1
|
Isaïa J, Baur M, Wassef J, Monod S, Glaizot O, Christe P, Pigeault R. Impact of the intensity of infection in birds on Plasmodium development within Culex pipiens mosquitoes. Parasit Vectors 2025; 18:54. [PMID: 39953558 PMCID: PMC11827324 DOI: 10.1186/s13071-024-06652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/27/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND In vector-borne diseases, invertebrate hosts are exposed to highly variable quantities of parasites during their blood meal. This heterogeneity may partly explain the overdispersed distribution of parasites within the vector population and the variability in the extrinsic incubation period (EIP) of the parasite. Indeed, the quantity of parasites ingested is often considered as a good predictor of the quantity of parasites that will develop within the vectors, as well as the speed at which they will develop (i.e. EIP). However, density-dependent processes can influence the relationship between parasite burden in the vertebrate host and in vectors, making this relationship unclear at times. METHODS Here, we used an avian malaria system to investigate whether the proportion of red blood cells infected by sexual and/or asexual stages of Plasmodium relictum influences the intensity of infection and the EIP within vectors. For this purpose, we experimentally infected 12 birds in order to generate a range of infection intensity. More than 1000 mosquitoes took a blood meal on these hosts, and the development of Plasmodium within the vectors was followed for more than 20 days. RESULTS Our study reveals a negative relationship between the intensity of infection in birds and the time until 10% of mosquitoes become infectious (EIP10). A period of only 4 days was sufficient to detect sporozoites in at least 10% of mosquitoes fed on the most infected hosts. However, the number of sporozoites did not vary significantly according to the vertebrate host intensity of infection, but was positively correlated to the oocyst burden (parasitic stage preceding the sporozoite stage). CONCLUSIONS While the quantity of ingested parasites had no impact on oocyst and sporozoite burden in infectious mosquitoes, the EIP10 was affected. Studies have demonstrated that small changes in the EIP can have a significant effect on the number of mosquitoes living long enough to transmit parasites. Here, we observed a difference of 4-6 days in the detection of the first sporozoites, depending on the intensity of infection of the bitten vertebrate host. Considering that a gonotrophic cycle lasts 3-4 days, the shortened EIP may have significant effects on Plasmodium transmission.
Collapse
Affiliation(s)
- Julie Isaïa
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Molly Baur
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Wassef
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Sarah Monod
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Zoology, State Museum of Natural Sciences, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Romain Pigeault
- Ecologie & Biologie Des Interactions (UMR 7267), EBI, Université de Poitiers, Poitiers, France
| |
Collapse
|
2
|
Albery GF, Hasik AZ, Morris S, Morris A, Kenyon F, McBean D, Pemberton JM, Nussey DH, Firth JA. Divergent age-related changes in parasite infection occur independently of behaviour and demography in a wild ungulate. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230508. [PMID: 39463254 PMCID: PMC11513643 DOI: 10.1098/rstb.2023.0508] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 10/29/2024] Open
Abstract
As animals age, they exhibit a suite of phenotypic changes, often including reductions in movement and social behaviour ('behavioural ageing'). By altering an individual's exposure to parasites, behavioural ageing may influence infection status trajectories over the lifespan. However, these processes could be confounded by age-related changes in other phenotypic traits, or by selective disappearance of certain individuals owing to parasite-induced mortality. Here, we uncover contrasting age-related patterns of infection across three helminth parasites in wild adult female red deer (Cervus elaphus). Counts of strongyle nematodes (order: Strongylida) increased with age, while counts of liver fluke (Fasciola hepatica) and tissue worm (Elaphostrongylus cervi) decreased, and lungworm (Dictyocaulus) counts did not change. These relationships could not be explained by socio-spatial behaviours, spatial structuring, or selective disappearance, suggesting behavioural ageing is unlikely to be responsible for driving age trends. Instead, social connectedness and strongyle infection were positively correlated, such that direct age-infection trends were directly contrasted with the effects implied by previously documented behavioural ageing. This suggests that behavioural ageing may reduce parasite exposure, potentially countering other age-related changes. These findings demonstrate that different parasites can show contrasting age trajectories depending on diverse intrinsic and extrinsic factors, and that behaviour's role in these processes is likely to be complex and multidirectional.This article is part of the discussion meeting issue 'Understanding age and society using natural populations'.
