1
|
Rani A, Pandey DM, Pandey JP. Impression of Insect's Proteolytic Enzyme Cocoonase and Its Application: A Comprehensive Review. Protein J 2025; 44:48-61. [PMID: 39904822 DOI: 10.1007/s10930-024-10246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2024] [Indexed: 02/06/2025]
Abstract
Cocoonase is a naturally secreted protease responsible for facilitating moth emergence from inside of cocoon. This protease is considered as of prime importance for all the cocooning lepidopteron. It specifically degrades sericin, the glue protein of the cocoon without damaging the fibroin and makes an escape hatch for adult emergence. Owing to this property cocoonase was characterized and explored for its prospective utilization in eco-friendly enzyme-based silk degumming. However, the applicability of cocoonase has not been explored much other than in silk degumming. Moreover, being a serine protease, and because of its similarity to trypsin, there is, tremendous potential for this enzyme to have biomedical applications, as well as numerous other uses that need to be investigated. This review article presents the comprehensive physicochemical properties of the cocoonase and its possible scope of applications in the near future.
Collapse
Affiliation(s)
- Aruna Rani
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Central Tasar Research and Training Institute (Central Silk Board, MOT Govt. of India), Piska Nagri, Ranchi, Jharkhand, 835303, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Jay Prakash Pandey
- Central Tasar Research and Training Institute (Central Silk Board, MOT Govt. of India), Piska Nagri, Ranchi, Jharkhand, 835303, India.
| |
Collapse
|
2
|
Rani A, Pandey DM, Pandey JP. Identification of cocoonase and cocoonase like protein using polyclonal antibody of Antheraea mylitta cocoonase. Biotechnol Lett 2024; 46:47-54. [PMID: 38109018 DOI: 10.1007/s10529-023-03447-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/03/2023] [Accepted: 11/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Cocoonase is a proteolytic enzyme released by silk moths during pupal adult emergence. Without damaging the silk fibroin, this enzyme dissolves the shell of the tasar cocoon by exclusively targeting the protein sericin. Prior to this study, there was no available antibody against Antheraea mylitta cocoonase to identify or screen out similar variants or cocoonase like protein. RESULTS In the present study, naturally secreted A. mylitta cocoonase was purified and used to immunize New Zealand white rabbits. The developed polyclonal antibody of cocoonase was purified and its specific interaction with cocoonase was determined using Indirect ELISA. The confirmation of its specificity and immuno-reactivity was evaluated by western blot using native cocoonase of tasar silkworm A. mylitta. The efficacy and specificity of the polyclonal antibody were further verified and confirmed by western blot which was performed to detect ten different ecotypes of A. mylitta cocoonase. CONCLUSION The developed antibody successfully detected the cocoonase of different ecotypes. Thus, in future this antibody can serve as one of the molecular detection method for cocoonase and cocoonase-like proteins.
Collapse
Affiliation(s)
- Aruna Rani
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Biotechnology Division, Central Tasar Research and Training Institute (Central Silk Board, Ministry of Textiles), Piska Nagri, Ranchi, Jharkhand, 835303, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | - Jay Prakash Pandey
- Biotechnology Division, Central Tasar Research and Training Institute (Central Silk Board, Ministry of Textiles), Piska Nagri, Ranchi, Jharkhand, 835303, India.
| |
Collapse
|
3
|
Cicconardi F, Milanetti E, Pinheiro de Castro EC, Mazo-Vargas A, Van Belleghem SM, Ruggieri AA, Rastas P, Hanly J, Evans E, Jiggins CD, Owen McMillan W, Papa R, Di Marino D, Martin A, Montgomery SH. Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies. Nat Commun 2023; 14:5620. [PMID: 37699868 PMCID: PMC10497600 DOI: 10.1038/s41467-023-41412-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Heliconius butterflies, a speciose genus of Müllerian mimics, represent a classic example of an adaptive radiation that includes a range of derived dietary, life history, physiological and neural traits. However, key lineages within the genus, and across the broader Heliconiini tribe, lack genomic resources, limiting our understanding of how adaptive and neutral processes shaped genome evolution during their radiation. Here, we generate highly contiguous genome assemblies for nine Heliconiini, 29 additional reference-assembled genomes, and improve 10 existing assemblies. Altogether, we provide a dataset of annotated genomes for a total of 63 species, including 58 species within the Heliconiini tribe. We use this extensive dataset to generate a robust and dated heliconiine phylogeny, describe major patterns of introgression, explore the evolution of genome architecture, and the genomic basis of key innovations in this enigmatic group, including an assessment of the evolution of putative regulatory regions at the Heliconius stem. Our work illustrates how the increased resolution provided by such dense genomic sampling improves our power to generate and test gene-phenotype hypotheses, and precisely characterize how genomes evolve.
