1
|
Stein Åslund M, Reichelt M, Zhang K, Castaño C, Stenlid J, Gershenzon J, Elfstrand M. Scots Pines With Tolerance to Melampsora pinitorqua and Diplodia sapinea Show Distinct Metabolic Profiles. PLANT, CELL & ENVIRONMENT 2025; 48:1479-1493. [PMID: 39450910 PMCID: PMC11695801 DOI: 10.1111/pce.15218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Diplodia sapinea causes Diplodia tip blight (DTB) and is recognised as an opportunistic necrotrophic pathogen affecting conifers. While DTB is associated with abiotic stress, the impact of biotic stress in the host on D. sapinea's lifestyle shift is unknown. Observed co-occurrences of D. sapinea and Melampsora pinitorqua, causing pine twisting rust on Scots pine (Pinus sylvestris), instigated an investigation into their interaction with and influence on the defence mechanisms of the host. We hypothesised that M. pinitorqua infections predispose the trees to D. sapinea by stressing the host and altering the shoot metabolites. Pines in a plantation were sampled over time to study pathogen biomass and host metabolites. Symptoms of both pathogens were consistent over years, and the preceding season's symptoms affected the metabolic profiles pre-infection and M. pinitorqua's proliferation. Symptoms of M. pinitorqua altered shoot metabolites more than fungal biomass, with co-symptomatic trees exhibiting elevated M. pinitorqua biomass. Specific phenolic compounds had a strong positive association with the shoot symptom × D. sapinea interaction. D. sapinea's biomass presymptoms was independent of previous disease symptoms and infection by M. pinitorqua. Some trees showed disease tolerance, with delayed rust infections and minimal DTB symptoms. Further investigations on this trait are needed.
Collapse
Affiliation(s)
- Matilda Stein Åslund
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Ke Zhang
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Carles Castaño
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | | | - Malin Elfstrand
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
2
|
Geyer JK, Grunberg RL, Wang J, Mitchell CE. Leaf age structures phyllosphere microbial communities in the field and greenhouse. Front Microbiol 2024; 15:1429166. [PMID: 39206365 PMCID: PMC11349622 DOI: 10.3389/fmicb.2024.1429166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
The structure of the leaf microbiome can alter host fitness and change in response to abiotic and biotic factors, like seasonality, climate, and leaf age. However, relatively few studies consider the influence of host age on microbial communities at a time scale of a few days, a short time scale relevant to microbes. To understand how host age modulates changes in the fungal and bacterial leaf microbiome on a short time scale, we ran independent field and greenhouse-based studies and characterized phyllosphere communities using next-generation sequencing approaches. Our field study characterized changes in the fungal and bacterial phyllosphere by examining leaves of different relative ages across individuals, whereas the greenhouse study examined changes in the fungal microbiome by absolute leaf age across individuals. Together, these results indicate that fungal communities are susceptible to change as a leaf ages as evidenced by shifts in the diversity of fungal taxa both in the field and the greenhouse. Similarly, there were increases in the diversity of fungal taxa by leaf age in the greenhouse. In bacterial communities in the field, we observed changes in the diversity, composition, and relative abundance of common taxa. These findings build upon previous literature characterizing host-associated communities at longer time scales and provide a foundation for targeted work examining how specific microbial taxa might interact with each other, such as fine-scale interactions between pathogenic and non-pathogenic species.
Collapse
Affiliation(s)
- Julie K. Geyer
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rita L. Grunberg
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Wilson Center for Science and Justice at Duke Law, Durham, NC, United States
| | - Jeremy Wang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Charles E. Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Green ET, Grunberg RL, Mitchell CE. Order of arrival and nutrient supply alter outcomes of co-infection with two fungal pathogens. Proc Biol Sci 2024; 291:20240915. [PMID: 39191282 DOI: 10.1098/rspb.2024.0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
A pathogen arriving on a host typically encounters a diverse community of microbes that can shape priority effects, other within-host interactions and infection outcomes. In plants, environmental nutrients can drive trade-offs between host growth and defence and can mediate interactions between co-infecting pathogens. Nutrients may thus alter the outcome of pathogen priority effects for the host, but this possibility has received little experimental investigation. To disentangle the relationship between nutrient availability and co-infection dynamics, we factorially manipulated the nutrient availability and order of arrival of two foliar fungal pathogens (Rhizoctonia solani and Colletotrichum cereale) on the grass tall fescue (Lolium arundinaceum) and tracked disease outcomes. Nutrient addition did not influence infection rates, infection severity or plant biomass. Colletotrichum cereale facilitated R. solani, increasing its infection rate regardless of their order of inoculation. Additionally, simultaneous and C. cereale-first inoculations decreased plant growth and-in plants that did not receive nutrient addition-increased leaf nitrogen concentrations compared to uninoculated plants. These effects were partially, but not completely, explained by the duration and severity of pathogen infections. This study highlights the importance of understanding the intricate associations between the order of pathogen arrival, host nutrient availability and host defence to better predict infection outcomes.