Collapse
Affiliation(s)
- Gregory F. Albery
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
- Department of Biology, Georgetown University, Washington, DC20057, USA
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin12587, Germany
- School of Natural Sciences, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Adam Z. Hasik
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Sean Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Alison Morris
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Fiona Kenyon
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | - David McBean
- Moredun Research Institute, PenicuikEH26 0PZ, UK
| | | | - Daniel H. Nussey
- Institute of Ecology and Evolution, University of Edinburgh, EdinburghEH9 3FL, UK
| | - Josh A. Firth
- Department of Biology, University of Oxford, OxfordOX1 3SZ, UK
- School of Biology, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
3
|
Love AE, Heckley AM, Webber QMR. Taking cues from ecological and evolutionary theories to expand the landscape of disgust. Proc Biol Sci 2024; 291:20241919. [PMID: 39626751 PMCID: PMC11614535 DOI: 10.1098/rspb.2024.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024] Open
Abstract
Behavioural avoidance of parasites in the environment generates what is known as the 'landscape of disgust' (analogous to the predator-induced 'landscape of fear'). Despite the potential for improving our inference of host-parasite dynamics, three limitations of the landscape of disgust restrict the insight that is gained from current research: (i) many host-parasite systems will not be appropriate for invoking the landscape of disgust framework; (ii) existing research has primarily focused on immediate choices made by hosts on small scales, limiting predictive power, generalizability, and the value of the insight obtained; and (iii) relevant ecological and evolutionary theory has yet to be integrated into the framework, challenging our ability to interpret the landscape of disgust within the context of most host-parasite systems. In this review, we explore the specific requirements for implementing a landscape of disgust framework in empirical systems. We also propose greater integration of habitat selection and evolutionary theories, aiming to generate novel insight, by exploring how the landscape of disgust varies within and across generations, presenting opportunities for future research. Despite interest in the impacts of parasitism on animal movement and behaviour, many unanswered questions remain.
Collapse
Affiliation(s)
- A. E. Love
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - A. M. Heckley
- Department of Biology and the Redpath Museum, McGill University, Montreal, Quebec, Canada
| | - Q. M. R. Webber
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Twining JP, Sutherland C, Zalewski A, Cove MV, Birks J, Wearn OR, Haysom J, Wereszczuk A, Manzo E, Bartolommei P, Mortelliti A, Evans B, Gerber BD, McGreevy TJ, Ganoe LS, Masseloux J, Mayer AE, Wierzbowska I, Loch J, Akins J, Drummey D, McShea W, Manke S, Pardo L, Boyce AJ, Li S, Ragai RB, Sukmasuang R, Villafañe Trujillo ÁJ, López-González C, Lara-Díaz NE, Cosby O, Waggershauser CN, Bamber J, Stewart F, Fisher J, Fuller AK, Perkins KA, Powell RA. Using global remote camera data of a solitary species complex to evaluate the drivers of group formation. Proc Natl Acad Sci U S A 2024; 121:e2312252121. [PMID: 38466845 PMCID: PMC10962950 DOI: 10.1073/pnas.2312252121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/21/2024] [Indexed: 03/13/2024] Open
Abstract
The social system of animals involves a complex interplay between physiology, natural history, and the environment. Long relied upon discrete categorizations of "social" and "solitary" inhibit our capacity to understand species and their interactions with the world around them. Here, we use a globally distributed camera trapping dataset to test the drivers of aggregating into groups in a species complex (martens and relatives, family Mustelidae, Order Carnivora) assumed to be obligately solitary. We use a simple quantification, the probability of being detected in a group, that was applied across our globally derived camera trap dataset. Using a series of binomial generalized mixed-effects models applied to a dataset of 16,483 independent detections across 17 countries on four continents we test explicit hypotheses about potential drivers of group formation. We observe a wide range of probabilities of being detected in groups within the solitary model system, with the probability of aggregating in groups varying by more than an order of magnitude. We demonstrate that a species' context-dependent proclivity toward aggregating in groups is underpinned by a range of resource-related factors, primarily the distribution of resources, with increasing patchiness of resources facilitating group formation, as well as interactions between environmental conditions (resource constancy/winter severity) and physiology (energy storage capabilities). The wide variation in propensities to aggregate with conspecifics observed here highlights how continued failure to recognize complexities in the social behaviors of apparently solitary species limits our understanding not only of the individual species but also the causes and consequences of group formation.
