity. Furthermore, these studies involve the assessment of experimentally induced qualitative changes in gene expression as opposed to the quantitative variations that occur in naturally existing populations. Almost all of these studies were conducted in controlled settings that are often quite different from the conditions animals experience in nature. Herein, we review studies that investigated ER stress and the UPRER in relation to key life-history traits including growth and development, reproduction, bioenergetics and physical performance, and ageing and senescence. We then ask if these studies can inform us about the role of ER stress and the UPRER in mediating the aforementioned life-history traits in free-living animals. We propose that there is a need to conduct experiments pertaining to ER stress and the UPRER in ecologically relevant settings, to characterize variation in ER stress and the UPRER in free-living animals, and to relate the observed variation to key life-history traits. We urge others to integrate multiple physiological systems and investigate how interactions between ER stress and oxidative stress shape life-history trade-offs in free-living animals.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - KayLene Yamada
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Shelby Zikeli
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, and Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, 29208, U.S.A
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, U.S.A
| |
Collapse
|
16
|
Yen K, Mehta HH, Kim SJ, Lue Y, Hoang J, Guerrero N, Port J, Bi Q, Navarrete G, Brandhorst S, Lewis KN, Wan J, Swerdloff R, Mattison JA, Buffenstein R, Breton CV, Wang C, Longo V, Atzmon G, Wallace D, Barzilai N, Cohen P. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY) 2020; 12:11185-11199. [PMID: 32575074 PMCID: PMC7343442 DOI: 10.18632/aging.103534] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
Humanin is a member of a new family of peptides that are encoded by short open reading frames within the mitochondrial genome. It is conserved in animals and is both neuroprotective and cytoprotective. Here we report that in C. elegans the overexpression of humanin is sufficient to increase lifespan, dependent on daf-16/Foxo. Humanin transgenic mice have many phenotypes that overlap with the worm phenotypes and, similar to exogenous humanin treatment, have increased protection against toxic insults. Treating middle-aged mice twice weekly with the potent humanin analogue HNG, humanin improves metabolic healthspan parameters and reduces inflammatory markers. In multiple species, humanin levels generally decline with age, but here we show that levels are surprisingly stable in the naked mole-rat, a model of negligible senescence. Furthermore, in children of centenarians, who are more likely to become centenarians themselves, circulating humanin levels are much greater than age-matched control subjects. Further linking humanin to healthspan, we observe that humanin levels are decreased in human diseases such as Alzheimer's disease and MELAS (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes). Together, these studies are the first to demonstrate that humanin is linked to improved healthspan and increased lifespan.
Collapse
Affiliation(s)
- Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hemal H. Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - YanHe Lue
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - James Hoang
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Noel Guerrero
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jenna Port
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuli Bi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gerardo Navarrete
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sebastian Brandhorst
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaitlyn Noel Lewis
- Department of Physiology, The Barshop Institute, University of Texas Health at San Antonio, TX 78229, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ronald Swerdloff
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging, Dickerson, MD 20892, USA
| | - Rochelle Buffenstein
- Department of Physiology, The Barshop Institute, University of Texas Health at San Antonio, TX 78229, USA
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Carrie V. Breton
- Department of Preventive Medicine, Keck School of Medicine, USC, Los Angeles, CA 90089, USA
| | - Christina Wang
- Department of Medicine, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Valter Longo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Gil Atzmon
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
17
|
Zajitschek F, Georgolopoulos G, Vourlou A, Ericsson M, Zajitschek SRK, Friberg U, Maklakov AA. Evolution Under Dietary Restriction Decouples Survival From Fecundity in Drosophila melanogaster Females. J Gerontol A Biol Sci Med Sci 2020; 74:1542-1548. [PMID: 29718269 DOI: 10.1093/gerona/gly070] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/10/2018] [Indexed: 01/17/2023] Open
Abstract
One of the key tenets of life-history theory is that reproduction and survival are linked and that they trade-off with each other. When dietary resources are limited, reduced reproduction with a concomitant increase in survival is commonly observed. It is often hypothesized that this dietary restriction effect results from strategically reduced investment in reproduction in favor of somatic maintenance to survive starvation periods until resources become plentiful again. We used experimental evolution to test this "waiting-for-the-good-times" hypothesis, which predicts that selection under sustained dietary restriction will favor increased investment in reproduction at the cost of survival because "good-times" never come. We assayed fecundity and survival of female Drosophila melanogaster fruit flies that had evolved for 50 generations on three different diets varying in protein content-low (classic dietary restriction diet), standard, and high-in a full-factorial design. High-diet females evolved overall increased fecundity but showed reduced survival on low and standard diets. Low-diet females evolved reduced survival on low diet without corresponding increase in reproduction. In general, there was little correspondence between the evolution of survival and fecundity across all dietary regimes. Our results contradict the hypothesis that resource reallocation between fecundity and somatic maintenance underpins life span extension under dietary restriction.
