1
|
Wray A, Petrou E, Nichols KM, Pacunski R, LeClair L, Andrews KS, Haggarty D, Hauser L. Divergent Population Structure in Five Common Rockfish Species of Puget Sound, WA Suggests the Need for Species-Specific Management. Mol Ecol 2025; 34:e17590. [PMID: 39587854 DOI: 10.1111/mec.17590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Quantifying connectivity between endangered or threatened marine populations is critical information for management and conservation, especially where abundance and productivity differ among such populations. Spatial patterns of such connectivity depend not only on extrinsic factors such as oceanography and bathymetry but also on intrinsic species-specific factors such as life history, demography and the location of glacial refugia. Nevertheless, population structure is often inferred from related or ecologically similar species. For example, the population structure in most rockfish species (Sebastes spp.) in the Salish Sea and the US West Coast is currently inferred from genetic data of three species that are known to hybridise in Puget Sound. Here, we determined the population structure and connectivity in five Puget Sound Rockfish species (Black [Sebastes melanops], Yellowtail [S. flavidus], Redstripe [S. proriger], Greenstriped [S. elongatus], and Puget Sound Rockfish [S. emphaeus]) from over 12,000 restriction-site associated DNA sequencing (RADseq) loci. We found species-specific patterns of genetic differentiation, attributable to both extrinsic and intrinsic factors. Specifically, Black and Puget Sound rockfishes showed no genetic differentiation; Yellowtail and Greenstriped rockfishes were structured according to known geographic barriers; and Redstripe Rockfish revealed evidence for temporal genetic differentiation, suggesting irregular recruitment influences population structure. Only Yellowtail Rockfish followed the federal DPS boundaries generally assumed for rockfish, further emphasizing the importance of species-specific management for the effective recovery and management of these rockfish populations and of marine species in general.
Collapse
Affiliation(s)
- Anita Wray
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Eleni Petrou
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, USA
| | - Robert Pacunski
- Washington Department of Fish and Wildlife, Olympia, Washington, USA
| | - Larry LeClair
- Washington Department of Fish and Wildlife, Olympia, Washington, USA
| | - Kelly S Andrews
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, Washington, USA
| | - Dana Haggarty
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
- Biology Department, University of Victoria, Victoria, Canada
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
- Zoology Department, Nelson Mandela University, Gqeberha, South Africa
| |
Collapse
|
2
|
Sbiba SE, Quintela M, Øyro J, Dahle G, Jurado-Ruzafa A, Iita K, Nikolioudakis N, Bazairi H, Chlaida M. Genetic investigation of population structure in Atlantic chub mackerel, Scomber colias Gmelin, 1789 along the West African coast. PeerJ 2024; 12:e17928. [PMID: 39247552 PMCID: PMC11380841 DOI: 10.7717/peerj.17928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/24/2024] [Indexed: 09/10/2024] Open
Abstract
Sustainable management of transboundary fish stocks hinges on accurate delineation of population structure. Genetic analysis offers a powerful tool to identify potential subpopulations within a seemingly homogenous stock, facilitating the development of effective, coordinated management strategies across international borders. Along the West African coast, the Atlantic chub mackerel (Scomber colias) is a commercially important and ecologically significant species, yet little is known about its genetic population structure and connectivity. Currently, the stock is managed as a single unit in West African waters despite new research suggesting morphological and adaptive differences. Here, eight microsatellite loci were genotyped on 1,169 individuals distributed across 33 sampling sites from Morocco (27.39°N) to Namibia (22.21°S). Bayesian clustering analysis depicts one homogeneous population across the studied area with null overall differentiation (F ST = 0.0001ns), which suggests panmixia and aligns with the migratory potential of this species. This finding has significant implications for the effective conservation and management of S. colias within a wide scope of its distribution across West African waters from the South of Morocco to the North-Centre of Namibia and underscores the need for increased regional cooperation in fisheries management and conservation.