Collapse
Affiliation(s)
- Joshua P. Twining
- New York Cooperative Fish and Wildlife Research Unit, Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Chris Sutherland
- Centre for Research into Ecological and Environmental Modelling, Schools of Mathematics and Statistics, Biology, and Computer Science, The Observatory Buchanan Gardens University of St. Andrews, St. Andrews, FifeKY16 9LZ, United Kingdom
| | - Andrzej Zalewski
- Mammal Research Institute, Polish Academy of Sciences, Białowieża17-230, Poland
| | | | - Johnny Birks
- Swift Ecology Ltd, Glen Cottage, West Malvern, WorcsWR14 4BQ, United Kingdom
| | - Oliver R. Wearn
- Fauna and Flora International–Vietnam Programme, Hanoi, Vietnam
| | - Jessica Haysom
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, CanterburyCT2 7NR, United Kingdom
| | - Anna Wereszczuk
- Mammal Research Institute, Polish Academy of Sciences, Białowieża17-230, Poland
| | - Emiliano Manzo
- Fondazione Ethoikos, Convento dell’Osservanza, RadicondoliSI 53030, Italy
| | - Paola Bartolommei
- Fondazione Ethoikos, Convento dell’Osservanza, RadicondoliSI 53030, Italy
| | - Alessio Mortelliti
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME04469
- Department of Life Sciences, University of Trieste, Trieste34127, Italy
| | - Bryn Evans
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME04469
| | - Brian D. Gerber
- Department of Natural Resources, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI02852
| | - Thomas J. McGreevy
- Department of Natural Resources, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI02852
| | - Laken S. Ganoe
- Department of Natural Resources, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI02852
| | - Juliana Masseloux
- Department of Natural Resources, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI02852
| | - Amy E. Mayer
- Department of Natural Resources, College of Environment and Life Sciences, University of Rhode Island, Kingston, RI02852
| | - Izabela Wierzbowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow30-387, Poland
| | - Jan Loch
- Scientific Laboratory of Gorce National Park, Niedźwiedź34-735, Poland
| | | | - Donovan Drummey
- Department of Environmental Conservation, University Massachusetts, Amherst, MA01003
| | - William McShea
- Smithsonian’s Conservation Biology Institute, Front Royal, VA22630
| | | | - Lain Pardo
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, QLD4878, Australia
| | - Andy J. Boyce
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC20008
| | - Sheng Li
- School of Life Sciences, Peking University, Beijing100871, China
| | - Roslina Binti Ragai
- Sarawak Forestry Corporation, Lot 218, Kuching Central Land District, Kuching, Sarawak93250, Malaysia
| | - Ronglarp Sukmasuang
- Deparment of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok10900, Thailand
| | - Álvaro José Villafañe Trujillo
- Laboratorio de Zoología, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa de Enríquez, VeracruzC. P. 91190, Mexico
- Laboratorio de Zoología, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santa Rosa Jáuregui, Santiago de Querétaro, Querétaro76230, Mexico
| | - Carlos López-González
- Laboratorio de Zoología, Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa de Enríquez, VeracruzC. P. 91190, Mexico
| | - Nalleli Elvira Lara-Díaz
- Departamento de Biología, Laboratorio de Ecología Animal, Universidad Autónoma Metropolitana, Ciudad de México, IztapalapaC. P. 09340, Mexico
| | - Olivia Cosby
- Smithsonian’s Conservation Biology Institute, Front Royal, VA22630
- Department of Environmental Science, Aaniiih Nakoda College, Harlem, MT59526
| | - Cristian N. Waggershauser
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, United Kingdom
- Institute for Biodiversity and Freshwater Conservation, University of the Highlands and Islands, InvernessIV2 5NA, United Kingdom
| | - Jack Bamber
- School of Biological Sciences, University of Aberdeen, AberdeenAB24 2TZ, United Kingdom
| | - Frances Stewart
- School of Environmental Studies, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Jason Fisher
- School of Environmental Studies, University of Victoria, Victoria, BCV8W 2Y2, Canada
| | - Angela K. Fuller
- U.S. Geological Survey, New York Cooperative Fish and Wildlife Research Unit, Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Kelly A. Perkins
