1
|
Armstrong KC, Lippert M, Hanson E, Nestor V, Cornwell B, Walker NS, Golbuu Y, Palumbi SR. Fine-Scale Geographic Variation of Cladocopium in Acropora hyacinthus Across the Palauan Archipelago. Ecol Evol 2024; 14:e70650. [PMID: 39691438 PMCID: PMC11650750 DOI: 10.1002/ece3.70650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
Symbiont genotype plays a vital role in the ability of a coral host to tolerate rising ocean temperatures, with some members of the family Symbiodiniaceae possessing more thermal tolerance than others. While existing studies on genetic structure in symbiont populations have focused on broader scales of 10-100 s of km, there is a noticeable gap in understanding the seascape genetics of coral symbionts at finer-yet ecologically and evolutionarily relevant-scales. Here, we mapped short reads from 271 holobiont genome libraries of individual Acropora hyacinthus colonies to protein coding genes from the chloroplast genome to identify patterns of symbiont population genetic structure. Utilizing this low-pass method, we assayed over 13,000 bases from every individual, enabling us to discern genetic variation at a finer geographic scale than previously reported at the population level. We identified five common Cladocopium chloroplast SNP profiles present across Palau, with symbiont structure varying between Northern, mid-lagoon, and Southern regions, and inshore-offshore gradients. Although symbiont populations within reefs typically contained significant genetic diversity, we also observed genetic structure between some nearby reefs. To explore whether coral hosts retain their symbionts post-transplantation, we experimentally moved 79 corals from their native reefs to transplant sites with both different and similar chloroplast SNP profiles. Over 12 months, we observed 12 instances where transplanted corals changed profiles, often transitioning to a profile present in adjacent corals. Symbiont genetic structure between reefs suggests either low dispersal of symbionts or environmental selection against dispersers, both resulting in the potential for significant adaptive differentiation across reef environments. The extent to which local corals and their symbionts are co-adapted to environments on a reef-by-reef scale is currently poorly known. Chloroplast sequences offer an additional tool for monitoring symbiont genetics and coral-symbiont interactions when assisted migration is used in restoration.
Collapse
Affiliation(s)
- Katrina C. Armstrong
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Marilla Lippert
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Erik Hanson
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | | | - Brendan Cornwell
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Nia S. Walker
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| |
Collapse
|
2
|
Young BD, Williams DE, Bright AJ, Peterson A, Traylor-Knowles N, Rosales SM. Genet identity and season drive gene expression in outplanted Acropora palmata at different reef sites. Sci Rep 2024; 14:29444. [PMID: 39604459 PMCID: PMC11603135 DOI: 10.1038/s41598-024-80479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Coral reefs are experiencing decreases in coral cover due to anthropogenic influences. Coral restoration is addressing this decline by outplanting large volumes of corals onto reef systems. Understanding how outplanted corals react at a transcriptomic level to different outplant locations over time is important, as it will highlight how habitat affects the coral host and influences physiological measures. In this study, the transcriptomic dynamics of four genets of outplanted Acropora palmata were assessed over a year at three reef sites in the Florida Keys. Genet identity was more important than time of sampling or outplant site, with differing levels of baseline immune and protein production the key drivers. Once accounting for genet, enriched growth processes were identified in the winter, and increased survival and immune expression were found in the summer. The effect of the reef site was small, with hypothesized differences in autotrophic versus heterotrophic dependent on outplant depth. We hypothesize that genotype identity is an important consideration for reef restoration, as differing baseline gene expression could play a role in survivorship and growth. Additionally, outplanting during cooler winter months may be beneficial due to higher expression of growth processes, allowing establishment of outplants on the reef system.
Collapse
Affiliation(s)
- Benjamin D Young
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA.
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA.
| | - Dana E Williams
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Miami, FL, USA
| | - Allan J Bright
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Miami, FL, USA
| | - Annie Peterson
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Southeast Fisheries Science Center, National Oceanic and Atmospheric Administration-National Marine Fisheries Service, Miami, FL, USA
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, FL, USA
| | - Stephane M Rosales
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA
| |
Collapse
|
3
|
Cecchini P, Nitta T, Sena E, Du ZY. Saving coral reefs: significance and biotechnological approaches for coral conservation. ADVANCED BIOTECHNOLOGY 2024; 2:42. [PMID: 39883363 PMCID: PMC11740877 DOI: 10.1007/s44307-024-00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 01/31/2025]
Abstract
Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage. UV and heat stress are commonly implicated in bleaching, but other anthropogenic factors may also play a role. To address coral loss, active restoration is already underway in many critical regions. Additionally, coral researchers are exploring assisted evolution methods for greater coral resilience to projected climate change. This review provides an overview of the symbiotic relationship, the mechanisms underlying coral bleaching in response to stressors, and the strategies being pursued to address coral loss. Despite the necessity of ongoing research in all aspects of this field, action on global climate change remains crucial for the long-term survival of coral reefs.
