1
|
Schauf AJ, Jones MF, Oh P. Simulating the dynamics of dispersal and dispersal ability in fragmented populations with mate-finding Allee effects. Ecol Evol 2023; 13:e10021. [PMID: 37091574 PMCID: PMC10121235 DOI: 10.1002/ece3.10021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/25/2023] Open
Abstract
We consider the spatial propagation and genetic evolution of model populations comprising multiple subpopulations, each distinguished by its own characteristic dispersal rate. Mate finding is modeled in accord with the assumption that reproduction is based on random encounters between pairs of individuals, so that the frequency of interbreeding between two subpopulations is proportional to the product of local population densities of each. The resulting nonlinear growth term produces an Allee effect, whereby reproduction rates are lower in sparsely populated areas; the distribution of dispersal rates that evolves is then highly dependent upon the population's initial spatial distribution. In a series of numerical test cases, we consider how these dynamics affect lattice-like arrangements of population fragments, and investigate how a population's initial fragmentation determines the dispersal rates that evolve as a habitat is colonized. First, we consider a case where initial population fragments coincide with habitat islands, within which death rates differ from those that apply outside; the presence of inhospitable exterior regions exaggerates Allee effect-driven reductions in dispersal ability. We then examine how greater distances separating adjacent population fragments lead to more severe reductions in dispersal ability. For populations of a fixed initial magnitude, fragmentation into smaller, denser patches leads not only to greater losses of dispersal ability, but also helps ensure the population's long-term persistence, emphasizing the trade-offs between the benefits and risks of rapid dispersal under Allee effects. Next, simulations of well-established populations disrupted by localized depopulation events illustrate how mate-finding Allee effects and spatial heterogeneity can drive a population's dispersal ability to evolve either downward or upward depending on conditions, highlighting a qualitative distinction between population fragmentation and habitat heterogeneity. A final test case compares populations that are fragmented across multiple scales, demonstrating how differences in the relative scales of micro- and macro-level fragmentation can lead to qualitatively different evolutionary outcomes.
Collapse
Affiliation(s)
- Andrew J. Schauf
- Department of PhysicsNational University of SingaporeSingaporeSingapore
- NUS CitiesNational University of SingaporeSingaporeSingapore
| | - Matthew F. Jones
- Biodiversity InstituteUniversity of KansasLawrenceKansasUSA
- Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
- Biodiversity Knowledge Integration Center, School of Life SciencesArizona State UniversityTempeArizonaUSA
| | - Poong Oh
- Wee Kim Wee School of Communication and InformationNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
2
|
Do common dispersal influences inform a large lizard’s landscape-scale gene flow? Evol Ecol 2022. [DOI: 10.1007/s10682-022-10208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Barros RA, Dorado‐Rodrigues TF, Strüssmann C. Taxonomic, functional, and phylogenetic diversity of lizard assemblages across habitats and seasons in a Brazilian Cerrado area. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rafael Assis Barros
- Programa de Pós‐Graduação em Ecologia e Conservação da Biodiversidade Instituto de Biociências Universidade Federal de Mato Grosso Avenida Fernando Corrêa da Costa, 2367 Cuiabá 78060‐900 Brazil
- Laboratório de Herpetologia Centro de Biodiversidade Instituto de Biociências Universidade Federal de Mato Grosso Avenida Fernando Corrêa da Costa, 2367 Cuiabá 78060900 Brazil
| | - Tainá Figueras Dorado‐Rodrigues
- Laboratório de Herpetologia Centro de Biodiversidade Instituto de Biociências Universidade Federal de Mato Grosso Avenida Fernando Corrêa da Costa, 2367 Cuiabá 78060900 Brazil
| | - Christine Strüssmann
- Faculdade de Medicina Veterinária Universidade Federal de Mato Grosso Avenida Fernando Corrêa da Costa, 2367 Cuiabá 78060900 Brazil
| |
Collapse
|
4
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Purwandana D, Ariefiandy A, Azmi M, Nasu SA, Sahudin, Dos AA, Jessop TS. Turning ghosts into dragons: improving camera monitoring outcomes for a cryptic low-density Komodo dragon population in eastern Indonesia. WILDLIFE RESEARCH 2021. [DOI: 10.1071/wr21057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract Context Detection probability is a key attribute influencing population-level wildlife estimates necessary for conservation inference. Increasingly, camera traps are used to monitor threatened reptile populations and communities. Komodo dragon (Varanus komodoensis) populations have been previously monitored using camera traps; however, considerations for improving detection probability estimates for very low-density populations have not been well investigated. Aims Here we compare the effects of baited versus non-baited camera monitoring protocols to influence Komodo dragon detection and occupancy estimates alongside monitoring survey design and cost considerations for ongoing population monitoring within the Wae Wuul Nature Reserve on Flores Island, Indonesia. Methods Twenty-six camera monitoring stations (CMS) were deployed throughout the study area with a minimum of 