- New York Cooperative Fish and Wildlife Research Unit, Department of Natural Resources and the Environment, Cornell University, Ithaca, NY14853
| | - Roger A. Powell
- Department of Applied Ecology, North Carolina State University, Raleigh, NC27607
| |
Collapse
|
5
|
Albery GF, Sweeny AR, Webber Q. How behavioural ageing affects infectious disease. Neurosci Biobehav Rev 2023; 155:105426. [PMID: 37839673 PMCID: PMC10842249 DOI: 10.1016/j.neubiorev.2023.105426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Ageing is associated with profound changes in behaviour that could influence exposure and susceptibility to infectious disease. As well as determining emergent patterns of infection across individuals of different ages, behavioural ageing could interact with, confound, or counteract age-related changes in other traits. Here, we examine how behavioural ageing can manifest and influence patterns of infection in wild animals. We discuss a range of age-related changes that involve interactions between behaviour and components of exposure and susceptibility to infection, including social ageing and immunosenescence, acquisition of novel parasites and pathogens with age, changes in spatial behaviours, and age-related hygiene and sickness behaviours. Overall, most behavioural changes are expected to result in a reduced exposure rate, but there is relatively little evidence for this phenomenon, emerging largely from a rarity of explicit tests of exposure changes over the lifespan. This review offers a framework for understanding how ageing, behaviour, immunity, and infection interact, providing a series of hypotheses and testable predictions to improve our understanding of health in ageing societies.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA; Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, Scotland, UK; Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Amy R Sweeny
- School of Biosciences, University of Sheffield, Sheffield, England, UK
| | - Quinn Webber
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Wiersma E, Pakeman RJ, Bal X, Pilkington JG, Pemberton JM, Nussey DH, Sweeny AR. Age-specific impacts of vegetation functional traits on gastrointestinal nematode parasite burdens in a large herbivore. J Anim Ecol 2023; 92:1869-1880. [PMID: 37403651 PMCID: PMC10952545 DOI: 10.1111/1365-2656.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023]
Abstract
Gastrointestinal nematode (GIN) parasites play an important role in the ecological dynamics of many animal populations. Recent studies suggest that fine-scale spatial variation in GIN infection dynamics is important in wildlife systems, but the environmental drivers underlying this variation remain poorly understood. We used data from over two decades of GIN parasite egg counts, host space use, and spatial vegetation data from a long-term study of Soay sheep on St Kilda to test how spatial autocorrelation and vegetation in an individual's home range predict parasite burden across three age groups. We developed a novel approach to quantify the plant functional traits present in a home range to describe the quality of vegetation present. Effects of vegetation and space varied between age classes. In immature lambs, strongyle parasite faecal egg counts (FEC) were spatially structured, being highest in the north and south of our study area. Independent of host body weight and spatial autocorrelation, plant functional traits predicted parasite egg counts. Higher egg counts were associated with more digestible and preferred plant functional traits, suggesting the association could be driven by host density and habitat preference. In contrast, we found no evidence that parasite FEC were related to plant functional traits in the host home range in yearlings or adult sheep. Adult FEC were spatially structured, with highest burdens in the north-east of our study area, while yearling FEC showed no evidence of spatial structuring. Parasite burdens in immature individuals appear more readily influenced by fine-scale spatial variation in the environment, highlighting the importance of such heterogeneity for our understanding of wildlife epidemiology and health. Our findings support the importance of fine-scale environmental variation for wildlife disease ecology and provides new evidence that such effects may vary across demographic groups within a population.