Collapse
Affiliation(s)
- Pansa Cecchini
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Thomas Nitta
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Edoardo Sena
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
4
|
Esplandiu E, Morris J, Enochs I, Besemer N, Lirman D. Enhancing reef carbonate budgets through coral restoration. Sci Rep 2024; 14:27599. [PMID: 39528507 PMCID: PMC11555216 DOI: 10.1038/s41598-024-76799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Complex reef structure, built via calcium carbonate production by stony corals and other calcifying taxa, supports key ecosystem services. However, the decline in coral cover on reefs of the Florida Reef Tract (US), caused by ocean warming, disease, and other stressors, has led to erosion exceeding accretion, causing net loss of reef framework. Active coral restoration, aimed at rapidly increasing coral cover, is essential for recovering reef structure and function. Traditionally, restoration success focused on the survivorship and growth of transplanted corals. This is the first empirical study to examine the role of high-density outplants of the endangered staghorn coral, Acropora cervicornis, in restoring positive carbonate accretion on Florida reefs. Successful transplantation of staghorn corals contributed to positive net carbonate production. Restored plots yielded a mean net carbonate production rate of 3.06 kg CaCO3 m- 2 yr- 1, whereas control plots exhibited net erosive states. Staghorn restoration plots sustained positive net carbonate production at a threshold of ~ 2.96% coral cover. However, bleaching, storms, and disease challenge these reefs, highlighting the need for restoration strategies that enhance resilience to environmental stressors. Establishing Acroporid aggregations through outplanting, alongside climate adaptation strategies, could foster reef habitat growth and enhance the recovery of ecosystem services.
Collapse
Affiliation(s)
- Emily Esplandiu
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy., Key Biscayne, FL, 33149, USA.
| | - John Morris
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystem Division, NOAA , 4301 Rickenbacker Cswy., Miami, FL, 33149, USA
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Cswy., Miami, FL, 33149, USA
| | - Ian Enochs
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystem Division, NOAA , 4301 Rickenbacker Cswy., Miami, FL, 33149, USA
| | - Nicole Besemer
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystem Division, NOAA , 4301 Rickenbacker Cswy., Miami, FL, 33149, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, 4600 Rickenbacker Cswy., Key Biscayne, FL, 33149, USA
| |
Collapse
|
5
|
Ladd MC, Shantz AA, Harrell C, Hayes NK, Gilliam DS, Muller EM, O'Neil KL, Reckenbeil B, Craig Z, Lirman D. Acclimation and size influence predation, growth, and survival of sexually produced Diploria labyrinthiformis used in restoration. Sci Rep 2024; 14:26362. [PMID: 39487186 PMCID: PMC11530667 DOI: 10.1038/s41598-024-73727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/20/2024] [Indexed: 11/04/2024] Open
Abstract
Stony coral tissue loss disease (SCTLD) has swept through Florida reefs and caused mass mortality of numerous coral species. In the wake of these losses, efforts are underway to propagate coral species impacted by SCTLD and promote population recovery. However, numerous knowledge gaps must be addressed to effectively grow, outplant, and restore populations of the slower growing, massive species that were lost. Here, we used sexual recruits of Diploria labyrinthiformis spawned in captivity to understand how conditioning, coral size, and nutritional status at outplanting affect coral survivorship, growth, and susceptibility to predation. We found that ex situ conditioning with supplemental feeding increased coral growth rates, resulting in larger sized corals at the time of outplanting. In turn, these corals had higher growth rates in the field and a lower probability of being removed by predators than outplants that were conditioned in in situ nurseries. Additionally, we found that coral size was an important predictor of survivorship, suggesting that hastening the speed at which young corals grow and outplanting larger juveniles can improve restoration outcomes. Taken together, our results suggest that providing supplemental food to corals at ex situ facilities confers benefits that could help restore populations of massive coral species impacted by SCTLD.
Collapse
Affiliation(s)
- Mark C Ladd
- Population and Ecosystems Monitoring Division, NOAA Southeast Fisheries Science Center, Miami, FL, USA.
