1
|
Harrell T, Basak S, Sultana H, Neelakanta G. Zika virus modulates arthropod histone methylation for its survival in mosquito cells. PLoS One 2025; 20:e0319290. [PMID: 39946368 PMCID: PMC11824992 DOI: 10.1371/journal.pone.0319290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/27/2024] [Indexed: 02/16/2025] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne human pathogen that causes mild febrile illness in adults and severe neurological complications and microcephaly in newborns. Studies have reported that ZIKV modulates methylation of human and viral RNA critical for its replication in vertebrate cells. In this study, we show that ZIKV modulates mosquito S-adenosyl methionine (SAMe)-synthase, an enzyme involved in the production of SAMe (methyl donor), and histone methylation for its survival in mosquito cells. Reverse transcription quantitative PCR followed by immunoblotting analysis showed increased amounts of SAMe synthase at both RNA and protein levels, respectively, in C6/36 mosquito cells infected with ZIKV at day 1 post infection (p.i.). Increased levels of SAMe was noted upon ZIKV infection at day 1 p.i in mosquito cells. In addition, increased EZH2 histone methyl transferase-like gene transcripts and methylated histone (H3K27me3) levels were evident in mosquito cells upon ZIKV infection. Exogenous addition of SAMe to mosquito cells showed increased ZIKV loads and EZH2 histone methyl transferase-like gene transcript levels. Furthermore, treatment of mosquito cells with EZH2 inhibitor resulted in reduced histone methylation and ZIKV loads. Collectively, our study provides novel information in understanding the importance of SAMe and histone methylation in the survival of ZIKV in its arthropod vector.
Collapse
Affiliation(s)
- Telvin Harrell
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, United States of America
| | - Swarnendu Basak
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
2
|
Dupuis B, Brézillon-Dubus L, Failloux AB. [The effects of climate change on the emergence of dengue]. Med Sci (Paris) 2025; 41:137-144. [PMID: 40028951 DOI: 10.1051/medsci/2025009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
In recent decades, dengue has become a global issue due to its rapid spread and significant public health impact. Climate change is recognized as a key factor in the geographical spread of dengue and its vectors. Climate change affects dengue transmission through changes in temperature and precipitation, which affect both vectors and arboviruses. Climate change can also disrupt human migration patterns facilitating the spread of the virus and the invasion of vectors into new regions. Understanding the impact of climate change on dengue and its vectors is essential for developing strategies to prevent and control the disease. Appropriate mosquito control strategies, enhanced epidemiological surveillance and tailored public health systems are needed to mitigate the increasing burden of dengue in the context of climate change.
Collapse
Affiliation(s)
- Benjamin Dupuis
- Institut Pasteur, université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| | | | - Anna-Bella Failloux
- Institut Pasteur, université Paris Cité, Arboviruses and Insect Vectors, Paris, France
| |
Collapse
|
3
|
Zhang Y, Wang M, Huang M, Zhao J. Innovative strategies and challenges mosquito-borne disease control amidst climate change. Front Microbiol 2024; 15:1488106. [PMID: 39564491 PMCID: PMC11573536 DOI: 10.3389/fmicb.2024.1488106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
The revival of the transmission dynamics of mosquito-borne diseases grants striking challenges to public health intensified by climate change worldwide. This inclusive review article examines multidimensional strategies and challenges linked to climate change and the epidemiology of mosquito-borne diseases such as malaria, dengue, Zika, chikungunya, and yellow fever. It delves into how the biology, pathogenic dynamics, and vector distribution of mosquitoes are influenced by continuously rising temperatures, modified rainfall patterns, and extreme climatic conditions. We also highlighted the high likelihood of malaria in Africa, dengue in Southeast Asia, and blowout of Aedes in North America and Europe. Modern predictive tools and developments in surveillance, including molecular gears, Geographic Information Systems (GIS), and remote sensing have boosted our capacity to predict epidemics. Integrated data management techniques and models based on climatic conditions provide a valuable understanding of public health planning. Based on recent data and expert ideas, the objective of this review is to provide a thoughtful understanding of existing landscape and upcoming directions in the control of mosquito-borne diseases regarding changing climate. This review determines emerging challenges and innovative vector control strategies in the changing climatic conditions to ensure public health.