Collapse
Affiliation(s)
- Felix Zajitschek
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.,Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Sweden
| | | | - Anna Vourlou
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Maja Ericsson
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Susanne R K Zajitschek
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia.,Doñana Biological Station, EBD-CSIC, Seville, Spain.,Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Urban Friberg
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,IFM Biology, AVIAN Behavioural, Genomics and Physiology Group, Linköping University, Sweden
| | - Alexei A Maklakov
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Sweden.,School of Biological Sciences, Norwich Research Park, University of East Anglia, UK
| |
Collapse
|
18
|
Caruso C, Aiello A, Accardi G, Ciaglia E, Cattaneo M, Puca A. Genetic Signatures of Centenarians: Implications for Achieving Successful Aging. Curr Pharm Des 2019; 25:4133-4138. [DOI: 10.2174/1381612825666191112094544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
The extraordinary rise in the old population in the Western world underscores the importance of studies
on aging and longevity to decrease the medical, economic and social problems associated with the increased
number of non-autonomous individuals affected by invalidating pathologies. Centenarians have reached the extreme
limits of the human life span. They are the best example of extreme longevity, representing selected individuals
in which the appearance of major age-related diseases has been consistently delayed or avoided. There is
growing evidence that the genetic component of longevity becomes higher with survival at the age of over 90
years. For centenaries, it reaches up to 33% for women and 48% for men. Therefore, exceptional longevity is a
complex, hereditable trait that runs across generations. Longevity should correlate either with the presence of
protective alleles or the absence of detrimental alleles. The aim of this review is to discuss the possible attainment
of successful aging in the context of the lessons learned from centenarian genetics.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi (SA), Italy
| | | | | |
Collapse
|
19
|
Abstract
Despite tremendous progress in recent years, our understanding of the evolution of ageing is still incomplete. A dominant paradigm maintains that ageing evolves due to the competing energy demands of reproduction and somatic maintenance leading to slow accumulation of unrepaired cellular damage with age. However, the centrality of energy trade-offs in ageing has been increasingly challenged as studies in different organisms have uncoupled the trade-off between reproduction and longevity. An emerging theory is that ageing instead is caused by biological processes that are optimized for early-life function but become harmful when they continue to run-on unabated in late life. This idea builds on the realization that early-life regulation of gene expression can break down in late life because natural selection is too weak to optimize it. Empirical evidence increasingly supports the hypothesis that suboptimal gene expression in adulthood can result in physiological malfunction leading to organismal senescence. We argue that the current state of the art in the study of ageing contradicts the widely held view that energy trade-offs between growth, reproduction, and longevity are the universal underpinning of senescence. Future research should focus on understanding the relative contribution of energy and function trade-offs to the evolution and expression of ageing.