| | - Andrew A Shantz
- Cooperative Institute for Marine and Atmospheric Research, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Florida State University, Tallahassee, FL, USA
| | - Cailin Harrell
- Department of Marine Biology and Ecology, Rosentiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| | - Nicole K Hayes
- Nova Southeastern University Halmos College of Arts and Sciences, Hollywood, FL, USA
| | - David S Gilliam
- Nova Southeastern University Halmos College of Arts and Sciences, Hollywood, FL, USA
| | | | - Keri L O'Neil
- Center for Conservation, The Florida Aquarium, Apollo Beach, FL, USA
| | - Brian Reckenbeil
- Center for Conservation, The Florida Aquarium, Apollo Beach, FL, USA
| | - Zachary Craig
- Mote Marine Laboratory, Summerland Key, FL, USA
- Division of Aquatic Resources, Kailua-Kona, HI, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, Rosentiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
| |
Collapse
|
6
|
Ruggeri M, Million WC, Hamilton L, Kenkel CD. Microhabitat acclimatization alters sea anemone-algal symbiosis and thermal tolerance across the intertidal zone. Ecology 2024; 105:e4388. [PMID: 39076113 DOI: 10.1002/ecy.4388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 07/31/2024]
Abstract
Contemporary symbioses in extreme environments can give an insight into mechanisms that stabilize species interactions during environmental change. The intertidal sea anemone, Anthopleura elegantissima, engages in a nutritional symbiosis with microalgae similar to tropical coral, but withstands more intense environmental fluctuations during tidal inundations. In this study, we compare baseline symbiotic traits and their sensitivity to thermal stress within and among anemone aggregations across the intertidal using a laboratory-based tank experiment to better understand how fixed genotypic and plastic environmental effects contribute to the successful maintenance of this symbiosis in extreme habitats. High intertidal anemones had lower baseline symbiont-to-host cell ratios under control conditions, but their symbionts had higher baseline photosynthetic efficiency compared to low intertidal anemone symbionts. Symbiont communities were identical across all samples, suggesting that shifts in symbiont density and photosynthetic performance could be an acclimatory mechanism to maintain symbiosis in different environments. Despite lower baseline symbiont-to-host cell ratios, high intertidal anemones maintained greater symbiont-to-host cell ratios under heat stress compared with low intertidal anemones, suggesting greater thermal tolerance of high intertidal holobionts. However, the thermal tolerance of clonal anemones acclimatized to different zones was not explained by tidal height alone, indicating additional environmental variables contribute to physiological differences. Host genotype significantly influenced anemone weight, but only explained a minor proportion of variation among symbiotic traits and their response to thermal stress, further implicating environmental history as the primary driver of holobiont tolerance. These results indicate that this symbiosis is highly plastic and may be able to acclimatize to climate change over ecological timescales, defying the convention that symbiotic organisms are more susceptible to environmental stress.
Collapse
Affiliation(s)
- Maria Ruggeri
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Wyatt C Million
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Lindsey Hamilton
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Carly D Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
7
|
Klepac CN, Petrik CG, Karabelas E, Owens J, Hall ER, Muller EM. Assessing acute thermal assays as a rapid screening tool for coral restoration. Sci Rep 2024; 14:1898. [PMID: 38253660 PMCID: PMC10803358 DOI: 10.1038/s41598-024-51944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Escalating environmental threats to coral reefs coincides with global advancements in coral restoration programs. To improve long-term efficacy, practitioners must consider incorporating genotypes resilient to ocean warming and disease while maintaining genetic diversity. Identifying such genotypes typically occurs under long-term exposures that mimic natural stressors, but these experiments can be time-consuming, costly, and introduce tank effects, hindering scalability for hundreds of nursery genotypes used for outplanting. Here, we evaluated the efficacy of the acute Coral Bleaching Automated Stress System (CBASS) against long-term exposures on the bleaching response of Acropora cervicornis, the dominant restoration species in Florida's Coral Reef. Comparing bleaching metrics, Fv/Fm, chlorophyll, and host protein, we observed similar responses between the long-term heat and the CBASS treatment of 34.3 °C, which was also the calculated bleaching threshold. This suggests the potential of CBASS as a rapid screening tool, with 90% of restoration genotypes exhibiting similar bleaching tolerances. However, variations in acute bleaching phenotypes arose from measurement timing and experiment heat accumulation, cautioning against generalizations solely based on metrics like Fv/Fm. These findings identify the need to better refine the tools necessary to quickly and effectively screen coral restoration genotypes and determine their relative tolerance for restoration interventions.
Collapse
Affiliation(s)
- C N Klepac
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA.
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
| | - C G Petrik
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- National Coral Reef Institute, Nova Southeastern University, Dania Beach, FL, USA
| | - E Karabelas
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - J Owens
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Tufts University, Worcester, MA, USA
| | - E R Hall
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| | - E M Muller
- Mote Marine Laboratory, International Center for Coral Reef Research and Restoration, Summerland Key, FL, USA
- Mote Marine Laboratory, Sarasota, FL, USA
| |
Collapse
|
8
|
Hackerott S, Virdis F, Flood PJ, Souto DG, Paez W, Eirin-Lopez JM. Relationships between phenotypic plasticity and epigenetic variation in two Caribbean Acropora corals. Mol Ecol 2023; 32:4814-4828. [PMID: 37454286 DOI: 10.1111/mec.17072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The plastic ability for a range of phenotypes to be exhibited by the same genotype allows organisms to respond to environmental variation and may modulate fitness in novel environments. Differing capacities for phenotypic plasticity within a population, apparent as genotype by environment interactions (GxE), can therefore have both ecological and evolutionary implications. Epigenetic gene regulation alters gene function in response to environmental cues without changes to the underlying genetic sequence and likely mediates phenotypic variation. DNA methylation is currently the most well described epigenetic mechanism and is related to transcriptional homeostasis in invertebrates. However, evidence quantitatively linking variation in DNA methylation with that of phenotype is lacking in some taxa, including reef-building corals. In this study, spatial and seasonal environmental variation in Bonaire, Caribbean Netherlands was utilized to assess relationships between physiology and DNA methylation profiles within genetic clones across different genotypes of Acropora cervicornis and A. palmata corals. The physiology of both species was highly influenced by environmental variation compared to the effect of genotype. GxE effects on phenotype were only apparent in A. cervicornis. DNA methylation in both species differed between genotypes and seasons and epigenetic variation was significantly related to coral physiological metrics. Furthermore, plastic shifts in physiology across seasons were significantly positively correlated with shifts in DNA methylation profiles in both species. These results highlight the dynamic influence of environmental conditions and genetic constraints on the physiology of two important Caribbean coral species. Additionally, this study provides quantitative support for the role of epigenetic DNA methylation in mediating phenotypic plasticity in invertebrates.