Collapse
Affiliation(s)
- Yuan Zhang
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, China
| | - Minhao Wang
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Mingliu Huang
- Chou Io Insect Museum, Ningbo Yinzhou Cultural Relics Protection and Management Center, Ningbo, China
| | - Jinyi Zhao
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Liang Y, Dai X. The global incidence and trends of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Front Microbiol 2024; 15:1458166. [PMID: 39206366 PMCID: PMC11349664 DOI: 10.3389/fmicb.2024.1458166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Background Flavivirus pose a continued threat to global health, yet their worldwide burden and trends remain poorly quantified. We aimed to evaluate the global, regional, and national incidence of three common flavivirus infections (Dengue, yellow fever, and Zika) from 2011 to 2021. Methods Data on the number and rate of incidence for the three common flavivirus infection in 204 countries and territories were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021. The estimated annual percent change (EAPC) was calculated to quantify the temporal trend during 2011-2016, 2016-2019, and 2019-2021, respectively. Results In 2021, an estimated 59,220,428 individuals were infected globally, comprising 58,964,185 cases of dengue, 86,509 cases of yellow fever, and 169,734 cases of Zika virus infection. The age-standardized incidence rate (ASIR) of the three common flavivirus infections increased by an annual average of 5.08% (95% CI 4.12 to 6.05) globally from 2011 to 2016, whereas decreased by an annual average of -8.37% (95% CI -12.46 to -4.08) per year between 2016 to 2019. The ASIR remained stable during 2019-2021, with an average change of 0.69% (95% CI -0.96 to 2.37) per year globally for the three common flavivirus infections. Regionally, the burden of the three common flavivirus infections was primarily concentrated in those regions with middle income, such as South Asia, Southeast Asia, and Tropical Latin America. Additionally, at the country level, there was an inverted "U" relationship between the SDI level and the ASI. Notably, an increase in the average age of infected cases has been observed worldwide, particularly in higher-income regions. Conclusion Flavivirus infections are an expanding public health concern worldwide, with considerable regional and demographic variation in the incidence. Policymakers and healthcare providers must stay vigilant regarding the impact of COVID-19 and other environmental factors on the risk of flavivirus infection and be prepared for potential future outbreaks.
Collapse
Affiliation(s)
- Yuanhao Liang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xingzhu Dai
- Department of Stomatology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Omme S, Wang J, Sifuna M, Rodriguez J, Owusu NR, Goli M, Jiang P, Waziha P, Nwaiwu J, Brelsfoard CL, Vigneron A, Ciota AT, Kramer LD, Mechref Y, Onyangos MG. Multi-omics analysis of antiviral interactions of Elizabethkingia anophelis and Zika virus. Sci Rep 2024; 14:18470. [PMID: 39122799 PMCID: PMC11315927 DOI: 10.1038/s41598-024-68898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The microbial communities residing in the mosquito midgut play a key role in determining the outcome of mosquito pathogen infection. Elizabethkingia anophelis, originally isolated from the midgut of Anopheles gambiae possess a broad-spectrum antiviral phenotype, yet a gap in knowledge regarding the mechanistic basis of its interaction with viruses exists. The current study aims to identify pathways and genetic factors linked to E. anophelis antiviral activity. The understanding of E. anophelis antiviral mechanism could lead to novel transmission barrier tools to prevent arboviral outbreaks. We utilized a non-targeted multi-omics approach, analyzing extracellular lipids, proteins, metabolites of culture supernatants coinfected with ZIKV and E. anophelis. We observed a significant decrease in arginine and phenylalanine levels, metabolites that are essential for viral replication and progression of viral infection. This study provides insights into the molecular basis of E. anophelis antiviral phenotype. The findings lay a foundation for in-depth mechanistic studies.
Collapse
Affiliation(s)
- S Omme
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - J Wang
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - M Sifuna
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - J Rodriguez
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - N R Owusu
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - M Goli
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - P Jiang
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - P Waziha
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - J Nwaiwu
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - C L Brelsfoard
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - A Vigneron
- Laboratoire d'Ecologie Microbienne, Claude Bernard University Lyon, University of Lyon, Lyon, France
| | - A T Ciota
- Wadsworth Centre, New York State Department of Health, Griffin Laboratory, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - L D Kramer
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Y Mechref
- Department of Biochemistry and Chemistry, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA
| | - M G Onyangos
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, TX, 79409, USA.