Collapse
Affiliation(s)
- Elizabeth T Green
- Department of Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
- School of Plant Sciences, University of Arizona , Tucson, AZ, USA
| | - Rita L Grunberg
- Department of Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
- Wilson Center for Science and Justice, Duke University , Durham, NC, USA
| | - Charles E Mitchell
- Department of Biology, University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| |
Collapse
|
4
|
Clay PA, Gattis S, Garcia J, Hernandez V, Ben-Ami F, Duffy MA. Age Structure Eliminates the Impact of Coinfection on Epidemic Dynamics in a Freshwater Zooplankton System. Am Nat 2023; 202:785-799. [PMID: 38033180 DOI: 10.1086/726897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractParasites often coinfect host populations and, by interacting within hosts, might change the trajectory of multiparasite epidemics. However, host-parasite interactions often change with host age, raising the possibility that within-host interactions between parasites might also change, influencing the spread of disease. We measured how heterospecific parasites interacted within zooplankton hosts and how host age changed these interactions. We then parameterized an epidemiological model to explore how age effects altered the impact of coinfection on epidemic dynamics. In our model, we found that in populations where epidemiologically relevant parameters did not change with age, the presence of a second parasite altered epidemic dynamics. In contrast, when parameters varied with host age (based on our empirical measures), there was no longer a difference in epidemic dynamics between singly infected and coinfected populations, indicating that variable age structure within a population eliminates the impact of coinfection on epidemic dynamics. Moreover, infection prevalence of both parasites was lower in populations where epidemiologically relevant parameters changed with age. Given that host population age structure changes over time and space, these results indicate that age effects are important for understanding epidemiological processes in coinfected systems and that studies focused on a single age group could yield inaccurate insights.
Collapse
|
5
|
Ramesh A, Hall SR. Niche theory for within-host parasite dynamics: Analogies to food web modules via feedback loops. Ecol Lett 2023; 26:351-368. [PMID: 36632705 DOI: 10.1111/ele.14142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 01/13/2023]
Abstract
Why do parasites exhibit a wide dynamical range within their hosts? For instance, why does infecting dose either lead to infection or immune clearance? Why do some parasites exhibit boom-bust, oscillatory dynamics? What maintains parasite diversity, that is coinfection v single infection due to exclusion or priority effects? For insights on parasite dose, dynamics and diversity governing within-host infection, we turn to niche models. An omnivory food web model (IGP) blueprints one parasite competing with immune cells for host energy (PIE). Similarly, a competition model (keystone predation, KP) mirrors a new coinfection model (2PIE). We then drew analogies between models using feedback loops. The following three points arise: first, like in IGP, parasites oscillate when longer loops through parasites, immune cells and resource regulate parasite growth. Shorter, self-limitation loops (involving resources and enemies) stabilise those oscillations. Second, IGP can produce priority effects that resemble immune clearance. But, despite comparable loop structure, PIE cannot due to constraints imposed by production of immune cells. Third, despite somewhat different loop structure, KP and 2PIE share apparent and resource competition mechanisms that produce coexistence (coinfection) or priority effects of prey or parasites. Together, this mechanistic niche framework for within-host dynamics offers new perspective to improve individual health.