Collapse
Affiliation(s)
- Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
20
|
Abstract
The demonstration of life span plasticity in natural populations would provide a powerful test of evolutionary theories of senescence. Plastic senescence is not easily explained by mutation accumulation or antagonistic pleiotropy but is a corollary of the disposable soma theory. The life span differences among castes of the eusocial Hymenoptera are potentially some of the most striking and extreme examples of life span plasticity. Although these differences are often assumed to be plastic, this has never been demonstrated conclusively because differences in life span may be caused by the proximate effects of different levels of environmental hazard experienced by castes. Here age-dependent and age-independent components of instantaneous mortality rates of the honey bee (Apis mellifera) were estimated from published life tables for natural and seminatural populations to determine whether differences in life span between queens and workers and between different types of workers are indeed plastic. These differences in life span were found to be due to differences in the rate of actuarial senescence, which correlate positively with the rate of extrinsic mortality, in accordance with the central prediction of evolutionary theories of senescence. Although all three evolutionary theories of senescence could in principle explain such plastic senescence, given differential gene expression between castes or life stages, only the disposable soma theory adequately explains the adaptive regulation of somatic maintenance in response to different environmental conditions that appears to underlie life span plasticity.
Collapse
|
21
|
Culina A, Linton DM, Pradel R, Bouwhuis S, Macdonald DW. Live fast, don't die young: Survival-reproduction trade-offs in long-lived income breeders. J Anim Ecol 2019; 88:746-756. [PMID: 30737781 PMCID: PMC6850603 DOI: 10.1111/1365-2656.12957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 01/04/2019] [Indexed: 11/30/2022]
Abstract
Trade-offs between survival and reproduction are at the core of life-history theory, and essential to understanding the evolution of reproductive tactics as well as population dynamics and stability. Factors influencing these trade-offs are multiple and often addressed in isolation. Further problems arise as reproductive states and survival in wild populations are estimated based on imperfect and potentially biased observation processes, which might lead to flawed conclusions. In this study, we aimed at elucidating trade-offs between current reproduction (both pregnancy and lactation), survival and future reproduction, including the specific costs of first reproduction, in long-lived, income breeding small mammals, an under-studied group. We developed a novel statistical framework that encapsulates the breeding life cycle of females, and accounts for incomplete information on female pregnancy and lactation and imperfect and biased recapture rates. We applied this framework to longitudinal data on two sympatric, closely related bat species (Myotis daubentonii and M. nattereri). We revealed the existence of several, to our knowledge previously unknown, trends in survival and breeding of these closely related, sympatric species and detected remarkable differences in their age and costs of first reproduction, as well as their survival-reproduction trade-offs. Our results indicate that species with this type of life history exhibit a mixture of patterns expected for long-lived and short-lived animals, and between income and capital breeders. Thus, we call for more studies to be conducted in similar study systems, increasing our ability to fully understand the evolutionary origin and fitness effects of trade-offs and senescence.
Collapse
Affiliation(s)
- Antica Culina
- WildCRU, Zoology DepartmentThe Recanati‐Kaplan CentreUniversity of OxfordTubney, AbingdonUK
- Netherlands Institute of EcologyNIOO‐KNAWWageningenNetherlands
| | - Danielle Marie Linton
- WildCRU, Zoology DepartmentThe Recanati‐Kaplan CentreUniversity of OxfordTubney, AbingdonUK
| | - Roger Pradel
- CEFE UMR 5175CNRS Université de MontpellierUniversité Paul‐ Valery MontpellierEPHEMontpellier Cedex 05France
| | | | - David W. Macdonald
- WildCRU, Zoology DepartmentThe Recanati‐Kaplan CentreUniversity of OxfordTubney, AbingdonUK
| |
Collapse
|
22
|
Lind MI, Ravindran S, Sekajova Z, Carlsson H, Hinas A, Maklakov AA. Experimentally reduced insulin/IGF-1 signaling in adulthood extends lifespan of parents and improves Darwinian fitness of their offspring. Evol Lett 2019; 3:207-216. [PMID: 31007945 PMCID: PMC6457396 DOI: 10.1002/evl3.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/06/2019] [Indexed: 11/29/2022] Open
Abstract
Classical theory maintains that ageing evolves via energy trade-offs between reproduction and survival leading to accumulation of unrepaired cellular damage with age. In contrast, the emerging new theory postulates that ageing evolves because of deleterious late-life hyper-function of reproduction-promoting genes leading to excessive biosynthesis in late-life. The hyper-function theory uniquely predicts that optimizing nutrient-sensing molecular signaling in adulthood can simultaneously postpone ageing and increase Darwinian fitness. Here, we show that reducing evolutionarily conserved insulin/IGF-1 nutrient-sensing signaling via daf-2 RNA interference (RNAi) fulfils this prediction in Caenorhabditis elegans nematodes. Long-lived daf-2 RNAi parents showed normal fecundity as self-fertilizing hermaphrodites and improved late-life reproduction when mated to males. Remarkably, the offspring of daf-2 RNAi parents had higher Darwinian fitness across three different genotypes. Thus, reduced nutrient-sensing signaling in adulthood improves both parental longevity and offspring fitness supporting the emerging view that suboptimal gene expression in late-life lies at the heart of ageing.