Collapse
Affiliation(s)
- Serena Hackerott
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
- Florida International University, Miami, Florida, USA
| | - Francesca Virdis
- Reef Renewal Foundation Bonaire, Kralendijk, Caribbean Netherlands
| | - Peter J Flood
- Florida International University, Miami, Florida, USA
| | - Daniel Garcia Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Wendy Paez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
- Florida International University, Miami, Florida, USA
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, Florida, USA
- Florida International University, Miami, Florida, USA
| |
Collapse
|
9
|
de Souza MR, Caruso C, Ruiz-Jones L, Drury C, Gates RD, Toonen RJ. Importance of depth and temperature variability as drivers of coral symbiont composition despite a mass bleaching event. Sci Rep 2023; 13:8957. [PMID: 37268692 DOI: 10.1038/s41598-023-35425-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/17/2023] [Indexed: 06/04/2023] Open
Abstract
Coral reefs are iconic examples of climate change impacts because climate-induced heat stress causes the breakdown of the coral-algal symbiosis leading to a spectacular loss of color, termed 'coral bleaching'. To examine the fine-scale dynamics of this process, we re-sampled 600 individually marked Montipora capitata colonies from across Kāne'ohe Bay, Hawai'i and compared the algal symbiont composition before and after the 2019 bleaching event. The relative proportion of the heat-tolerant symbiont Durusdinium in corals increased in most parts of the bay following the bleaching event. Despite this widespread increase in abundance of Durusdinium, the overall algal symbiont community composition was largely unchanged, and hydrodynamically defined regions of the bay retained their distinct pre-bleaching compositions. We explain ~ 21% of the total variation, of which depth and temperature variability were the most significant environmental drivers of Symbiodiniaceae community composition by site regardless of bleaching intensity or change in relative proportion of Durusdinium. We hypothesize that the plasticity of symbiont composition in corals may be constrained to adaptively match the long-term environmental conditions surrounding the holobiont, despite an individual coral's stress and bleaching response.
Collapse
Affiliation(s)
- Mariana Rocha de Souza
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Lupita Ruiz-Jones
- Chaminade University of Honolulu, 3140 Waialae Ave, Honolulu, HI, 96816, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
10
|
Palumbi SR, Walker NS, Hanson E, Armstrong K, Lippert M, Cornwell B, Nestor V, Golbuu Y. Small-scale genetic structure of coral populations in Palau based on whole mitochondrial genomes: Implications for future coral resilience. Evol Appl 2023; 16:518-529. [PMID: 36793699 PMCID: PMC9923468 DOI: 10.1111/eva.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
The ability of local populations to adapt to future climate conditions is facilitated by a balance between short range dispersal allowing local buildup of adaptively beneficial alleles, and longer dispersal moving these alleles throughout the species range. Reef building corals have relatively low dispersal larvae, but most population genetic studies show differentiation only over 100s of km. Here, we report full mitochondrial genome sequences from 284 tabletop corals (Acropora hyacinthus) from 39 patch reefs in Palau, and show two signals of genetic structure across reef scales from 1 to 55 km. First, divergent mitochondrial DNA haplotypes exist in different proportions from reef to reef, causing PhiST values of 0.02 (p = 0.02). Second, closely related sequences of mitochondrial Haplogroups are more likely to be co-located on the same reefs than expected by chance alone. We also compared these sequences to prior data on 155 colonies from American Samoa. In these comparisons, many Haplogroups in Palau were disproportionately represented or absent in American Samoa, and inter-regional PhiST = 0.259. However, we saw three instances of identical mitochondrial genomes between locations. Together, these data sets suggest two features of coral dispersal revealed by occurrence patterns in highly similar mitochondrial genomes. First, the Palau-American Samoa data suggest that long distance dispersal in corals is rare, as expected, but that it is common enough to deliver identical mitochondrial genomes across the Pacific. Second, higher than expected co-occurrence of Haplogroups on the same Palau reefs suggests greater retention of coral larvae on local reefs than predicted by many current oceanographic models of larval movement. Increased attention to local scales of coral genetic structure, dispersal, and selection may help increase the accuracy of models of future adaptation of corals and of assisted migration as a reef resilience intervention.