| |
Collapse
|
6
|
Janjoter S, Kataria D, Yadav M, Dahiya N, Sehrawat N. Transovarial transmission of mosquito-borne viruses: a systematic review. Front Cell Infect Microbiol 2024; 13:1304938. [PMID: 38235494 PMCID: PMC10791847 DOI: 10.3389/fcimb.2023.1304938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Background A number of mosquito-borne viruses (MBVs), such as dengue virus (DENV), zika virus (ZIKV), chikungunya (CHIKV), West Nile virus (WNV), and yellow fever virus (YFV) exert adverse health impacts on the global population. Aedes aegypti and Aedes albopictus are the prime vectors responsible for the transmission of these viruses. The viruses have acquired a number of routes for successful transmission, including horizontal and vertical transmission. Transovarial transmission is a subset/type of vertical transmission adopted by mosquitoes for the transmission of viruses from females to their offspring through eggs/ovaries. It provides a mechanism for these MBVs to persist and maintain their lineage during adverse climatic conditions of extremely hot and cold temperatures, during the dry season, or in the absence of susceptible vertebrate host when horizontal transmission is not possible. Methods The publications discussed in this systematic review were searched for using the PubMed, Scopus, and Web of Science databases, and websites such as those of the World Health Organization (WHO) and the European Centre for Disease Prevention and Control, using the search terms "transovarial transmission" and "mosquito-borne viruses" from 16 May 2023 to 20 September 2023. Results A total of 2,391 articles were searched, of which 123 were chosen for full text evaluation, and 60 were then included in the study after screening and removing duplicates. Conclusion The present systematic review focuses on understanding the above diseases, their pathogenesis, epidemiology and host-parasite interactions. The factors affecting transovarial transmission, potential implications, mosquito antiviral defense mechanism, and the control strategies for these mosquito-borne viral diseases (MBVDs) are also be included in this review.
Collapse
Affiliation(s)
| | | | | | | | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
7
|
Jian XY, Jiang YT, Wang M, Jia N, Cai T, Xing D, Li CX, Zhao TY, Guo XX, Wu JH. Effects of constant temperature and daily fluctuating temperature on the transovarial transmission and life cycle of Aedes albopictus infected with Zika virus. Front Microbiol 2023; 13:1075362. [PMID: 36687634 PMCID: PMC9845868 DOI: 10.3389/fmicb.2022.1075362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Numerous studies on the mosquito life cycle and transmission efficacy were performed under constant temperatures. Mosquito in wild, however, is not exposed to constant temperature but is faced with temperature variation on a daily basis. Methods In the present study, the mosquito life cycle and Zika virus transmission efficiency were conducted at daily fluctuating temperatures and constant temperatures. Aedes albopictus was infected with the Zika virus orally. The oviposition and survival of the infected mosquitoes and hatching rate, the growth cycle of larvae at each stage, and the infection rate (IR) of the progeny mosquitoes were performed at two constant temperatures (23°C and 31°C) and a daily temperature range (DTR, 23-31°C). Results It showed that the biological parameters of mosquitoes under DTR conditions were significantly different from that under constant temperatures. Mosquitoes in DTR survived longer, laid more eggs (mean number: 36.5 vs. 24.2), and had a higher hatching rate (72.3% vs. 46.5%) but a lower pupation rate (37.9% vs. 81.1%) and emergence rate (72.7% vs. 91.7%) than that in the high-temperature group (constant 31°C). When compared to the low-temperature group (constant 23°C), larvae mosquitoes in DTR developed faster (median days: 9 vs. 23.5) and adult mosquitoes carried higher Zika viral RNA load (median log10 RNA copies/μl: 5.28 vs. 3.86). However, the temperature or temperature pattern has no effect on transovarial transmission. Discussion Those results indicated that there are significant differences between mosquito development and reproductive cycles under fluctuating and constant temperature conditions, and fluctuating temperature is more favorable for mosquitos' survival and reproduction. The data would support mapping and predicting the distribution of Aedes mosquitoes in the future and establishing an early warning system for Zika virus epidemics.