Collapse
Affiliation(s)
- Ellis Wiersma
- Institute of Ecology & Evolution, School of Biological ScienceUniversity of EdinburghEdinburghUK
| | | | - Xavier Bal
- Institute of Ecology & Evolution, School of Biological ScienceUniversity of EdinburghEdinburghUK
| | - Jill G. Pilkington
- Institute of Ecology & Evolution, School of Biological ScienceUniversity of EdinburghEdinburghUK
| | - Josephine M. Pemberton
- Institute of Ecology & Evolution, School of Biological ScienceUniversity of EdinburghEdinburghUK
| | - Daniel H. Nussey
- Institute of Ecology & Evolution, School of Biological ScienceUniversity of EdinburghEdinburghUK
| | - Amy R. Sweeny
- Institute of Ecology & Evolution, School of Biological ScienceUniversity of EdinburghEdinburghUK
- School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
7
|
Payne N, Combrink L, Kraberger S, Fontenele RS, Schmidlin K, Cassaigne I, Culver M, Varsani A, Van Doorslaer K. DNA virome composition of two sympatric wild felids, bobcat (Lynx rufus) and puma (Puma concolor) in Sonora, Mexico. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
With viruses often having devastating effects on wildlife population fitness and wild mammals serving as pathogen reservoirs for potentially zoonotic diseases, determining the viral diversity present in wild mammals is both a conservation and One Health priority. Additionally, transmission from more abundant hosts could increase the extinction risk of threatened sympatric species. We leveraged an existing circular DNA enriched metagenomic dataset generated from bobcat (Lynx rufus, n = 9) and puma (Puma concolor, n = 13) scat samples non-invasively collected from Sonora, Mexico, to characterize fecal DNA viromes of each species and determine the extent that viruses are shared between them. Using the metaWRAP pipeline to co-assemble viral genomes for comparative metagenomic analysis, we observed diverse circular DNA viruses in both species, including circoviruses, genomoviruses, and anelloviruses. We found that differences in DNA virome composition were partly attributed to host species, although there was overlap between viruses in bobcats and pumas. Pumas exhibited greater levels of alpha diversity, possibly due to bioaccumulation of pathogens in apex predators. Shared viral taxa may reflect dietary overlap, shared environmental resources, or transmission through host interactions, although we cannot rule out species-specific host-virus coevolution for the taxa detected through co-assembly. However, our detection of integrated feline foamy virus (FFV) suggests Sonoran pumas may interact with domestic cats. Our results contribute to the growing baseline knowledge of wild felid viral diversity. Future research including samples from additional sources (e.g., prey items, tissues) may help to clarify host associations and determine the pathogenicity of detected viruses.
Collapse
|
8
|
Webber QMR, Albery GF, Farine DR, Pinter-Wollman N, Sharma N, Spiegel O, Vander Wal E, Manlove K. Behavioural ecology at the spatial-social interface. Biol Rev Camb Philos Soc 2023; 98:868-886. [PMID: 36691262 DOI: 10.1111/brv.12934] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/25/2023]
Abstract
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the 'spatial-social interface' as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial-social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial-social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial-social interface.
Collapse
Affiliation(s)
- Quinn M R Webber
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Gregory F Albery
- Department of Biology, Georgetown University, 37th and O Streets, Washington, DC, 20007, USA.,Wissenschaftskolleg zu Berlin, Wallotstraße 19, 14193, Berlin, Germany.,Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Damien R Farine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Collective Behavior, Max Planck Institute of Animal Behavior, Universitatsstraße 10, 78464, Constance, Germany.,Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nitika Sharma
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eric Vander Wal
- Department of Biology, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, 5200 Old Main Hill, Logan, UT, 84322, USA
| |
Collapse
|
9
|
Affiliation(s)
- Amy R. Sweeny
- Institute of Evolutionary Biology University of Edinburgh Edinburgh Scotland
| | - Gregory F. Albery
- Department of Biology Georgetown University Washington DC USA
- Wissenschaftskolleg zu Berlin Berlin Germany
| |
Collapse
|
10
|
Alaidrous W, Villa SM, de Roode JC, Majewska AA. Crowding does not affect monarch butterflies' resistance to a protozoan parasite. Ecol Evol 2022; 12:e8791. [PMID: 35414899 PMCID: PMC8986514 DOI: 10.1002/ece3.8791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
Host density is an important factor when it comes to parasite transmission and host resistance. Increased host density can increase contact rate between individuals and thus parasite transmission. Host density can also cause physiological changes in the host, which can affect host resistance. Yet, the direction in which host density affects host resistance remains unresolved. It is also unclear whether food limitation plays a role in this effect. We investigated the effect of larval density in monarch butterflies, Danaus plexippus, on the resistance to their natural protozoan parasite Ophryocystis elektroscirrha under both unlimited and limited food conditions. We exposed monarchs to various density treatments as larvae to mimic high densities observed in sedentary populations. Data on infection and parasite spore load were collected as well as development time, survival, wing size, and melanization. Disease susceptibility under either food condition or across density treatments was similar. However, we found high larval density impacted development time, adult survival, and wing morphology when food was limited. This study aids our understanding of the dynamics of environmental parasite transmission in monarch populations, which can help explain the increased prevalence of parasites in sedentary monarch populations compared to migratory populations.