Collapse
|
6
|
Sallinen S, Susi H, Halliday F, Laine AL. Altered within- and between-host transmission under coinfection underpin parasite co-occurrence patterns in the wild. Evol Ecol 2022; 37:131-151. [PMID: 36785621 PMCID: PMC9911512 DOI: 10.1007/s10682-022-10182-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
Interactions among parasite species coinfecting the same host individual can have far reaching consequences for parasite ecology and evolution. How these within-host interactions affect epidemics may depend on two non-exclusive mechanisms: parasite growth and reproduction within hosts, and parasite transmission between hosts. Yet, how these two mechanisms operate under coinfection, and how sensitive they are to the composition of the coinfecting parasite community, remains poorly understood. Here, we test the hypothesis that the relationship between within- and between-host transmission of the fungal pathogen, Phomopsis subordinaria, is affected by co-occurring parasites infecting the host plant, Plantago lanceolata. We conducted a field experiment manipulating the parasite community of transmission source plants, then tracked P. subordinaria within-host transmission, as well as between-host transmission to naïve recipient plants. We find that coinfection with the powdery mildew pathogen, Podosphaera plantaginis, causes increased between-host transmission of P. subordinaria by affecting the number of infected flower stalks in the source plants, resulting from altered auto-infection. In contrast, coinfection with viruses did not have an effect on either within- or between-host transmission. We then analyzed data on the occurrence of P. subordinaria in 2018 and the powdery mildew in a multi-year survey data set from natural host populations to test whether the positive association predicted by our experimental results is evident in field epidemiological data. Consistent with our experimental findings, we observed a positive association in the occurrence of P. subordinaria and historical powdery mildew persistence. Jointly, our experimental and epidemiological results suggest that within- and between-host transmission of P. subordinaria depends on the identity of coinfecting parasites, with potentially far-reaching effects on disease dynamics and parasite co-occurrence patterns in wild populations. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10182-9.
Collapse
Affiliation(s)
- Suvi Sallinen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Hanna Susi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
| | - Fletcher Halliday
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1 (PO box 65), 00014 Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, CH-8057 Zurich, Switzerland
| |
Collapse
|
7
|
Burr AA, Woods KD, Cassidy ST, Wood CW. Priority effects alter the colonization success of a host-associated parasite and mutualist. Ecology 2022; 103:e3720. [PMID: 35396706 DOI: 10.1002/ecy.3720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 11/07/2022]
Abstract
Priority effects shape the assembly of free-living communities and host-associated communities. However, the current literature does not fully incorporate two features of host-symbiont interactions-correlated host responses to multiple symbionts and ontogenetic changes in host responses to symbionts-leading to an incomplete picture of the role of priority effects in host-associated communities. We factorially manipulated the inoculation timing of two plant symbionts (mutualistic rhizobia bacteria and parasitic root-knot nematodes) and tested how host age at arrival, arrival order, and arrival synchrony affected symbiont colonization success in the model legume Medicago truncatula. We found that host age, arrival order, and arrival synchrony significantly affected colonization of one or both symbionts. Host age at arrival only affected nematodes but not rhizobia: younger plants were more heavily infected than older plants. By contrast, arrival order only affected rhizobia but not nematodes: plants formed more rhizobia nodules when rhizobia arrived before nematodes. Finally, synchronous arrival decreased colonization both symbionts, an effect that depended on host age. Our results demonstrate that priority effects compromise the host's ability to control colonization by two major symbionts, and suggest that the role of correlated host responses and host ontogeny in the assembly of host-associated communities deserve further attention.
Collapse
Affiliation(s)
- Audrey A Burr
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kamron D Woods
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven T Cassidy
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Corlett W Wood
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
8
|
Stewart Merrill TE, Rapti Z, Cáceres CE. Host Controls of Within-Host Disease Dynamics: Insight from an Invertebrate System. Am Nat 2021; 198:317-332. [PMID: 34403315 DOI: 10.1086/715355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWithin-host processes (representing the entry, establishment, growth, and development of a parasite inside its host) may play a key role in parasite transmission but remain challenging to observe and quantify. We develop a general model for measuring host defenses and within-host disease dynamics. Our stochastic model breaks the infection process down into the stages of parasite exposure, entry, and establishment and provides associated probabilities for a host's ability to resist infections with barriers and clear internal infections. We tested our model on Daphnia dentifera and the parasitic fungus Metschnikowia bicuspidata and found that when faced with identical levels of parasite exposure, Daphnia patent (transmitting) infections depended on the strength of internal clearance. Applying a Gillespie algorithm to the model-estimated probabilities allowed us to visualize within-host dynamics, within which signatures of host defense could be clearly observed. We also found that early within-host stages were the most vulnerable to internal clearance, suggesting that hosts have a limited window during which recovery can occur. Our study demonstrates how pairing longitudinal infection data with a simple model can reveal new insight into within-host dynamics and mechanisms of host defense. Our model and methodological approach may be a powerful tool for exploring these properties in understudied host-parasite interactions.