Collapse
Affiliation(s)
- Francesco Cicconardi
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano- & Neuro-Science, Italian Institute of Technology, Viale Regina Elena 291, 00161, Rome, Italy
| | | | - Anyi Mazo-Vargas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Steven M Van Belleghem
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Ecology, Evolution and Conservation Biology, Biology Department, KU Leuven, Leuven, Belgium
| | | | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joseph Hanly
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Elizabeth Evans
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Riccardo Papa
- Department of Biology, University of Puerto Rico, Rio Piedras, PR, Puerto Rico
- Molecular Sciences and Research Center, University of Puerto Rico, San Juan, PR, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, Puerto Rico
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
- Neuronal Death and Neuroprotection Unit, Department of Neuroscience, Mario Negri Institute for Pharmacological Research-IRCCS, Via Mario Negri 2, 20156, Milano, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington DC, WA, 20052, USA
| | - Stephen H Montgomery
- School of Biological Sciences, Bristol University, Bristol, United Kingdom.
- Smithsonian Tropical Research Institute, Panama City, Panama.
| |
Collapse
|
4
|
Diessner EM, Takahashi GR, Martin RW, Butts CT. Comparative Modeling and Analysis of Extremophilic D-Ala-D-Ala Carboxypeptidases. Biomolecules 2023; 13:328. [PMID: 36830697 PMCID: PMC9953012 DOI: 10.3390/biom13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Understanding the molecular adaptations of organisms to extreme environments requires a comparative analysis of protein structure, function, and dynamics across species found in different environmental conditions. Computational studies can be particularly useful in this pursuit, allowing exploratory studies of large numbers of proteins under different thermal and chemical conditions that would be infeasible to carry out experimentally. Here, we perform such a study of the MEROPS family S11, S12, and S13 proteases from psychophilic, mesophilic, and thermophilic bacteria. Using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis, we examine both conserved features and trends across thermal groups. Our findings suggest a number of hypotheses for experimental investigation.
Collapse
Affiliation(s)
| | - Gemma R. Takahashi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Rachel W. Martin
- Department of Chemistry, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Carter T. Butts
- Departments of Sociology, Statistics, Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Sneha S, Pandey DM. In silico structural and functional characterization of Antheraea mylitta cocoonase. J Genet Eng Biotechnol 2022; 20:102. [PMID: 35816268 PMCID: PMC9273796 DOI: 10.1186/s43141-022-00367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cocoonase is a serine protease present in sericigenous insects and majorly involved in dissolving of sericin protein allowing moth to escape. Cocoon structure is made up of sericin protein which holds fibroin filaments together. Cocoonase enzyme hydrolyzes sericin protein without harming the fibroin. However, until date, no detailed characterization of cocoonase enzyme and its presence in wild silk moth Antheraea mylitta has been carried out. Therefore, current study aimed for detailed characterization of amplified cocoonase enzyme, secondary and tertiary structure prediction, sequence and structural alignment, phylogenetic analysis, and computational validation. Several computational tools such as ProtParam, Iterative Threading Assembly Refinement (I-TASSER), PROCHECK, SAVES v6.0, TM-align, Molecular Evolutionary Genetics Analysis (MEGA) X, and Figtree were employed for characterization of cocoonase protein. RESULTS The present study elucidates about the isolation of RNA, cDNA preparation, PCR amplification, and in silico characterization of cocoonase from Antheraea mylitta. Here, total RNA was isolated from head region of A. mylitta, and gene-specific primers were designed using Primer3 followed by PCR-based amplification and sequencing. The newly constructed 377-bp length sequence of cocoonase was subjected to in silico characterization. In silico study of A. mylitta cocoonase showed 26% similarity to A. pernyi strain Qing-6 cocoonase using Blastp and belongs to member of chymotrypsin-like serine protease superfamily. From phylogenetic study, it was found that A. mylitta cocoonase sequence is closely related to A. pernyi cocoonase sequence. CONCLUSIONS The present study revealed about the detailed in silico characterization of cocoonase gene and encoded protein obtained from A. mylitta head region. The results obtained infer the presence of cocoonase enzyme in the wild silkworm A. mylitta and can be used for cocoon degumming which will be a valuable and cost-effective strategy in silk industry.