Collapse
Affiliation(s)
- Stephen R. Palumbi
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Nia S. Walker
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
- Hawaii Institute of Marine Biology, University of HawaiiHonoluluHawaiiUSA
| | - Erik Hanson
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Katrina Armstrong
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Marilla Lippert
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Brendan Cornwell
- Department of Biology and Oceans DepartmentHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | | | | |
Collapse
|
11
|
Marzonie MR, Bay LK, Bourne DG, Hoey AS, Matthews S, Nielsen JJV, Harrison HB. The effects of marine heatwaves on acute heat tolerance in corals. GLOBAL CHANGE BIOLOGY 2023; 29:404-416. [PMID: 36285622 PMCID: PMC10092175 DOI: 10.1111/gcb.16473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 09/16/2022] [Indexed: 05/19/2023]
Abstract
Scleractinian coral populations are increasingly exposed to conditions above their upper thermal limits due to marine heatwaves, contributing to global declines of coral reef ecosystem health. However, historic mass bleaching events indicate there is considerable inter- and intra-specific variation in thermal tolerance whereby species, individual coral colonies and populations show differential susceptibility to exposure to elevated temperatures. Despite this, we lack a clear understanding of how heat tolerance varies across large contemporary and historical environmental gradients, or the selective pressures that underpin this variation. Here we conducted standardised acute heat stress experiments to identify variation in heat tolerance among species and isolated reefs spanning a large environmental gradient across the Coral Sea Marine Park. We quantified the photochemical yield (Fv /Fm ) of coral samples in three coral species, Acropora cf humilis, Pocillopora meandrina, and Pocillopora verrucosa, following exposure to four temperature treatments (local ambient temperatures, and + 3°C, +6°C and + 9°C above local maximum monthly mean). We quantified the temperature at which Fv /Fm decreased by 50% (termed ED50) and used derived values to directly compare acute heat tolerance across reefs and species. The ED50 for Acropora was 0.4-0.7°C lower than either Pocillopora species, with a 0.3°C difference between the two Pocillopora species. We also recorded 0.9°C to 1.9°C phenotypic variation in heat tolerance among reefs within species, indicating spatial heterogeneity in heat tolerance across broad environmental gradients. Acute heat tolerance had a strong positive relationship to mild heatwave exposure over the past 35 years (since 1986) but was negatively related to recent severe heatwaves (2016-2020). Phenotypic variation associated with mild thermal history in local environments provides supportive evidence that marine heatwaves are selecting for tolerant individuals and populations; however, this adaptive potential may be compromised by the exposure to recent severe heatwaves.
Collapse
Affiliation(s)
- Magena R. Marzonie
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| | - David G. Bourne
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Andrew S. Hoey
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Samuel Matthews
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Josephine J. V. Nielsen
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Hugo B. Harrison
- Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- AIMS@JCUTownsvilleQueenslandAustralia
| |
Collapse
|
12
|
Fu JR, Zhou J, Zhang YP, Liu L. Effects of Caulerpa taxifolia on Physiological Processes and Gene Expression of Acropora hyacinthus during Thermal Stress. BIOLOGY 2022; 11:biology11121792. [PMID: 36552301 PMCID: PMC9775474 DOI: 10.3390/biology11121792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
An increasing ecological phase shift from coral-dominated reefs to macroalgae-dominated reefs as a result of anthropogenic impacts, such as eutrophication, sedimentation, and overfishing, has been observed in many reef systems around the world. Ocean warming is a universal threat to both corals and macroalgae, which may alter the outcome of competition between them. Therefore, in order to explore the effects of indirect and direct exposure to macroalgae on the physiological, biochemical, and genetic expression of corals at elevated temperature, the coral Acropora hyacinthus and highly invasive green algae Caulerpa taxifolia were chosen. Physiologically, the results exhibited that, between the control and direct contact treatments, the density and chlorophyll a content of zooxanthella decreased by 53.1% and 71.2%, respectively, when the coral indirectly contacted with the algae at an ambient temperature (27 °C). Moreover, the enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in coral tissue were enhanced by interacting with algae. After an increase of 3 °C, the density and chlorophyll a content of the zooxanthella reduced by 84.4% and 93.8%, respectively, whereas the enzyme activities of SOD and CAT increased 2.3- and 3.1-fold. However, only the zooxanthellae density and pigment content decreased when Caulerpa taxifolia was co-cultured with Acropora hyacinthus at 30 °C. Molecularly, different from the control group, the differentially expressed genes (DEGs) such as Rab family, ATG family, and Casp7 genes were significantly enriched in the endocytosis, autophagy, and apoptosis pathways, regardless of whether Acropora hyacinthus was directly or indirectly exposed to Caulerpa taxifolia at 27 °C. Under thermal stress without algae interaction, the DEGs were significantly enriched in the microbial immune signal transduction pathways, such as the Toll-like receptor signaling pathway and TNF signaling pathway, while multiple cellular immunity (IFI47, TRAF family) and oxidative stress (CAT, SODC, HSP70) genes were upregulated. Inversely, compared with corals without interaction with algae at 30 °C, the DEGs of the corals that interacted with Caulerpa taxifolia at 30 °C were remarkably enriched in apoptosis and the NOD-like receptor signaling pathway, including the transcription factors such as the Casp family and TRAF family. In conclusion, the density and chlorophyll a content of zooxanthella maintained a fading tendency induced by the macroalgae at ambient temperatures. The oxidative stress and immune response levels of the coral was elevated at 30 °C, but the macroalgae alleviated the negative effects triggered by thermal stress.