Collapse
|
9
|
O'Keeffe KR, Simha A, Mitchell CE. Indirect interactions among co-infecting parasites and a microbial mutualist impact disease progression. Proc Biol Sci 2021; 288:20211313. [PMID: 34375557 DOI: 10.1098/rspb.2021.1313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interactions among parasites and other microbes within hosts can impact disease progression, yet study of such interactions has been mostly limited to pairwise combinations of microbes. Given the diversity of microbes within hosts, indirect interactions among more than two microbial species may also impact disease. To test this hypothesis, we performed inoculation experiments that investigated interactions among two fungal parasites, Rhizoctonia solani and Colletotrichum cereale, and a systemic fungal endophyte, Epichloë coenophiala, within the grass, tall fescue (Lolium arundinaceum). Both direct and indirect interactions impacted disease progression. While the endophyte did not directly influence R. solani disease progression or C. cereale symptom development, the endophyte modified the interaction between the two parasites. The magnitude of the facilitative effect of C. cereale on the growth of R. solani tended to be greater when the endophyte was present. Moreover, this interaction modification strongly affected leaf mortality. For plants lacking the endophyte, parasite co-inoculation did not increase leaf mortality compared to single-parasite inoculations. By contrast, for endophyte-infected plants, parasite co-inoculation increased leaf mortality compared to inoculation with R. solani or C. cereale alone by 1.9 or 4.9 times, respectively. Together, these results show that disease progression can be strongly impacted by indirect interactions among microbial symbionts.
Collapse
Affiliation(s)
- Kayleigh R O'Keeffe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Anita Simha
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, Duke University, Durham, NC, USA
| | - Charles E Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Morrill A, Nielsen ÓK, Stenkewitz U, Pálsdóttir GR, Forbes MR, Skírnisson K. Weighing the predictors: host traits and coinfecting species both explain variation in parasitism of Rock Ptarmigan. Ecosphere 2021. [DOI: 10.1002/ecs2.3709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- André Morrill
- Department of Biology Carleton University 1125 Colonel By Drive Ottawa Ontario K1S 5B6 Canada
| | - Ó. K. Nielsen
- Icelandic Institute of Natural History Urridaholtsstraeti 6‐8 Gardabaer IS‐212 Iceland
| | - U. Stenkewitz
- Icelandic Institute of Natural History Urridaholtsstraeti 6‐8 Gardabaer IS‐212 Iceland
- Institute for Experimental Pathology Keldur, University of Iceland Reykjavik IS‐112 Iceland
| | - G. R. Pálsdóttir
- Institute for Experimental Pathology Keldur, University of Iceland Reykjavik IS‐112 Iceland
| | - M. R. Forbes
- Department of Biology Carleton University 1125 Colonel By Drive Ottawa Ontario K1S 5B6 Canada
| | - K. Skírnisson
- Institute for Experimental Pathology Keldur, University of Iceland Reykjavik IS‐112 Iceland
| |
Collapse
|
11
|
O'Keeffe KR, Halliday FW, Jones CD, Carbone I, Mitchell CE. Parasites, niche modification and the host microbiome: A field survey of multiple parasites. Mol Ecol 2021; 30:2404-2416. [PMID: 33740826 DOI: 10.1111/mec.15892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 01/04/2023]
Abstract
Parasites can affect and be affected by the host's microbiome, with consequences for host susceptibility, parasite transmission, and host and parasite fitness. Yet, two aspects of the relationship between parasite infection and host microbiota remain little understood: the nature of the relationship under field conditions, and how the relationship varies among parasites. To overcome these limitations, we performed a field survey of the within-leaf fungal community in a tall fescue population. We investigated how diversity and composition of the fungal microbiome associate with natural infection by fungal parasites with different feeding strategies. A parasite's feeding strategy affects both parasite requirements of the host environment and parasite impacts on the host environment. We hypothesized that parasites that more strongly modify niches available within a host will be associated with greater changes in microbiome diversity and composition. Parasites with a feeding strategy that creates necrotic tissue to extract resources (necrotrophs) may not only have different niche requirements, but also act as particularly strong niche modifiers. Barcoded amplicon sequencing of the fungal ITS region revealed that leaf segments symptomatic of necrotrophs had lower fungal diversity and distinct composition compared to segments that were asymptomatic or symptomatic of other parasites. There were no clear differences in fungal diversity or composition between leaf segments that were asymptomatic and segments symptomatic of other parasite feeding strategies. Our results motivate future experimental work to test how the relationship between the microbiome and parasite infection is impacted by parasite feeding strategy and highlight the potential importance of parasite traits.