Collapse
Affiliation(s)
- Salah Eddine Sbiba
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Research and Development Unit on Marine Biology, National Institute of Fisheries Research, Casablanca, Morocco
| | - María Quintela
- Department of Population Genetics, Institute of Marine Research, Bergen, Norway
| | - Johanne Øyro
- Department of Population Genetics, Institute of Marine Research, Bergen, Norway
| | - Geir Dahle
- Department of Population Genetics, Institute of Marine Research, Bergen, Norway
| | - Alba Jurado-Ruzafa
- Oceanographic Centre of the Canary Islands, Spanish Institute of Oceanography (IEO-CSIC), Tenerife, Spain
| | - Kashona Iita
- National Marine Information and Research Centre (NATMIRC), Ministry of Fisheries and Marine Resources, Swakopmund, Namibia
| | | | - Hocein Bazairi
- Biodiversity, Ecology and Genome Laboratory, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- University of Gibraltar, Europa Point Campus, Natural Sciences and Environment Research Hub, Gibraltar, Gibraltar
| | - Malika Chlaida
- Research and Development Unit on Marine Biology, National Institute of Fisheries Research, Casablanca, Morocco
| |
Collapse
|
3
|
Sadler DE, van Dijk S, Karjalainen J, Watts PC, Uusi‐Heikkilä S. Does size-selective harvesting erode adaptive potential to thermal stress? Ecol Evol 2024; 14:e11007. [PMID: 38333098 PMCID: PMC10850808 DOI: 10.1002/ece3.11007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Overharvesting is a serious threat to many fish populations. High mortality and directional selection on body size can cause evolutionary change in exploited populations via selection for a specific phenotype and a potential reduction in phenotypic diversity. Whether the loss of phenotypic diversity that accompanies directional selection impairs response to environmental stress is not known. To address this question, we exposed three zebrafish selection lines to thermal stress. Two lines had experienced directional selection for (1) large and (2) small body size, and one was (3) subject to random removal of individuals with respect to body size (i.e. line with no directional selection). Selection lines were exposed to three temperatures (elevated, 34°C; ambient, 28°C; low, 22°C) to determine the response to an environmental stressor (thermal stress). We assessed differences among selection lines in their life history (growth and reproduction), physiological traits (metabolic rate and critical thermal max) and behaviour (activity and feeding behaviour) when reared at different temperatures. Lines experiencing directional selection (i.e. size selected) showed reduced growth rate and a shift in average phenotype in response to lower or elevated thermal stress compared with fish from the random-selected line. Our data indicate that populations exposed to directional selection can have a more limited capacity to respond to thermal stress compared with fish that experience a comparable reduction in population size (but without directional selection). Future studies should aim to understand the impacts of environmental stressors on natural fish stocks.
Collapse
Affiliation(s)
- Daniel E. Sadler
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Stephan van Dijk
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Juha Karjalainen
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Phillip C. Watts
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Silva Uusi‐Heikkilä
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
4
|
Krysanov EY, Nagy B, Watters BR, Sember A, Simanovsky SA. Karyotype differentiation in the Nothobranchiusugandensis species group (Teleostei, Cyprinodontiformes), seasonal fishes from the east African inland plateau, in the context of phylogeny and biogeography. COMPARATIVE CYTOGENETICS 2023; 17:13-29. [PMID: 37305809 PMCID: PMC10252138 DOI: 10.3897/compcytogen.v7.i1.97165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/04/2023] [Indexed: 06/13/2023]
Abstract
The karyotype differentiation of the twelve known members of the Nothobranchiusugandensis Wildekamp, 1994 species group is reviewed and the karyotype composition of seven of its species is described herein for the first time using a conventional cytogenetic protocol. Changes in the architecture of eukaryotic genomes often have a major impact on processes underlying reproductive isolation, adaptation and diversification. African annual killifishes of the genus Nothobranchius Peters, 1868 (Teleostei: Nothobranchiidae), which are adapted to an extreme environment of ephemeral wetland pools in African savannahs, feature extensive karyotype evolution in small, isolated populations and thus are suitable models for studying the interplay between karyotype change and species evolution. The present investigation reveals a highly conserved diploid chromosome number (2n = 36) but a variable number of chromosomal arms (46-64) among members of the N.ugandensis species group, implying a significant role of pericentric inversions and/or other types of centromeric shift in the karyotype evolution of the group. When superimposed onto a phylogenetic tree based on molecular analyses of two mitochondrial genes the cytogenetic characteristics did not show any correlation with the phylogenetic relationships within the lineage. While karyotypes of many other Nothobranchius spp. studied to date diversified mainly via chromosome fusions and fissions, the N.ugandensis species group maintains stable 2n and the karyotype differentiation seems to be constrained to intrachromosomal rearrangements. Possible reasons for this difference in the trajectory of karyotype differentiation are discussed. While genetic drift seems to be a major factor in the fixation of chromosome rearrangements in Nothobranchius, future studies are needed to assess the impact of predicted multiple inversions on the genome evolution and species diversification within the N.ugandensis species group.