Collapse
Affiliation(s)
- Sneha Sneha
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
6
|
Gai T, Tong X, Han M, Li C, Fang C, Zou Y, Hu H, Xiang H, Xiang Z, Lu C, Dai F. Cocoonase is indispensable for Lepidoptera insects breaking the sealed cocoon. PLoS Genet 2020; 16:e1009004. [PMID: 32986696 PMCID: PMC7544147 DOI: 10.1371/journal.pgen.1009004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/08/2020] [Accepted: 07/22/2020] [Indexed: 11/18/2022] Open
Abstract
Many insects spin cocoons to protect the pupae from unfavorable environments and predators. After emerging from the pupa, the moths must escape from the sealed cocoons. Previous works identified cocoonase as the active enzyme loosening the cocoon to form an escape-hatch. Here, using bioinformatics tools, we show that cocoonase is specific to Lepidoptera and that it probably existed before the occurrence of lepidopteran insects spinning cocoons. Despite differences in cocooning behavior, we further show that cocoonase evolved by purification selection in Lepidoptera and that the selection is more intense in lepidopteran insects spinning sealed cocoons. Experimentally, we applied gene editing techniques to the silkworm Bombyx mori, which spins a dense and sealed cocoon, as a model of lepidopteran insects spinning sealed cocoons. We knocked out cocoonase using the CRISPR/Cas9 system. The adults of homozygous knock-out mutants were completely formed and viable but stayed trapped and died naturally in the cocoon. This is the first experimental and phenotypic evidence that cocoonase is the determining factor for breaking the cocoon. This work led to a novel silkworm strain yielding permanently intact cocoons and provides a new strategy for controlling the pests that form cocoons. Spinning and cocooning are the instincts of many insects, providing a shelter to the residing pupae to resist adverse factors. After the metamorphosis of pupa into adult, the adult must break open the cocoon to emerge, which is called decocooning. We have bioinformatically identified that cocoonase is specific to Lepidoptera, and demonstrated that it is the determining factor for breaking the sealed cocoon experimentally for the first time. This work led to a novel silkworm strain yielding permanently intact cocoons and provides a new strategy for controlling the pests that form cocoons and for breeding.
Collapse
Affiliation(s)
- Tingting Gai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
- * E-mail: (XT); (FD)
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Chunlin Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Chunyan Fang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Yunlong Zou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing, China
- * E-mail: (XT); (FD)
| |
Collapse
|
7
|
Smith G, Kelly JE, Macias-Muñoz A, Butts CT, Martin RW, Briscoe AD. Evolutionary and structural analyses uncover a role for solvent interactions in the diversification of cocoonases in butterflies. Proc Biol Sci 2019; 285:rspb.2017.2037. [PMID: 29298934 DOI: 10.1098/rspb.2017.2037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/01/2017] [Indexed: 01/22/2023] Open
Abstract
Multi-omic approaches promise to supply the power to detect genes underlying disease and fitness-related phenotypes. Optimal use of the resulting profusion of data requires detailed investigation of individual candidate genes, a challenging proposition. Here, we combine transcriptomic and genomic data with molecular modelling of candidate enzymes to characterize the evolutionary history and function of the serine protease cocoonase. Heliconius butterflies possess the unique ability to feed on pollen; recent work has identified cocoonase as a candidate gene in pollen digestion. Cocoonase was first described in moths, where it aids in eclosure from the cocoon and is present as a single copy gene. In heliconiine butterflies it is duplicated and highly expressed in the mouthparts of adults. At least six copies of cocoonase are present in Heliconius melpomene and copy number varies across H. melpomene sub-populations. Most cocoonase genes are under purifying selection, however branch-site analyses suggest cocoonase 3 genes may have evolved under episodic diversifying selection. Molecular modelling of cocoonase proteins and examination of their predicted structures revealed that the active site region of each type has a similar structure to trypsin, with the same predicted substrate specificity across types. Variation among heliconiine cocoonases instead lies in the outward-facing residues involved in solvent interaction. Thus, the neofunctionalization of cocoonase duplicates appears to have resulted from the need for these serine proteases to operate in diverse biochemical environments. We suggest that cocoonase may have played a buffering role in feeding during the diversification of Heliconius across the neotropics by enabling these butterflies to digest protein from a range of biochemical milieux.
Collapse
Affiliation(s)
- G Smith
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA .,School of Biological Sciences, Bangor University, Brambell Laboratories, Bangor, Gwynedd, UK
| | - J E Kelly
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - A Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - C T Butts
- Department of Sociology, University of California, Irvine, CA 92697, USA.,Department of Statistics, University of California, Irvine, CA 92697, USA.,Department of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697, USA
| | - R W Martin
- Department of Chemistry, University of California, Irvine, CA 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - A D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|