Collapse
Affiliation(s)
- Jian-Rong Fu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jie Zhou
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Ping Zhang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Li Liu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Laboratory of Southern Ocean Science and Engineering, Zhanjiang 524025, China
- Correspondence:
| |
Collapse
|
13
|
Evidence for adaptive morphological plasticity in the Caribbean coral, Acropora cervicornis. Proc Natl Acad Sci U S A 2022; 119:e2203925119. [PMID: 36442118 PMCID: PMC9894258 DOI: 10.1073/pnas.2203925119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Genotype-by-environment interactions (GxE) indicate that variation in organismal traits cannot be explained by fixed effects of genetics or site-specific plastic responses alone. For tropical coral reefs experiencing dramatic environmental change, identifying the contributions of genotype, environment, and GxE on coral performance will be vital for both predicting persistence and developing restoration strategies. We quantified the impacts of G, E, and GxE on the morphology and survival of the endangered coral, Acropora cervicornis, through an in situ transplant experiment exposing common garden (nursery)-raised clones of ten genotypes to nine reef sites in the Florida Keys. By fate-tracking outplants over one year with colony-level 3D photogrammetry, we uncovered significant GxE on coral size, shape, and survivorship, indicating that no universal winner exists in terms of colony performance. Rather than differences in mean trait values, we found that individual-level morphological plasticity is adaptive in that the most plastic individuals also exhibited the fastest growth and highest survival. This indicates that adaptive morphological plasticity may continue to evolve, influencing the success of A. cervicornis and resulting reef communities in a changing climate. As focal reefs are active restoration sites, the knowledge that variation in phenotype is an important predictor of performance can be directly applied to restoration planning. Taken together, these results establish A. cervicornis as a system for studying the ecoevolutionary dynamics of phenotypic plasticity that also can inform genetic- and environment-based strategies for coral restoration.
Collapse
|
14
|
Caruso C, Rocha de Souza M, Ruiz‐Jones L, Conetta D, Hancock J, Hobbs C, Hobbs C, Kahkejian V, Kitchen R, Marin C, Monismith S, Madin J, Gates R, Drury C. Genetic patterns in Montipora capitata across an environmental mosaic in Kāne'ohe Bay, O'ahu, Hawai'i. Mol Ecol 2022; 31:5201-5213. [PMID: 35962751 PMCID: PMC9825948 DOI: 10.1111/mec.16655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 01/11/2023]
Abstract
Spatial genetic structure (SGS) is important to a population's ability to adapt to environmental change. For species that reproduce both sexually and asexually, the relative contribution of each reproductive mode has important ecological and evolutionary implications because asexual reproduction can have a strong effect on SGS. Reef-building corals reproduce sexually, but many species also propagate asexually under certain conditions. To understand SGS and the relative importance of reproductive mode across environmental gradients, we evaluated genetic relatedness in almost 600 colonies of Montipora capitata across 30 environmentally characterized sites in Kāne'ohe Bay, O'ahu, Hawaii, using low-depth restriction digest-associated sequencing. Clonal colonies were relatively rare overall but influenced SGS. Clones were located significantly closer to one another spatially than average colonies and were more frequent on sites where wave energy was relatively high, suggesting a strong role of mechanical breakage in their formation. Excluding clones, we found no evidence of isolation by distance within sites or across the bay. Several environmental characteristics were significant predictors of the underlying genetic variation (including degree heating weeks, time spent above 30°C, depth, sedimentation rate and wave height); however, they only explained 5% of this genetic variation. Our results show that asexual fragmentation contributes to the ecology of branching corals at local scales and that genetic diversity is maintained despite strong environmental gradients in a highly impacted ecosystem, suggesting potential for broad adaptation or acclimatization in this population.
Collapse
Affiliation(s)
- Carlo Caruso
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | | | - Joshua Hancock
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | | | - Valerie Kahkejian
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Rebecca Kitchen
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Christian Marin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | | | - Joshua Madin
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Ruth Gates
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| | - Crawford Drury
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at MānoaKāne'oheHawai'iUSA
| |
Collapse
|
15
|
Drury C, Dilworth J, Majerová E, Caruso C, Greer JB. Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral. Nat Commun 2022; 13:4790. [PMID: 35970904 PMCID: PMC9378650 DOI: 10.1038/s41467-022-32452-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Phenotypic plasticity is an important ecological and evolutionary response for organisms experiencing environmental change, but the ubiquity of this capacity within coral species and across symbiont communities is unknown. We exposed ten genotypes of the reef-building coral Montipora capitata with divergent symbiont communities to four thermal pre-exposure profiles and quantified gene expression before stress testing 4 months later. Here we show two pre-exposure profiles significantly enhance thermal tolerance despite broadly different expression patterns and substantial variation in acclimatization potential based on coral genotype. There was no relationship between a genotype's basal thermal sensitivity and ability to acquire heat tolerance, including in corals harboring naturally tolerant symbionts, which illustrates the potential for additive improvements in coral response to climate change. These results represent durable improvements from short-term stress hardening of reef-building corals and substantial cryptic complexity in the capacity for plasticity.