Collapse
Affiliation(s)
- Eugene Yu. Krysanov
- Severtsov Institute of Ecology and Evolution, Russian
Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of
SciencesMoscowRussia
| | - Béla Nagy
- 15, voie de la Liberté, 77870, Vulaines sur Seine,
FranceUnaffiliatedVulaines sur SeineFrance
| | - Brian R. Watters
- 6141 Parkwood Drive, Nanaimo, British Columbia V9T 6A2,
Nanaimo, CanadaUnaffiliatedNanaimoCanada
| | - Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal
Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721, Liběchov, Czech
RepublicLaboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech
Academy of SciencesLiběchovCzech Republic
| | - Sergey A. Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian
Academy of Sciences, Leninsky Prospect 33, 119071, Moscow, RussiaSevertsov Institute of Ecology and Evolution, Russian Academy of
SciencesMoscowRussia
| |
Collapse
|
5
|
Nedoluzhko A, Orlova SY, Kurnosov DS, Orlov AM, Galindo-Villegas J, Rastorguev SM. Genomic Signatures of Freshwater Adaptation in Pacific Herring ( Clupea pallasii). Genes (Basel) 2022; 13:genes13101856. [PMID: 36292743 PMCID: PMC9601299 DOI: 10.3390/genes13101856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/04/2022] Open
Abstract
Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms of this species within its range. The lake ecological form of herring has a shortened life cycle, spending the winter and spawning in brackish waters near the shoreline without long migrations for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies have shown that brackish water Pacific herring not only can be distinguished as a separate lake ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-sequencing data for marine and lake ecological forms from a total of 54 individuals and methods of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes was organized into genome clusters, also known as “genomic islands of divergence”. Moreover, the Tajima’s D test showed that these loci are under directional selection in the lake populations of the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of Pacific herring do not intersect (by gene name) with those in other known marine fish species with known freshwater/brackish populations. However, some are associated with the same physiological trait—osmoregulation.
Collapse
Affiliation(s)
- Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, 191187 Saint Petersburg, Russia
- Limited Liability Company ELGENE, 109029 Moscow, Russia
| | - Svetlana Yu. Orlova
- Laboratory of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, 107140 Moscow, Russia
- Laboratory of Genetic Basis of Identification, Vavilov Institute of General Genetics of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Denis S. Kurnosov
- Research Group of Intraspecific Differentiation, Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), 690091 Vladivostok, Russia
| | - Alexei M. Orlov
- Laboratory of Oceanic Ichthyofauna, Shirshov Institute of Oceanology of the Russian Academy of Sciences, 117218 Moscow, Russia
- Laboratory of Behavior of Lower Vertebrates, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia
- Department of Ichthyology, Dagestan State University, 367000 Makhachkala, Russia
- Department of Ichthyology and Hydrobiology, Tomsk State University, 634050 Tomsk, Russia
- Laboratory of Marine Biology, Caspian Institute of Biological Resources, Russian Academy of Sciences, 367000 Makhachkala, Russia
| | - Jorge Galindo-Villegas
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| | - Sergey M. Rastorguev
- Limited Liability Company ELGENE, 109029 Moscow, Russia
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence: (S.Y.O.); (J.G.-V.); (S.M.R.)