Collapse
Affiliation(s)
- Wajd Alaidrous
- Department of BiologyEmory UniversityAtlantaGeorgiaUSA
- Division of Biological and Environmental Science and Engineering (BESE)King Abdullah University for Science and TechnologyThuwalSaudi Arabia
| | | | | | | |
Collapse
|
11
|
Bright Ross JG, Newman C, Buesching CD, Macdonald DW. Preserving identity in capture–mark–recapture studies: increasing the accuracy of minimum number alive (MNA) estimates by incorporating inter-census trapping efficiency variation. Mamm Biol 2022. [DOI: 10.1007/s42991-021-00210-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AbstractQuantifying abundance is often key to understanding ecological and evolutionary processes in wild populations. Despite shortcomings in producing accurate abundance estimates, minimum number alive (MNA) remains a widely used tool, due to its intuitive computation, reliable performance as an abundance indicator, and linkage to individual life-histories. Here, we propose a novel “efficiency-modified” MNA (eMNA) metric, which aims to preserve MNA’s favourable aspects while remedying its flaws, by incorporating (a) growth correlates to back-age individuals first captured as adults, and (b) estimates of undetected persistence beyond last capture based on time-varying capture efficiency. We evaluate eMNA through samplings of a simulated baseline population parameterised using data from a long-term demographic study of European badgers (Meles meles), under three different levels of capture efficiency (low; intermediate/“real” based on badger field data; high). We differentiate between eMNA’s performance as an abundance estimator—how well it approximates true abundance (accuracy)—and as an abundance indicator—how tightly it correlates with population abundance and changes thereof (precision). eMNA abundance estimates were negatively biased at all capture efficiencies. However, this bias was negligible at intermediate-to-high capture efficiency, particularly once low-information terminal sampling years (the first year and final three years of simulated studies) were removed. Excluding these years, eMNA under-estimated abundance by only 3.5 badgers (1.5% of population) at intermediate (real) capture efficiencies, and performed as a precise abundance indicator, with half the standard deviation of Cormack–Jolly–Seber probabilistic estimates and proving robust to inter-sampling variation in capture efficiency. Using undetected persistence probabilities to parameterise survival regression, we recreated baseline age-based survival relationships, albeit with some negative bias for under-represented ages. We offer considerations on the continued limitations of using eMNA for abundance estimates, minimum study duration for reliability, the metric’s benefits when individual identity is required, and potential for further improvement.
Collapse
|
12
|
Albery GF, Sweeny AR, Becker DJ, Bansal S. Fine‐scale spatial patterns of wildlife disease are common and understudied. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Amy R. Sweeny
- Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | | | - Shweta Bansal
- Department of Biology Georgetown University Washington DC USA
| |
Collapse
|
13
|
Hart LA, Hart BL. How Does the Social Grouping of Animals in Nature Protect Against Sickness? A Perspective. Front Behav Neurosci 2021; 15:672097. [PMID: 34305545 PMCID: PMC8292637 DOI: 10.3389/fnbeh.2021.672097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/14/2021] [Indexed: 02/01/2023] Open
Abstract
Sickness behavior is broadly represented in vertebrates, usually in association with the fever response in response to acute infections. The reactions to sickness behavior in a group member or potential group member in humans is quite variable, depending upon circumstances. In animals, the reactions to sickness behavior in a group member or potential group member evoke a specific response that reflects the species-specific lifestyle. Groups of animals can employ varied strategies to reduce or address exposure to sickness. Most of these have scarcely been studied in nature from a disease perspective: (1) adjusting exposure to sick conspecifics or contaminated areas; (2) caring for a sick group member; (3) peripheralization and agonistic behaviors to strange non-group conspecifics; and (4) using special strategies at parturition when newborn are healthy but vulnerable. Unexplored in this regard is infanticide, where newborn that are born with very little immunity until they receive antibody-rich colostrum, could be a target of maternal infanticide if they manifest signs of sickness and could be infectious to littermates. The strategies used by different species are highly specific and dependent upon the particular circumstances. What is needed is a more general awareness and consideration of the possibilities that avoiding or adapting to sickness behavior may be driving some social behaviors of animals in nature.