Collapse
Affiliation(s)
- Kayleigh R O'Keeffe
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Fletcher W Halliday
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Corbin D Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Charles E Mitchell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Stewart Merrill TE, Hall SR, Cáceres CE. Parasite exposure and host susceptibility jointly drive the emergence of epidemics. Ecology 2020; 102:e03245. [PMID: 33190226 DOI: 10.1002/ecy.3245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/18/2020] [Accepted: 09/18/2020] [Indexed: 12/20/2022]
Abstract
Parasite transmission is thought to depend on both parasite exposure and host susceptibility to infection; however, the relative contribution of these two factors to epidemics remains unclear. We used interactions between an aquatic host and its fungal parasite to evaluate how parasite exposure and host susceptibility interact to drive epidemics. In six lakes, we tracked the following factors from pre-epidemic to epidemic emergence: (1) parasite exposure (measured observationally as fungal spores attacking wild-caught hosts), (2) host susceptibility (measured experimentally as the number of fungal spores required to produce terminal infection), (3) host susceptibility traits (barrier resistance and internal clearance, both quantified with experimental assays), and (4) parasite prevalence (measured observationally from wild-caught hosts). Tracking these factors over 6 months and in almost 7,000 wild-caught hosts provided key information on the drivers of epidemics. We found that epidemics depended critically on the interaction of exposure and susceptibility; epidemics only emerged when a host population's level of exposure exceeded its individuals' capacity for recovery. Additionally, we found that host internal clearance traits (the hemocyte response) were critical in regulating epidemics. Our study provides an empirical demonstration of how parasite exposure and host susceptibility interact to inhibit or drive disease in natural systems and demonstrates that epidemics can be delayed by asynchronicity in the two processes. Finally, our results highlight how individual host traits can scale up to influence broad epidemiological patterns.
Collapse
Affiliation(s)
- Tara E Stewart Merrill
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Carla E Cáceres
- Department of Evolution, Ecology, and Behavior, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
13
|
van Dijk LJA, Ehrlén J, Tack AJM. The timing and asymmetry of plant-pathogen-insect interactions. Proc Biol Sci 2020; 287:20201303. [PMID: 32962544 PMCID: PMC7542815 DOI: 10.1098/rspb.2020.1303] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Insects and pathogens frequently exploit the same host plant and can potentially impact each other's performance. However, studies on plant–pathogen–insect interactions have mainly focused on a fixed temporal setting or on a single interaction partner. In this study, we assessed the impact of time of attacker arrival on the outcome and symmetry of interactions between aphids (Tuberculatus annulatus), powdery mildew (Erysiphe alphitoides), and caterpillars (Phalera bucephala) feeding on pedunculate oak, Quercus robur, and explored how single versus multiple attackers affect oak performance. We used a multifactorial greenhouse experiment in which oak seedlings were infected with either zero, one, two, or three attackers, with the order of attacker arrival differing among treatments. The performances of all involved organisms were monitored throughout the experiment. Overall, attackers had a weak and inconsistent impact on plant performance. Interactions between attackers, when present, were asymmetric. For example, aphids performed worse, but powdery mildew performed better, when co-occurring. Order of arrival strongly affected the outcome of interactions, and early attackers modified the strength and direction of interactions between later-arriving attackers. Our study shows that interactions between plant attackers can be asymmetric, time-dependent, and species specific. This is likely to shape the ecology and evolution of plant–pathogen–insect interactions.
Collapse
Affiliation(s)
- Laura J A van Dijk
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
14
|
Facilitative priority effects drive parasite assembly under coinfection. Nat Ecol Evol 2020; 4:1510-1521. [PMID: 32868915 DOI: 10.1038/s41559-020-01289-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022]
Abstract
Host individuals are often coinfected with diverse parasite assemblages, resulting in complex interactions among parasites within hosts. Within hosts, priority effects occur when the infection sequence alters the outcome of interactions among parasites. Yet, the role of host immunity in this process remains poorly understood. We hypothesized that the host response to the first infection could generate priority effects among parasites, altering the assembly of later-arriving strains during epidemics. We tested this by infecting sentinel host genotypes of Plantago lanceolata with strains of the fungal parasite Podosphaera plantaginis and measuring susceptibility to subsequent infection during experimental and natural epidemics. In these experiments, prior infection by one strain often increased susceptibility to other strains, and these facilitative priority effects altered the structure of parasite assemblages, but this effect depended on host genotype, host population and parasite genotype. Thus, host genotype, spatial structure and priority effects among strains all independently altered parasite assembly. Using a fine-scale survey and sampling of infections on wild hosts in several populations, we then identified a signal of facilitative priority effects, which altered parasite assembly during natural epidemics. Together, these results provide evidence that within-host priority effects of early-arriving strains can drive parasite assembly, with implications for how strain diversity is spatially and temporally distributed during epidemics.