| |
Collapse
|
6
|
Hollenbeck CM, Portnoy DS, Garcia de la Serrana D, Magnesen T, Matejusova I, Johnston IA. Temperature-associated selection linked to putative chromosomal inversions in king scallop ( Pecten maximus). Proc Biol Sci 2022; 289:20221573. [PMID: 36196545 PMCID: PMC9532988 DOI: 10.1098/rspb.2022.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The genomic landscape of divergence—the distribution of differences among populations or species across the genome—is increasingly characterized to understand the role that microevolutionary forces such as natural selection and recombination play in causing and maintaining genetic divergence. This line of inquiry has also revealed chromosome structure variation to be an important factor shaping the landscape of adaptive genetic variation. Owing to a high prevalence of chromosome structure variation and the strong pressure for local adaptation necessitated by their sessile nature, bivalve molluscs are an ideal taxon for exploring the relationship between chromosome structure variation and local adaptation. Here, we report a population genomic survey of king scallop (Pecten maximus) across its natural range in the northeastern Atlantic Ocean, using a recent chromosome-level genome assembly. We report the presence of at least three large (12–22 Mb), putative chromosomal inversions associated with sea surface temperature and whose frequencies are in contrast to neutral population structure. These results highlight a potentially large role for recombination-suppressing chromosomal inversions in local adaptation and suggest a hypothesis to explain the maintenance of differences in reproductive timing found at relatively small spatial scales across king scallop populations.
Collapse
Affiliation(s)
- Christopher M Hollenbeck
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.,Texas A&M AgriLife Research, College Station, TX, USA
| | - David S Portnoy
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Daniel Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Thorolf Magnesen
- Department of Biological Sciences, University of Bergen, Thormøhlensgt 53B, Bergen, Norway
| | - Iveta Matejusova
- Marine Science Scotland, Marine Laboratory, 375 Victoria Road, Aberdeen AB11 9DB, UK
| | - Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Xelect Ltd, Horizon House, Abbey Walk, St Andrews KY16 9LB, UK
| |
Collapse
|
7
|
de Greef E, Einfeldt AL, Miller PJO, Ferguson SH, Garroway CJ, Lefort KJ, Paterson IG, Bentzen P, Feyrer LJ. Genomics reveal population structure, evolutionary history, and signatures of selection in the northern bottlenose whale, Hyperoodon ampullatus. Mol Ecol 2022; 31:4919-4931. [PMID: 35947506 PMCID: PMC9804413 DOI: 10.1111/mec.16643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 01/05/2023]
Abstract
Information on wildlife population structure, demographic history, and adaptations are fundamental to understanding species evolution and informing conservation strategies. To study this ecological context for a cetacean of conservation concern, we conducted the first genomic assessment of the northern bottlenose whale, Hyperoodon ampullatus, using whole-genome resequencing data (n = 37) from five regions across the North Atlantic Ocean. We found a range-wide pattern of isolation-by-distance with a genetic subdivision distinguishing three subgroups: the Scotian Shelf, western North Atlantic, and Jan Mayen regions. Signals of elevated levels of inbreeding in the Endangered Scotian Shelf population indicate this population may be more vulnerable than the other two subgroups. In addition to signatures of inbreeding, evidence of local adaptation in the Scotian Shelf was detected across the genome. We found a long-term decline in effective population size for the species, which poses risks to their genetic diversity and may be exacerbated by the isolating effects of population subdivision. Protecting important habitat and migratory corridors should be prioritized to rebuild population sizes that were diminished by commercial whaling, strengthen gene flow, and ensure animals can move across regions in response to environmental changes.
Collapse
Affiliation(s)
- Evelien de Greef
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada,Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | | | | | | | - Colin J. Garroway
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Kyle J. Lefort
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Ian G. Paterson
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Laura J. Feyrer
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada,Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNova ScotiaCanada
| |
Collapse
|
8
|
Ancient DNA reveals phenological diversity of Coast Salish herring harvests over multiple centuries. Sci Rep 2022; 12:13512. [PMID: 35933511 PMCID: PMC9357025 DOI: 10.1038/s41598-022-17656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/28/2022] [Indexed: 11/08/2022] Open
Abstract
Phenological diversity in food resources prolongs foraging opportunities for consumers and buffers them against environmental disturbances. Such diversity is particularly important in forage fish such as Pacific herring (Clupea pallasii), which are foundational to coastal food webs and fisheries. While the importance of phenological diversity is well-known from contemporary studies, the extent to which different populations contribute to fisheries over long time scales is mostly unknown. In this study, we investigated the relative contributions of genetically and phenologically distinct herring populations to Indigenous Peoples' food systems over multiple centuries, using ancient DNA extracted from archaeological herring bones. These bones were excavated from two Coast Salish archaeological sites (Burton Acres Shell Midden and Bay Street Shell Midden) in the Puget Sound region, USA. Using genetic stock identification from seven nuclear DNA markers, we showed that catches at the two sites in central Puget Sound were dominated by January-February and March-April spawners, which are the contemporary spawning groups in the vicinity of the sites. However, May spawners were detected in the older Burton Acres assemblage (dated to 910-685 cal BP), and a mixed stock analysis indicated that catches at this site consisted of multiple populations. These results suggest that Coast Salish ancestors used a portfolio of herring populations and benefited from the ecological resource wave created by different spawning groups of herring. This study of ancient DNA allowed us to glimpse into Indigenous traditional food and management systems, and it enabled us to investigate long-term patterns of biodiversity in an ecologically important forage fish species.