Collapse
Affiliation(s)
- Martin I. Lind
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
| | - Sanjana Ravindran
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
| | - Zuzana Sekajova
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
| | - Hanne Carlsson
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| | - Andrea Hinas
- Department of Cell and Molecular BiologyUppsala UniversityUppsala751 24Sweden
| | - Alexei A. Maklakov
- Animal Ecology, Department of Ecology and GeneticsUppsala UniversityUppsala752 36Sweden
- School of Biological SciencesUniversity of East AngliaNorwichNR4 7TJUnited Kingdom
| |
Collapse
|
23
|
Li Q, Luo S, Yang C, Li S, Guo J, He J, Chen Y, Huang C, Wu Z, Du W. Impacts of maternal characteristics and temperature on juvenile survival in the crocodile lizard: Implications for conservation. Zoo Biol 2019; 38:272-280. [PMID: 30614073 DOI: 10.1002/zoo.21473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 01/02/2023]
Abstract
Captive breeding is an important conservation measure that may restore and enhance wild populations of rare and endangered species. Multiple anthropogenic hazards have brought the crocodile lizard, Shinisaurus crocodilurus, to the brink of extinction. We initiated a captive breeding program and quantified female reproductive traits, including reproductive timing, litter size, litter mass, and neonate size. To identify the internal and external factors affecting female reproductive function, we then analyzed how maternal age is related to body size, temperature, and female reproductive traits. We found that larger female crocodile lizards produced more offspring than smaller ones, as both litter size and litter mass were positively related to maternal body size. In contrast, neonate size was independent of maternal body size. Maternal reproductive output varied among different age groups. Young and old females had significantly smaller living litter size and mass than middle-aged females. Among captive females, one-third exhibited early parturition in autumn and winter instead of the following spring, a pattern probably associated with higher ambient temperatures in captivity. Although female reproductive output and neonatal body size did not differ between early- and normal-parturition females, offspring from the former group died earlier than those from the latter. Our study highlights the danger of climate change in hastening parturition, a phenomenon that could significantly hamper neonate survival and impede population recruitment.
Collapse
Affiliation(s)
- Qiyu Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shuyi Luo
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou, Guangxi, People's Republic of China
| | - Chunsheng Yang
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou, Guangxi, People's Republic of China
| | - Shuran Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Jun Guo
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou, Guangxi, People's Republic of China
| | - Jiasong He
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou, Guangxi, People's Republic of China
| | - Yaohuan Chen
- Daguishan National Nature Reserve for Crocodile Lizards, Hezhou, Guangxi, People's Republic of China
| | - Chengming Huang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, People's Republic of China.,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, People's Republic of China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
24
|
Gaillard JM, Lemaître JF. The Williams' legacy: A critical reappraisal of his nine predictions about the evolution of senescence. Evolution 2017; 71:2768-2785. [DOI: 10.1111/evo.13379] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/25/2017] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
|