Collapse
Affiliation(s)
- Lynette A Hart
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Benjamin L Hart
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Tsai MS, François S, Newman C, Macdonald DW, Buesching CD. Patterns of Genital Tract Mustelid Gammaherpesvirus 1 (Musghv-1) Reactivation Are Linked to Stressors in European Badgers ( Meles Meles). Biomolecules 2021; 11:biom11050716. [PMID: 34064759 PMCID: PMC8151406 DOI: 10.3390/biom11050716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Gammaherpesvirus reactivation can promote diseases or impair reproduction. Understanding reactivation patterns and associated risks of different stressors is therefore important. Nevertheless, outside the laboratory or captive environment, studies on the effects of stress on gammaherpesvirus reactivation in wild mammals are lacking. Here we used Mustelid gammaherpesvirus 1 (MusGHV-1) infection in European badgers (Meles meles) as a host-pathogen wildlife model to study the effects of a variety of demographic, physiological and environmental stressors on virus shedding in the genital tract. We collected 251 genital swabs from 150 free-ranging individuals across three seasons and screened them for the presence of MusGHV-1 DNA using PCR targeting the DNA polymerase gene. We explored possible links between MusGHV-1 DNA presence and seven variables reflecting stressors, using logistic regression analysis. The results reveal different sets of risk factors between juveniles and adults, likely reflecting primary infection and reactivation. In adults, virus shedding was more likely in badgers in poorer body condition and younger than 5 years or older than 7; while in juveniles, virus shedding is more likely in females and individuals in better body condition. However, living in social groups with more cubs was a risk factor for all badgers. We discuss possible explanations for these risk factors and their links to stress in badgers.
Collapse
Affiliation(s)
- Ming-shan Tsai
- Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.)
- Correspondence:
| | - Sarah François
- Evolve.Zoo, Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, South Park Road, Oxford OX1 3SY, UK;
| | - Chris Newman
- Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.)
- Cook’s Lake Farming Forestry and Wildlife Inc. (Ecological Consultancy), Queens County, NS B0J 2H0, Canada;
| | - David W. Macdonald
- Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Abingdon Road, Tubney House, Tubney, Oxfordshire OX13 5QL, UK; (C.N.); (D.W.M.)
| | - Christina D. Buesching
- Cook’s Lake Farming Forestry and Wildlife Inc. (Ecological Consultancy), Queens County, NS B0J 2H0, Canada;
- Department of Biology, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
15
|
Albery GF, Morris A, Morris S, Pemberton JM, Clutton-Brock TH, Nussey DH, Firth JA. Multiple spatial behaviours govern social network positions in a wild ungulate. Ecol Lett 2021; 24:676-686. [PMID: 33583128 DOI: 10.1111/ele.13684] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/19/2023]
Abstract
The structure of wild animal social systems depends on a complex combination of intrinsic and extrinsic drivers. Population structuring and spatial behaviour are key determinants of individuals' observed social behaviour, but quantifying these spatial components alongside multiple other drivers remains difficult due to data scarcity and analytical complexity. We used a 43-year dataset detailing a wild red deer population to investigate how individuals' spatial behaviours drive social network positioning, while simultaneously assessing other potential contributing factors. Using Integrated Nested Laplace Approximation (INLA) multi-matrix animal models, we demonstrate that social network positions are shaped by two-dimensional landscape locations, pairwise space sharing, individual range size, and spatial and temporal variation in population density, alongside smaller but detectable impacts of a selection of individual-level phenotypic traits. These results indicate strong, multifaceted spatiotemporal structuring in this society, emphasising the importance of considering multiple spatial components when investigating the causes and consequences of sociality.
Collapse
Affiliation(s)
- Gregory F Albery
- Department of Biology, Georgetown University, Washington, DC, USA.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Alison Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Sean Morris
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | - Tim H Clutton-Brock
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Josh A Firth
- Department of Zoology, University of Oxford, Oxford, UK.,Merton College, University of Oxford, Oxford, UK
| |
Collapse
|