400 m among CMS to achieve independent sampling units. Each CMS was randomly assigned as a baited or non-baited camera monitoring station and deployed for 6 or 30 daily sampling events. Key results Baited camera monitoring produced higher site occupancy estimates with reduced variance. Komodo dragon detection probability estimates were 0.15 ± 0.092–0.22 (95% CI), 0.01 ± 0.001–0.03, and 0.03 ± 0.01–0.04 for baited (6 daily survey sampling events), unbaited (6 daily survey sampling events) and long-unbaited (30 daily survey sampling events) sampling durations respectively. Additionally, the provision of baited lures at cameras had additional benefits for Komodo detection, survey design and sampling effort costs. Conclusions Our study indicated that baited cameras provide the most effective monitoring method to survey low-density Komodo dragon populations in protected areas on Flores. Implications We believe our monitoring approach now lends itself to evaluating population responses to ecological and anthropogenic factors, hence informing conservation efforts in this nature reserve.
Collapse
|
6
|
Shine R, Alford RA, Blennerhasset R, Brown GP, DeVore JL, Ducatez S, Finnerty P, Greenlees M, Kaiser SW, McCann S, Pettit L, Pizzatto L, Schwarzkopf L, Ward-Fear G, Phillips BL. Increased rates of dispersal of free-ranging cane toads (Rhinella marina) during their global invasion. Sci Rep 2021; 11:23574. [PMID: 34876612 PMCID: PMC8651681 DOI: 10.1038/s41598-021-02828-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Invasions often accelerate through time, as dispersal-enhancing traits accumulate at the expanding range edge. How does the dispersal behaviour of individual organisms shift to increase rates of population spread? We collate data from 44 radio-tracking studies (in total, of 650 animals) of cane toads (Rhinella marina) to quantify distances moved per day, and the frequency of displacement in their native range (French Guiana) and two invaded areas (Hawai’i and Australia). We show that toads in their native-range, Hawai’i and eastern Australia are relatively sedentary, while toads dispersing across tropical Australia increased their daily distances travelled from 20 to 200 m per day. That increase reflects an increasing propensity to change diurnal retreat sites every day, as well as to move further during each nocturnal displacement. Daily changes in retreat site evolved earlier than did changes in distances moved per night, indicating a breakdown in philopatry before other movement behaviours were optimised to maximise dispersal.
Collapse
Affiliation(s)
- Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | | | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jayna L DeVore
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Ducatez
- UMR 241 EIO (UPF, IRD, IFREMER, ILM), Institut de Recherche Pour le Développement (IRD), Papeete, Tahiti, French Polynesia
| | - Patrick Finnerty
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Matthew Greenlees
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shannon W Kaiser
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Samantha McCann
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lachlan Pettit
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ligia Pizzatto
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Georgia Ward-Fear
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Benjamin L Phillips
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
7
|
Iannucci A, Benazzo A, Natali C, Arida EA, Zein MSA, Jessop TS, Bertorelle G, Ciofi C. Population structure, genomic diversity and demographic history of Komodo dragons inferred from whole-genome sequencing. Mol Ecol 2021; 30:6309-6324. [PMID: 34390519 PMCID: PMC9292392 DOI: 10.1111/mec.16121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023]
Abstract
Population and conservation genetics studies have greatly benefited from the development of new techniques and bioinformatic tools associated with next-generation sequencing. Analysis of extensive data sets from whole-genome sequencing of even a few individuals allows the detection of patterns of fine-scale population structure and detailed reconstruction of demographic dynamics through time. In this study, we investigated the population structure, genomic diversity and demographic history of the Komodo dragon (Varanus komodoensis), the world's largest lizard, by sequencing the whole genomes of 24 individuals from the five main Indonesian islands comprising the entire range of the species. Three main genomic groups were observed. The populations of the Island of Komodo and the northern coast of Flores, in particular, were identified as two distinct conservation units. Degrees of genomic divergence among island populations were interpreted as a result of changes in sea level affecting connectivity across islands. Demographic inference suggested that Komodo dragons probably experienced a relatively steep population decline over the last million years, reaching a relatively stable Ne during the Saalian glacial cycle (400-150 thousand years ago) followed by a rapid Ne decrease. Genomic diversity of Komodo dragons was similar to that found in endangered or already extinct reptile species. Overall, this study provides an example of how whole-genome analysis of a few individuals per population can help define population structure and intraspecific demographic dynamics. This is particularly important when applying population genomics data to conservation of rare or elusive endangered species.