Collapse
|
15
|
Towards a mechanistic understanding of competence: a missing link in diversity-disease research. Parasitology 2020; 147:1159-1170. [PMID: 32517830 DOI: 10.1017/s0031182020000943] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biodiversity loss may increase the risk of infectious disease in a phenomenon known as the dilution effect. Circumstances that increase the likelihood of disease dilution are: (i) when hosts vary in their competence, and (ii) when communities disassemble predictably, such that the least competent hosts are the most likely to go extinct. Despite the central role of competence in diversity-disease theory, we lack a clear understanding of the factors underlying competence, as well as the drivers and extent of its variation. Our perspective piece encourages a mechanistic understanding of competence and a deeper consideration of its role in diversity-disease relationships. We outline current evidence, emerging questions and future directions regarding the basis of competence, its definition and measurement, the roots of its variation and its role in the community ecology of infectious disease.
Collapse
|
16
|
Clay PA, Duffy MA, Rudolf VHW. Within-host priority effects and epidemic timing determine outbreak severity in co-infected populations. Proc Biol Sci 2020; 287:20200046. [PMID: 32126961 DOI: 10.1098/rspb.2020.0046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Co-infections of hosts by multiple pathogen species are ubiquitous, but predicting their impact on disease remains challenging. Interactions between co-infecting pathogens within hosts can alter pathogen transmission, with the impact on transmission typically dependent on the relative arrival order of pathogens within hosts (within-host priority effects). However, it is unclear how these within-host priority effects influence multi-pathogen epidemics, particularly when the arrival order of pathogens at the host-population scale varies. Here, we combined models and experiments with zooplankton and their naturally co-occurring fungal and bacterial pathogens to examine how within-host priority effects influence multi-pathogen epidemics. Epidemiological models parametrized with within-host priority effects measured at the single-host scale predicted that advancing the start date of bacterial epidemics relative to fungal epidemics would decrease the mean bacterial prevalence in a multi-pathogen setting, while models without within-host priority effects predicted the opposite effect. We tested these predictions with experimental multi-pathogen epidemics. Empirical dynamics matched predictions from the model including within-host priority effects, providing evidence that within-host priority effects influenced epidemic dynamics. Overall, within-host priority effects may be a key element of predicting multi-pathogen epidemic dynamics in the future, particularly as shifting disease phenology alters the order of infection within hosts.
Collapse
Affiliation(s)
- Patrick A Clay
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.,Biosciences Department, Rice University, Houston, TX 77005-1892, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Volker H W Rudolf
- Biosciences Department, Rice University, Houston, TX 77005-1892, USA
| |
Collapse
|
17
|
Halliday FW, Umbanhowar J, Mitchell CE. A host immune hormone modifies parasite species interactions and epidemics: insights from a field manipulation. Proc Biol Sci 2018; 285:rspb.2018.2075. [PMID: 30404885 DOI: 10.1098/rspb.2018.2075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Parasite epidemics can depend on priority effects, and parasite priority effects can result from the host immune response to prior infection. Yet we lack experimental evidence that such immune-mediated priority effects influence epidemics. To address this research gap, we manipulated key host immune hormones, then measured the consequences for within-host parasite interactions, and ultimately parasite epidemics in the field. Specifically, we applied plant immune-signalling hormones to sentinel plants, embedded into a wild host population, and tracked foliar infections caused by two common fungal parasites. Within-host individuals, priority effects were altered by the immune-signalling hormone, salicylic acid (SA). Scaling up from within-host interactions, hosts treated with SA experienced a lower prevalence of a less aggressive parasite, increased burden of infection by a more aggressive parasite, and experienced fewer co-infections. Together, these results indicate that by altering within-host priority effects, host immune hormones can drive parasite epidemics. This study therefore experimentally links host immune hormones to within-host priority effects and parasite epidemics, advancing a more mechanistic understanding of how interactions among parasites alter their epidemics.
Collapse
Affiliation(s)
- Fletcher W Halliday
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James Umbanhowar
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.,Curriculum for the Environment and Ecology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles E Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.,Curriculum for the Environment and Ecology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|