Collapse
Affiliation(s)
- Xian-yi Jian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China,State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu-ting Jiang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Miao Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nan Jia
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong Cai
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chun-xiao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tong-yan Zhao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,Tong-yan Zhao ✉
| | - Xiao-xia Guo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China,Xiao-xia Guo ✉
| | - Jia-hong Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China,*Correspondence: Jia-hong Wu ✉
| |
Collapse
|
8
|
Wu VY, Chen B, Christofferson R, Ebel G, Fagre AC, Gallichotte EN, Sweeny AR, Carlson CJ, Ryan SJ. A minimum data standard for vector competence experiments. Sci Data 2022; 9:634. [PMID: 36261651 PMCID: PMC9582208 DOI: 10.1038/s41597-022-01741-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
The growing threat of vector-borne diseases, highlighted by recent epidemics, has prompted increased focus on the fundamental biology of vector-virus interactions. To this end, experiments are often the most reliable way to measure vector competence (the potential for arthropod vectors to transmit certain pathogens). Data from these experiments are critical to understand outbreak risk, but – despite having been collected and reported for a large range of vector-pathogen combinations – terminology is inconsistent, records are scattered across studies, and the accompanying publications often share data with insufficient detail for reuse or synthesis. Here, we present a minimum data and metadata standard for reporting the results of vector competence experiments. Our reporting checklist strikes a balance between completeness and labor-intensiveness, with the goal of making these important experimental data easier to find and reuse in the future, without much added effort for the scientists generating the data. To illustrate the standard, we provide an example that reproduces results from a study of Aedes aegypti vector competence for Zika virus.
Collapse
Affiliation(s)
- Velen Yifei Wu
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, D.C., USA
| | - Binqi Chen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, D.C., USA
| | | | - Gregory Ebel
- Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, USA
| | - Anna C Fagre
- Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, USA
| | - Emily N Gallichotte
- Center for Vector-borne Infectious Diseases, Colorado State University, Fort Collins, USA
| | - Amy R Sweeny
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, D.C., USA.,School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, D.C., USA. .,Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, D.C., USA. .,Department of Biology, Georgetown University, Washington, USA.
| | - Sadie J Ryan
- Department of Geography, University of Florida, Gainesville, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, USA. .,College of Life Sciences, University of KwaZulu Natal, Durban, South Africa.
| |
Collapse
|
9
|
Guo Z, Jing W, Liu J, Liu M. The global trends and regional differences in incidence of Zika virus infection and implications for Zika virus infection prevention. PLoS Negl Trop Dis 2022; 16:e0010812. [PMID: 36269778 PMCID: PMC9586358 DOI: 10.1371/journal.pntd.0010812] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Zika virus (ZIKV) infection has potential result in severe birth effects. An improved understanding of global trend and regional differences is needed. METHODS Annual ZIKV infection episodes and incidence rates were collected from Global Burden of Disease Study 2019. Episodes changes and estimated annual percentage changes (EAPCs) of age-standardized incidence rate (ASR) were calculated. Top passenger airport-pairs were obtained from the International Air Transport Association to understand places susceptible to imported ZIKV cases. RESULTS Globally, the ASR increased by an average of 72.85% (95%CI: 16.47% to 156.53%) per year from 2011 to 2015 and subsequently decreased from 20.25 per 100,000 in 2015 to 3.44 per 100,000 in 2019. Most of ZIKV infections clustered in Latin America. The proportion of episodes in Central and Tropical Latin America decreased in 2019 with sporadic episodes elsewhere. High Socio-Demographic Index (SDI) regions had more episodes in 2019 than in 2015. Additionally, 15-49 years group had the largest proportion of episodes, females had a higher number of episodes, and a higher incidence rate of 70 plus group was observed in males than females. Certain cities in Europe, North America and Latin America/Caribbean had a high population mobility in ZIKV outbreak areas considered a high risk of imported cases. CONCLUSIONS ZIKV infection is still a public health threat in Latin America and Caribbean and high SDI regions suffered an increasing trend of ZIKV infection. Interventions such as development of surveillance networks and vector-control should be attached to ZIKV control in these key regions. Reproductive suggestions should be taken to reduce ZIKV-related birth defects for the people of reproductive age who are facing a higher threat of ZIKV infection, especially females. Moreover, surveillance of travellers is needed to reverse the uptrends of travel-related imported ZIKV infection. More studies focusing on ZIKV should be performed to make targeted and effective prevention strategies in the future.