Collapse
Affiliation(s)
| | - Andrea Benazzo
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Chiara Natali
- Department of BiologyUniversity of FlorenceFirenzeItaly
| | - Evy Ayu Arida
- Research Center for BiologyThe Indonesian Institute of Sciences (LIPI)Cibinong Science CenterCibinongIndonesia
| | - Moch Samsul Arifin Zein
- Research Center for BiologyThe Indonesian Institute of Sciences (LIPI)Cibinong Science CenterCibinongIndonesia
| | - Tim S. Jessop
- School of Life and Environmental SciencesDeakin UniversityGeelongVic.Australia
| | - Giorgio Bertorelle
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
| | - Claudio Ciofi
- Department of BiologyUniversity of FlorenceFirenzeItaly
| |
Collapse
|
8
|
Purwandana D, Imansyah MJ, Ariefiandy A, Rudiharto H, Ciofi C, Jessop TS. Insights into the Nesting Ecology and Annual Hatchling Production of the Komodo Dragon. COPEIA 2020. [DOI: 10.1643/ch-19-337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | | | | | - Heru Rudiharto
- Komodo National Park, Labuan Bajo 86711, Flores, Indonesia
| | - Claudio Ciofi
- Department of Biology, University of Florence, Via Madonna del Piano 6–50019 Sesto Fiorentino (FI), Italy
| | - Tim S. Jessop
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds 3220, Australia; t.jessop@ deakin.edu.au. Send reprint requests to this address
| |
Collapse
|
9
|
Jones AR, Jessop TS, Ariefiandy A, Brook BW, Brown SC, Ciofi C, Benu YJ, Purwandana D, Sitorus T, Wigley TML, Fordham DA. Identifying island safe havens to prevent the extinction of the World's largest lizard from global warming. Ecol Evol 2020; 10:10492-10507. [PMID: 33072275 PMCID: PMC7548163 DOI: 10.1002/ece3.6705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/10/2022] Open
Abstract
The Komodo dragon (Varanus komodoensis) is an endangered, island‐endemic species with a naturally restricted distribution. Despite this, no previous studies have attempted to predict the effects of climate change on this iconic species. We used extensive Komodo dragon monitoring data, climate, and sea‐level change projections to build spatially explicit demographic models for the Komodo dragon. These models project the species’ future range and abundance under multiple climate change scenarios. We ran over one million model simulations with varying model parameters, enabling us to incorporate uncertainty introduced from three main sources: (a) structure of global climate models, (b) choice of greenhouse gas emission trajectories, and (c) estimates of Komodo dragon demographic parameters. Our models predict a reduction in range‐wide Komodo dragon habitat of 8%–87% by 2050, leading to a decrease in habitat patch occupancy of 25%–97% and declines of 27%–99% in abundance across the species' range. We show that the risk of extirpation on the two largest protected islands in Komodo National Park (Rinca and Komodo) was lower than other island populations, providing important safe havens for Komodo dragons under global warming. Given the severity and rate of the predicted changes to Komodo dragon habitat patch occupancy (a proxy for area of occupancy) and abundance, urgent conservation actions are required to avoid risk of extinction. These should, as a priority, be focused on managing habitat on the islands of Komodo and Rinca, reflecting these islands’ status as important refuges for the species in a warming world. Variability in our model projections highlights the importance of accounting for uncertainties in demographic and environmental parameters, structural assumptions of global climate models, and greenhouse gas emission scenarios when simulating species metapopulation dynamics under climate change.