Collapse
|
9
|
Reid M, Collins ML, Hall SRJ, Mason E, McGee G, Frid A. Protecting our coast for everyone's future: Indigenous and scientific knowledge support marine spatial protections proposed by Central Coast First Nations in Pacific Canada. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Mike Reid
- Heiltsuk Integrated Resource Management Department Haíłzaqv Nation Wágḷísḷa British Columbia Canada
| | | | | | - Ernest Mason
- Kitasoo Xai'xais Fisheries Kitasoo Xai'xais Nation Klemtu British Columbia Canada
| | - Gord McGee
- Central Coast Indigenous Resource Alliance Campbell River British Columbia Canada
| | - Alejandro Frid
- Central Coast Indigenous Resource Alliance Campbell River British Columbia Canada
| |
Collapse
|
10
|
Shi Y, Bouska KL, McKinney GJ, Dokai W, Bartels A, McPhee MV, Larson WA. Gene flow influences the genomic architecture of local adaptation in six riverine fish species. Mol Ecol 2021; 32:1549-1566. [PMID: 34878685 DOI: 10.1111/mec.16317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/15/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Understanding how gene flow influences adaptive divergence is important for predicting adaptive responses. Theoretical studies suggest that when gene flow is high, clustering of adaptive genes in fewer genomic regions would protect adaptive alleles from recombination and thus be selected for, but few studies have tested it with empirical data. Here, we used restriction site-associated sequencing to generate genomic data for six fish species with contrasting life histories from six reaches of the Upper Mississippi River System, USA. We used four differentiation-based outlier tests and three genotype-environment association analyses to define neutral single nucleotide polymorphisms (SNPs) and outlier SNPs that were putatively under selection. We then examined the distribution of outlier SNPs along the genome and investigated whether these SNPs were found in genomic islands of differentiation and inversions. We found that gene flow varied among species, and outlier SNPs were clustered more tightly in species with higher gene flow. The two species with the highest overall FST (0.0303-0.0720) and therefore lowest gene flow showed little evidence of clusters of outlier SNPs, with outlier SNPs in these species spreading uniformly across the genome. In contrast, nearly all outlier SNPs in the species with the lowest FST (0.0003) were found in a single large putative inversion. Two other species with intermediate gene flow (FST ~ 0.0025-0.0050) also showed clustered genomic architectures, with most islands of differentiation clustered on a few chromosomes. Our results provide important empirical evidence to support the hypothesis that increasingly clustered architecture of local adaptation is associated with high gene flow.