Collapse
Affiliation(s)
- Zirui Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wenzhan Jing
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
10
|
Abstract
Zika virus is a mosquito-borne flavivirus known to cause severe birth defects and neuroimmunological disorders. We have previously demonstrated that mosquito transmission of Zika virus decreases with temperature. While transmission was optimized at 29°C, it was limited at cool temperatures (<22°C) due to poor virus establishment in the mosquitoes. Temperature is one of the strongest drivers of vector-borne disease transmission due to its profound effect on ectothermic mosquito vectors, viruses, and their interaction. Although there is substantial evidence of temperature effects on arbovirus replication and dissemination inside mosquitoes, little is known about whether temperature affects virus replication directly or indirectly through mosquito physiology. In order to determine the mechanisms behind temperature-induced changes in Zika virus transmission potential, we investigated different steps of the virus replication cycle in mosquito cells (C6/36) at optimal (28°C) and cool (20°C) temperatures. We found that the cool temperature did not alter Zika virus entry or translation, but it affected genome replication and reduced the amount of double-stranded RNA replication intermediates. If replication complexes were first formed at 28°C and the cells were subsequently shifted to 20°C, the late steps in the virus replication cycle were efficiently completed. These data suggest that cool temperature decreases the efficiency of Zika virus genome replication in mosquito cells. This phenotype was observed in the Asian lineage of Zika virus, while the African lineage Zika virus was less restricted at 20°C. IMPORTANCE With half of the human population at risk, arboviral diseases represent a substantial global health burden. Zika virus, previously known to cause sporadic infections in humans, emerged in the Americas in 2015 and quickly spread worldwide. There was an urgent need to better understand the disease pathogenesis and develop therapeutics and vaccines, as well as to understand, predict, and control virus transmission. In order to efficiently predict the seasonality and geography for Zika virus transmission, we need a deeper understanding of the host-pathogen interactions and how they can be altered by environmental factors such as temperature. Identifying the step in the virus replication cycle that is inhibited under cool conditions can have implications in modeling the temperature suitability for arbovirus transmission as global environmental patterns change. Understanding the link between pathogen replication and environmental conditions can potentially be exploited to develop new vector control strategies in the future.
Collapse
|
11
|
Outammassine A, Zouhair S, Loqman S. Rift Valley Fever and West Nile virus vectors in Morocco: Current situation and future anticipated scenarios. Transbound Emerg Dis 2021; 69:1466-1478. [PMID: 33876581 DOI: 10.1111/tbed.14113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
Rift Valley Fever (RVF) and West Nile virus (WNV) are two important emerging Arboviruses transmitted by Aedes and Culex mosquitoes, typically Ae. caspius, Ae. detritus and Cx. pipiens in temperate regions. In Morocco, several outbreaks of WNV (1996, 2003 and 2010), affecting horses mostly, have been reported in north-western regions resulting in the death of 55 horses and one person cumulatively. Serological evidence of WNV local circulation, performed one year after the latest outbreak, revealed WNV neutralizing bodies in 59 out of 499 tested participants (El Rhaffouli et al., 2012). The country also shares common borders with northern Mauritania, where RVF is often documented. Human movement, livestock trade, climate changes and the availability of susceptible mosquito vectors are expected to increase the spread of these diseases in the country. Thus, in this study, we gathered a data set summarizing occurrences of Ae. caspius, Ae. detritus and Cx. pipiens in the country, and generated model prediction for their potential distribution under both current and future (2050) climate conditions, as a proxy to identify regions at-risk of RVF and WNV probable expansion. We found that the north-western regions (where the population is most concentrated), specifically along the Atlantic coastline, are highly suitable for Ae. caspius, Ae. detritus and Cx. pipiens, under present-day conditions. Future model scenarios anticipated possible range changes for the three mosquitoes under all climatic assumptions. All of the studied species are prospected to gain new areas that are currently not suitable, even under the most optimist scenario, thus placing additional human populations at risk. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes. Public health officials, entomological surveillance and control delegation must augment efforts and continuously monitor these areas to reduce and minimize human infection risk.