Collapse
Affiliation(s)
- Alice R Jones
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia.,Department for Environment and Water Adelaide SA Australia
| | - Tim S Jessop
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Waurn Ponds Vic. Australia.,Komodo Survival Program Bali Indonesia
| | | | - Barry W Brook
- School of Natural Sciences University of Tasmania Hobart Tas Australia
| | - Stuart C Brown
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
| | - Claudio Ciofi
- Komodo Survival Program Bali Indonesia.,Department of Biology University of Florence Sesto Fiorentino Italy
| | | | | | - Tamen Sitorus
- Balai Besar Konservasi Sumber Daya Alam Kupang Indonesia
| | - Tom M L Wigley
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia.,Climate and Global Dynamics Laboratory National Center for Atmospheric Research Boulder CO USA
| | - Damien A Fordham
- The Environment Institute and School of Biological Sciences The University of Adelaide Adelaide SA Australia
| |
Collapse
|
10
|
Ariefiandy A, Purwandana D, Benu YJ, Letnic M, Jessop TS. Knee deep in trouble: rusa deer use an aquatic escape behaviour to delay attack by Komodo dragons. AUSTRALIAN MAMMALOGY 2020. [DOI: 10.1071/am18052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We document six observations of an aquatic behaviour used by rusa deer (Rusa timorensis) to delay an imminent attack from Komodo dragons (Varanus komodoensis). This unusual behaviour arose after rusa deer fled into the nearby seawater following an attack from a solitary Komodo dragon. Once in the sea, rusa deer remained relatively stationary by standing in shallow water (<1 m deep) for up to 4 h. This behaviour generally allowed rusa deer to avoid an in-water attack from Komodo dragons. However, if rusa did not die from injuries, they moved back onto land and were subsequently killed by Komodo dragons. The aquatic behaviour delays subsequent attacks on rusa deer by Komodo dragons, but this appears only to postpone, rather than prevent, the deer’s death.
Collapse
|
11
|
Jessop TS, Ariefiandy A, Purwandana D, Ciofi C, Imansyah J, Benu YJ, Fordham DA, Forsyth DM, Mulder RA, Phillips BL. Exploring mechanisms and origins of reduced dispersal in island Komodo dragons. Proc Biol Sci 2018; 285:rspb.2018.1829. [PMID: 30429305 DOI: 10.1098/rspb.2018.1829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/22/2018] [Indexed: 11/12/2022] Open
Abstract
Loss of dispersal typifies island biotas, but the selective processes driving this phenomenon remain contentious. This is because selection via, both indirect (e.g. relaxed selection or island syndromes) and direct (e.g. natural selection or spatial sorting) processes may be involved, and no study has yet convincingly distinguished between these alternatives. Here, we combined observational and experimental analyses of an island lizard, the Komodo dragon (Varanus komodoensis, the world's largest lizard), to provide evidence for the actions of multiple processes that could contribute to island dispersal loss. In the Komodo dragon, concordant results from telemetry, simulations, experimental translocations, mark-recapture, and gene flow studies indicated that despite impressive physical and sensory capabilities for long-distance movement, Komodo dragons exhibited near complete dispersal restriction: individuals rarely moved beyond the valleys they were born/captured in. Importantly, lizard site-fidelity was insensitive to common agents of dispersal evolution (i.e. indices of risk for inbreeding, kin and intraspecific competition, and low habitat quality) that consequently reduced survival of resident individuals. We suggest that direct selection restricts movement capacity (e.g. via benefits of spatial philopatry and increased costs of dispersal) alongside use of dispersal-compensating traits (e.g. intraspecific niche partitioning) to constrain dispersal in island species.
Collapse
Affiliation(s)
- Tim S Jessop
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds 3220, Australia
| | | | | | - Claudio Ciofi
- Department of Animal Biology and Genetics, University of Florence, Florence 50125, Italy
| | - Jeri Imansyah
- Komodo Survival Program, Denpasar 80223, Bali, Indonesia
| | | | - Damien A Fordham
- The Environment Institute and School of Earth and Environmental Science, The University of Adelaide, Adelaide, South Australia 5005, Australia.,Center for Macroecology, Evolution, and Climate, National Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - David M Forsyth
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales 2800, Australia
| | - Raoul A Mulder
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benjamin L Phillips
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|