Collapse
Affiliation(s)
- Yue Shi
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA.,Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Kristen L Bouska
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, USA
| | - Garrett J McKinney
- NRC Research Associateship Program, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - William Dokai
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA.,Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Andrew Bartels
- Long Term Resource Monitoring Program, Wisconsin Department of Natural Resources, La Crosse, Wisconsin, USA
| | - Megan V McPhee
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Juneau, Alaska, USA
| | - Wesley A Larson
- National Oceanographic and Atmospheric Administration, Auke Bay Laboratories, National Marine Fisheries Service, Alaska Fisheries Science Center, Juneau, Alaska, USA.,U.S. Geological Survey, Wisconsin Cooperative Fishery Research Unit, College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| |
Collapse
|
11
|
Spies I, Drinan DP, Petrou EL, Spurr R, Tarpey C, Hartinger T, Larson W, Hauser L. Evidence for selection and spatially distinct patterns found in a putative zona pellucida gene in Pacific cod, and implications for management. Ecol Evol 2021; 11:16661-16679. [PMID: 34938464 PMCID: PMC8668774 DOI: 10.1002/ece3.8284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 11/11/2022] Open
Abstract
Genetic differentiation has been observed in marine species even when no obvious barriers to gene flow exist, and understanding such differentiation is essential for effective fisheries management. Highly differentiated outlier loci can provide information on how genetic variation might not only contribute to local adaptation but may also be affected by historical demographic events. A locus which aligned to a predicted zona pellucida sperm-binding protein 3 gene (ZP3) in Atlantic cod (Gadus morhua) was previously identified as the highest outlier based on F ST in a RADseq study of Pacific cod (Gadus macrocephalus) across the West Coast of North America. However, because of the limited length of the RAD sequence and restricted geographic area of sampling, no conclusion on the functional significance of the observed variation was possible. In other marine species, ZP3 is involved in reproductive isolation, local adaptation, and has neofunctionalized as an antifreeze gene, and so it may provide important insights in functional population structure of Pacific cod. Here, we sequenced a 544-bp region of ZP3 in 230 Pacific cod collected from throughout their geographic range. We observed striking patterns of spatial structuring of ZP3 haplotypes, with a sharp break near Kodiak, Alaska, USA where populations within ~200 km of each other are nearly fixed for different haplotypes, contrasting a pattern of isolation by distance at other genetic markers in this region (F ST = 0.003). Phylogenetic analysis of ZP3 haplotypes revealed that the more southern haplotypes appear to be ancestral, with the northern haplotype evolving more recently, potentially in response to a novel selective pressure as Pacific cod recolonized northern latitudes after glaciation. The sharp break in haplotype frequencies suggests strong selective pressures are operating on small spatial scales and illustrates that selection can create high divergence even in marine species with ample opportunities for gene flow.
Collapse
Affiliation(s)
- Ingrid Spies
- Resource Ecology and Fisheries Management DivisionAlaska Fisheries Science CenterSeattleWashingtonUSA
| | - Daniel P. Drinan
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Eleni L. Petrou
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Rory Spurr
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Carolyn Tarpey
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Theodore Hartinger
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Wes Larson
- Ted Stevens Marine Research InstituteAlaska Fisheries Science Center/Auke Bay LaboratoryJuneauAlaskaUSA
| | - Lorenz Hauser
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
12
|
Orlova SY, Rastorguev S, Bagno T, Kurnosov D, Nedoluzhko A. Genetic structure of marine and lake forms of Pacific herring Clupea pallasii. PeerJ 2021; 9:e12444. [PMID: 34760402 PMCID: PMC8570158 DOI: 10.7717/peerj.12444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
The Pacific herring (Clupea pallasii) is one of the most important species in the commercial fisheries distributed in the North Pacific Ocean and the northeastern European seas. This teleost has marine and lake ecological forms a long its distribution in the Holarctic. However, the level of genetic differentiation between these two forms is not well known. In the present study, we used ddRAD-sequencing to genotype 54 specimens from twelve wild Pacific herring populations from the Kara Sea and the Russian part of the northwestern Pacific Ocean for unveiling the genetic structure of Pacific herring. We found that the Kara Sea population is significantly distinct from Pacific Ocean populations. It was demonstrated that lake populations of Pacific herring differ from one another as well as from marine specimens. Our results show that fresh and brackish water Pacific herring, which inhabit lakes, can be distinguished as a separate lake ecological form. Moreover, we demonstrate that each observed lake Pacific herring population has its own and unique genetic legacy.