Collapse
Affiliation(s)
- Abdelkrim Outammassine
- Laboratoire de Lutte contre les Maladies Infectieuses, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Said Zouhair
- Laboratoire de Lutte contre les Maladies Infectieuses, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco.,Laboratory of Bacteriology-Virology, Avicienne Hospital Military, Marrakech, Morocco
| | - Souad Loqman
- Laboratoire de Lutte contre les Maladies Infectieuses, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
12
|
Abdelkrim O, Samia B, Said Z, Souad L. Modeling and mapping the habitat suitability and the potential distribution of Arboviruses vectors in Morocco. Parasite 2021; 28:37. [PMID: 33861197 PMCID: PMC8051322 DOI: 10.1051/parasite/2021030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
Mosquitoes transmit several agents of diseases and the presence of different species represents a threat to animal and public health. Aedes and Culex mosquitoes are of particular concern giving their potential vector competence for Arbovirus transmission. In Morocco, the lack of detailed information related to their spatial distribution raises major concerns and hampers effective vector surveillance and control. Using maximum entropy (Maxent) modeling, we generated prediction models for the potential distribution of Arboviruses vectors (Aedes aegypti, Ae. vexans, Ae. caspius, Ae. detritus, and Culex pipiens) in Morocco, under current climatic conditions. Also, we investigated the habitat suitability for the potential occurrence and establishment of Ae. albopictus and Ae. vittatus recorded only once in the country. Prediction models for these last two species were generated considering occurrence datasets from close countries of the Mediterranean Basin, where Ae. albopictus is well established, and from a worldwide database for the case of Ae. vittatus (model transferability). With the exception of Ae. vittatus, the results identify potential habitat suitability in Morocco for all mosquitos considered. Existing areas with maximum risk of establishment and high potential distribution were mainly located in the northwestern and central parts of Morocco. Our results essentially underline the assumption that Ae. albopictus, if not quickly controlled, might find suitable habitats and has the potential to become established, especially in the northwest of the country. These findings may help to better understand the potential distribution of each species and enhance surveillance efforts in areas identified as high risk.
Collapse
Affiliation(s)
- Outammassine Abdelkrim
-
Laboratory of Microbiology and Virology, Department of Medical Biology, Faculty of Medicine and Pharmacy, Cadi Ayyad University PO Box 7010 40000 Marrakech Morocco
| | - Boussaa Samia
-
ISPITS-Higher Institute of Nursing and Health Technology 40000 Marrakech Morocco
-
Ecology and the Environment Laboratory L2E (URAC 32, CNRST ERACNERS 06), Faculty of Sciences Semlalia, Cadi Ayyad University 2390-40080 Marrakech Morocco
| | - Zouhair Said
-
Laboratory of Microbiology and Virology, Department of Medical Biology, Faculty of Medicine and Pharmacy, Cadi Ayyad University PO Box 7010 40000 Marrakech Morocco
-
Laboratory of Bacteriology–Virology, Avicienne Hospital Military 40000 Marrakech Morocco
| | - Loqman Souad
-
Laboratory of Microbiology and Virology, Department of Medical Biology, Faculty of Medicine and Pharmacy, Cadi Ayyad University PO Box 7010 40000 Marrakech Morocco
| |
Collapse
|
13
|
Li SL, Messina JP, Pybus OG, Kraemer MUG, Gardner L. A review of models applied to the geographic spread of Zika virus. Trans R Soc Trop Med Hyg 2021; 115:956-964. [PMID: 33570155 PMCID: PMC8417088 DOI: 10.1093/trstmh/trab009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/13/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
In recent years, Zika virus (ZIKV) has expanded its geographic range and in 2015–2016 caused a substantial epidemic linked to a surge in developmental and neurological complications in newborns. Mathematical models are powerful tools for assessing ZIKV spread and can reveal important information for preventing future outbreaks. We reviewed the literature and retrieved modelling studies that were developed to understand the spatial epidemiology of ZIKV spread and risk. We classified studies by type, scale, aim and applications and discussed their characteristics, strengths and limitations. We examined the main objectives of these models and evaluated the effectiveness of integrating epidemiological and phylogeographic data, along with socioenvironmental risk factors that are known to contribute to vector–human transmission. We also assessed the promising application of human mobility data as a real-time indicator of ZIKV spread. Lastly, we summarised model validation methods used in studies to ensure accuracy in models and modelled outcomes. Models are helpful for understanding ZIKV spread and their characteristics should be carefully considered when developing future modelling studies to improve arbovirus surveillance.
Collapse
Affiliation(s)
- Sabrina L Li
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK
| | - Jane P Messina
- School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK.,School of Global and Area Studies, University of Oxford, 12 Bevington Road, Oxford, OX2 6LH, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | - Moritz U G Kraemer
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | - Lauren Gardner
- Department of Civil and Systems Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218-2682, USA.,Center for Systems Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218-2682, USA
| |
Collapse
|