Collapse
Affiliation(s)
| | - Jenna Dilworth
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
- University of Southern California, Los Angeles, CA, USA
| | - Eva Majerová
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Justin B Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
16
|
Drury C, Bean NK, Harris CI, Hancock JR, Huckeba J, H CM, Roach TNF, Quinn RA, Gates RD. Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral. Commun Biol 2022; 5:486. [PMID: 35589814 PMCID: PMC9120509 DOI: 10.1038/s42003-022-03428-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Coral holobionts are multi-species assemblages, which adds significant complexity to genotype-phenotype connections underlying ecologically important traits like coral bleaching. Small scale heterogeneity in bleaching is ubiquitous in the absence of strong environmental gradients, which provides adaptive variance needed for the long-term persistence of coral reefs. We used RAD-seq, qPCR and LC-MS/MS metabolomics to characterize host genomic variation, symbiont community and biochemical correlates in two bleaching phenotypes of the vertically transmitting coral Montipora capitata. Phenotype was driven by symbiosis state and host genetic variance. We documented 5 gene ontologies that were significantly associated with both the binary bleaching phenotype and symbiont composition, representing functions that confer a phenotype via host-symbiont interactions. We bred these corals and show that symbiont communities were broadly conserved in bulk-crosses, resulting in significantly higher survivorship under temperature stress in juveniles, but not larvae, from tolerant parents. Using a select and re-sequence approach, we document numerous gene ontologies selected by heat stress, some of which (cell signaling, antioxidant activity, pH regulation) have unique selection dynamics in larvae from thermally tolerant parents. These data show that vertically transmitting corals may have an adaptive advantage under climate change if host and symbiont variance interact to influence bleaching phenotype.
Collapse
Affiliation(s)
- Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA.
| | - Nina K Bean
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Casey I Harris
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Joshua R Hancock
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Joel Huckeba
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
- University of Amsterdam, Amsterdam, Netherlands
| | - Christian Martin H
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Ty N F Roach
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| |
Collapse
|
17
|
Horizon scan of rapidly advancing coral restoration approaches for 21st century reef management. Emerg Top Life Sci 2022; 6:125-136. [PMID: 35119476 PMCID: PMC9023016 DOI: 10.1042/etls20210240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Coral reef restoration activity is accelerating worldwide in efforts to offset the rate of reef health declines. Many advances have already been made in restoration practices centred on coral biology (coral restoration), and particularly those that look to employ the high adaptive state and capacity of corals in order to ensure that efforts rebuilding coral biomass also equip reefs with enhanced resilience to future stress. We horizon scan the state-of-play for the many coral restoration innovations already underway across the complex life cycle for corals that spans both asexual and sexual reproduction — assisted evolution (manipulations targeted to the coral host and host-associated microbes), biobanking, as well as scalable coral propagation and planting — and how these innovations are in different stages of maturity to support new 21st century reef management frameworks. Realising the potential for coral restoration tools as management aids undoubtedly rests on validating different approaches as their application continues to scale. Whilst the ecosystem service responses to increased scaling still largely remain to be seen, coral restoration has already delivered immense new understanding of coral and coral-associated microbial biology that has long lagged behind advances in other reef sciences.
Collapse
|
18
|
Decreased Photosynthetic Efficiency in Response to Site Translocation and Elevated Temperature Is Mitigated with LPS Exposure in Porites astreoides Symbionts. WATER 2022. [DOI: 10.3390/w14030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Coral reefs have been detrimentally impacted causing health issues due to elevated ocean temperatures as a result of increased greenhouse gases. Extreme temperatures have also exacerbated coral diseases in tropical reef environments. Numerous studies have outlined the impacts of thermal stress and disease on coral organisms, as well as understanding the influence of site-based characteristics on coral physiology. However, few have discussed the interaction of all three. Laboratory out-planting restoration projects have been of importance throughout impacted areas such as the Caribbean and southern Florida in order to increase coral cover in these areas. This study analyzes photosynthetic efficiency of Porites astreoides from the lower Florida Keys after a two-year reciprocal transplant study at inshore (Birthday reef) and offshore (Acer24 reef) sites to understand acclimation capacity of this species. Laboratory experiments subjected these colonies to one of three treatments: control conditions, increases in temperature, and increases in temperature plus exposure to an immune stimulant (lipopolysaccharide (LPS)) to determine their influence on photosynthetic efficiency and how stress events impact these measurements. In addition, this study is a continuation of previous studies from this group. Here, we aim to understand if these results are static or if an acclimation capacity could be found. Overall, we observed site-specific influences from the Acer24 reef site, which had significant decreases in photosynthetic efficiencies in 32 °C treatments compared to Birthday reef colonies. We suggest that high irradiance and lack of an annual recovery period from the Acer24 site exposes these colonies to significant photoinhibition. In addition, we observed significant increases in photosynthetic efficiencies from LPS exposure. We suggest host-derived antioxidants can mitigate the negative impacts of increased thermal stress. Further research is required to understand the full complexity of host immunity and symbiont photosynthetic interactions.