Collapse
Affiliation(s)
- Svetlana Yu Orlova
- Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia.,Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia
| | | | - Tatyana Bagno
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - Denis Kurnosov
- Russian Federal Research Institute of Fisheries and Oceanography, Pacific Branch (TINRO), Vladivostok, Russia
| | - Artem Nedoluzhko
- Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia.,Nord University, Bodø, Norway
| |
Collapse
|
13
|
Distinct genetic clustering in the weakly differentiated polar cod, Boreogadus saida Lepechin, 1774 from East Siberian Sea to Svalbard. Polar Biol 2021. [DOI: 10.1007/s00300-021-02911-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe cold-adapted polar cod Boreogadus saida, a key species in Arctic ecosystems, is vulnerable to global warming and ice retreat. In this study, 1257 individuals sampled in 17 locations within the latitudinal range of 75–81°N from Svalbard to East Siberian Sea were genotyped with a dedicated suite of 116 single-nucleotide polymorphic loci (SNP). The overall pattern of isolation by distance (IBD) found was driven by the two easternmost samples (East Siberian Sea and Laptev Sea), whereas no differentiation was registered in the area between the Kara Sea and Svalbard. Eleven SNP under strong linkage disequilibrium, nine of which could be annotated to chromosome 2 in Atlantic cod, defined two genetic groups of distinct size, with the major cluster containing seven-fold larger number of individuals than the minor. No underlying geographic basis was evident, as both clusters were detected throughout all sampling sites in relatively similar proportions (i.e. individuals in the minor cluster ranging between 4 and 19% on the location basis). Similarly, females and males were also evenly distributed between clusters and age groups. A differentiation was, however, found regarding size at age: individuals belonging to the major cluster were significantly longer in the second year. This study contributes to increasing the population genetic knowledge of this species and suggests that an appropriate management should be ensured to safeguard its diversity.
Collapse
|
14
|
Petrou EL, Fuentes-Pardo AP, Rogers LA, Orobko M, Tarpey C, Jiménez-Hidalgo I, Moss ML, Yang D, Pitcher TJ, Sandell T, Lowry D, Ruzzante DE, Hauser L. Functional genetic diversity in an exploited marine species and its relevance to fisheries management. Proc Biol Sci 2021; 288:20202398. [PMID: 33622133 PMCID: PMC7934995 DOI: 10.1098/rspb.2020.2398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
The timing of reproduction influences key evolutionary and ecological processes in wild populations. Variation in reproductive timing may be an especially important evolutionary driver in the marine environment, where the high mobility of many species and few physical barriers to migration provide limited opportunities for spatial divergence to arise. Using genomic data collected from spawning aggregations of Pacific herring (Clupea pallasii) across 1600 km of coastline, we show that reproductive timing drives population structure in these pelagic fish. Within a specific spawning season, we observed isolation by distance, indicating that gene flow is also geographically limited over our study area. These results emphasize the importance of considering both seasonal and spatial variation in spawning when delineating management units for herring. On several chromosomes, we detected linkage disequilibrium extending over multiple Mb, suggesting the presence of chromosomal rearrangements. Spawning phenology was highly correlated with polymorphisms in several genes, in particular SYNE2, which influences the development of retinal photoreceptors in vertebrates. SYNE2 is probably within a chromosomal rearrangement in Pacific herring and is also associated with spawn timing in Atlantic herring (Clupea harengus). The observed genetic diversity probably underlies resource waves provided by spawning herring. Given the ecological, economic and cultural significance of herring, our results support that conserving intraspecific genetic diversity is important for maintaining current and future ecosystem processes.
Collapse
Affiliation(s)
- Eleni L. Petrou
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | | | - Luke A. Rogers
- Fisheries and Oceans Canada, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Melissa Orobko
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Carolyn Tarpey
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | - Isadora Jiménez-Hidalgo
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| | - Madonna L. Moss
- Department of Anthropology, University of Oregon, Eugene, OR 97403, USA
| | - Dongya Yang
- Department of Archaeology, Simon Fraser University, Education Building 9635, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6
| | - Tony J. Pitcher
- University of British Columbia, Institute for the Oceans and Fisheries, Vancouver, British Columbia, Canada
| | - Todd Sandell
- Washington Department of Fish and Wildlife, 16018 Mill Creek Boulevard, Mill Creek, WA 98012-1541, USA
| | - Dayv Lowry
- Washington Department of Fish and Wildlife, 1111 Washington Street SE, 6th Floor, Olympia, WA 98504-3150, USA
| | - Daniel E. Ruzzante
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Lorenz Hauser
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle WA 98105, USA
| |
Collapse
|