Collapse
|
19
|
Folio DM, Gil J, Caudron A, Labonne J. Genotype-by-environment interactions drive the maintenance of genetic variation in a Salmo trutta L. hybrid zone. Evol Appl 2021; 14:2698-2711. [PMID: 34815748 PMCID: PMC8591331 DOI: 10.1111/eva.13307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Allopatric gene pools can evolve in different directions through adaptive and nonadaptive processes and are therefore a source of intraspecific diversity. The connection of these previously isolated gene pools through human intervention can lead to intraspecific diversity loss, through extirpation of native populations or hybridization. However, the mechanisms leading to these situations are not always explicitly documented and are thus rarely used to manage intraspecific diversity. In particular, genotype-by-environment (GxE) interactions can drive postzygotic reproductive isolation mechanisms that may result in a mosaic of diversity patterns, depending on the local environment. We test this hypothesis using a salmonid species (Salmo trutta) in the Mediterranean (MED) area, where intensive stocking from non-native Atlantic (ATL) origins has led to various outcomes of hybridization with the native MED lineage, going from MED resilience to total extirpation via full hybridization. We investigate patterns of offspring survival at egg stage in natural environments, based on parental genotypes in interaction with river temperature, to detect potential GxE interactions. Our results show a strong influence of maternal GxE interaction on embryonic survival, mediated by maternal effect through egg size, and a weak influence of paternal GxE interaction. In particular, when egg size is large and temperature is cold, the survival rate of offspring originating from MED females is three times higher than that of ATL females' offspring. Because river temperatures show contrast at small scale, this cold adaptation for MED females' offspring constitutes a potent postzygotic mechanism to explain small-scale spatial heterogeneity in diversity observed in MED areas where ATL fish have been stocked. It also indicates that management efforts could be specifically targeted at the environments that actively favor native intraspecific diversity through eco-evolutionary processes such as postzygotic selection.
Collapse
Affiliation(s)
- Dorinda Marie Folio
- Université de Pau et des Pays de l’AdourUMR INRAE‐UPPAEcobiopSaint‐Pée‐sur‐NivelleFrance
- SCIMABIO InterfaceThonon‐les‐BainsFrance
| | - Jordi Gil
- UMR CARRTELINRAEUSMBThonon‐les‐BainsFrance
- Conservatoire des Espaces Naturels Rhône‐AlpesVogüeFrance
| | | | - Jacques Labonne
- Université de Pau et des Pays de l’AdourUMR INRAE‐UPPAEcobiopSaint‐Pée‐sur‐NivelleFrance
| |
Collapse
|
20
|
Cunning R, Parker KE, Johnson-Sapp K, Karp RF, Wen AD, Williamson OM, Bartels E, D'Alessandro M, Gilliam DS, Hanson G, Levy J, Lirman D, Maxwell K, Million WC, Moulding AL, Moura A, Muller EM, Nedimyer K, Reckenbeil B, van Hooidonk R, Dahlgren C, Kenkel C, Parkinson JE, Baker AC. Census of heat tolerance among Florida's threatened staghorn corals finds resilient individuals throughout existing nursery populations. Proc Biol Sci 2021; 288:20211613. [PMID: 34666521 DOI: 10.1098/rspb.2021.1613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.
Collapse
Affiliation(s)
- Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | - Katherine E Parker
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | - Kelsey Johnson-Sapp
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Richard F Karp
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Alexandra D Wen
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Olivia M Williamson
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Erich Bartels
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, USA
| | | | - David S Gilliam
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Grace Hanson
- Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Jessica Levy
- Coral Restoration Foundation, Key Largo, FL, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| | - Kerry Maxwell
- Florida Fish and Wildlife Conservation, Marathon, FL, USA
| | - Wyatt C Million
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alison L Moulding
- Protected Resources Division, NOAA Fisheries Southeast Regional Office, St Petersburg, FL, USA
| | - Amelia Moura
- Coral Restoration Foundation, Key Largo, FL, USA
| | - Erinn M Muller
- Coral Health and Disease Program, Mote Marine Laboratory, Sarasota, FL, USA
| | | | | | - Ruben van Hooidonk
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA.,Ocean Chemistry and Ecosystems Division, NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
| | | | - Carly Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John E Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Andrew C Baker
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, USA
| |
Collapse
|