1
|
Chemel M, Peru E, Binsarhan M, Logares R, Lartaud F, Galand PE. Cold-water coral mortality under ocean warming is associated with pathogenic bacteria. ENVIRONMENTAL MICROBIOME 2024; 19:76. [PMID: 39407340 PMCID: PMC11481251 DOI: 10.1186/s40793-024-00622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Cold-water corals form vast reefs that are highly valuable habitats for diverse deep-sea communities. However, as the deep ocean is warming, it is essential to assess the resilience of cold-water corals to future conditions. The effects of elevated temperatures on the cold-water coral Lophelia pertusa (now named Desmophyllum pertusum) from the north-east Atlantic Ocean were experimentally investigated at the holobiont level, the coral host, and its microbiome. We show that at temperature increases of + 3 and + 5 °C, L. pertusa exhibits significant mortality concomitant with changes in its microbiome composition. In addition, a metagenomic approach revealed the presence of gene markers for bacterial virulence factors suggesting that coral death was due to infection by pathogenic bacteria. Interestingly, different coral colonies had different survival rates and, colony-specific microbiome signatures, indicating strong colony-specific variability in their response to warming waters. These results suggest that L. pertusa can only survive a long-term temperature increase of < 3 °C. Therefore, regional variations in deep-sea temperature increase should be considered in future estimates of the global distribution of cold-water corals.
Collapse
Affiliation(s)
- Mathilde Chemel
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France.
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France
| | | | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Barcelona, Spain
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
2
|
Beck KK, Schmidt-Grieb GM, Kayser AS, Wendels J, Kler Lago A, Meyer S, Laudien J, Häussermann V, Richter C, Wall M. Cold-water coral energy reserves and calcification in contrasting fjord environments. Sci Rep 2024; 14:5649. [PMID: 38454106 PMCID: PMC10920780 DOI: 10.1038/s41598-024-56280-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
The relationship between energy reserves of cold-water corals (CWCs) and their physiological performance remains largely unknown. In addition, it is poorly understood how the energy allocation to different metabolic processes might change with projected decreasing food supply to the deep sea in the future. This study explores the temporal and spatial variations of total energy reserves (proteins, carbohydrates and lipids) of the CWC Desmophyllum dianthus and their correlation with its calcification rate. We took advantage of distinct horizontal and vertical physico-chemical gradients in Comau Fjord (Chile) and examined the changes in energy reserves over one year in an in situ reciprocal transplantation experiment (20 m vs. 300 m and fjord head vs. mouth). Total energy reserves correlated positively with calcification rates. The fast-growing deep corals had higher and less variable energy reserves, while the slower-growing shallow corals showed pronounced seasonal changes in energy reserves. Novel deep corals (transplanted from shallow) were able to quickly increase both their calcification rates and energy reserves to similar levels as native deep corals. Our study shows the importance of energy reserves in sustaining CWC growth in spite of aragonite undersaturated conditions (deep corals) in the present, and potentially also future ocean.
Collapse
Affiliation(s)
- Kristina K Beck
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany.
- University of Bremen, Bremen, Germany.
- University of Edinburgh, Edinburgh, UK.
| | | | - Antonia S Kayser
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Janine Wendels
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Kler Lago
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- University of Bremen, Bremen, Germany
| | - Stefanie Meyer
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Jürgen Laudien
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Vreni Häussermann
- Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Fundación San Ignacio del Huinay, Puerto Montt, Chile
| | - Claudio Richter
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- University of Bremen, Bremen, Germany
| | - Marlene Wall
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
3
|
Beck KK, Nierste J, Schmidt-Grieb GM, Lüdtke E, Naab C, Held C, Nehrke G, Steinhoefel G, Laudien J, Richter C, Wall M. Ontogenetic differences in the response of the cold-water coral Caryophyllia huinayensis to ocean acidification, warming and food availability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165565. [PMID: 37495133 DOI: 10.1016/j.scitotenv.2023.165565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Cold-water corals (CWCs) are considered vulnerable to environmental changes. However, previous studies have focused on adult CWCs and mainly investigated the short-term effects of single stressors. So far, the effects of environmental changes on different CWC life stages are unknown, both for single and multiple stressors and over long time periods. Therefore, we conducted a six-month aquarium experiment with three life stages of Caryophyllia huinayensis to study their physiological response (survival, somatic growth, calcification and respiration) to the interactive effects of aragonite saturation (0.8 and 2.5), temperature (11 and 15 °C) and food availability (8 and 87 μg C L-1). The response clearly differed between life stages and measured traits. Elevated temperature and reduced feeding had the greatest effects, pushing the corals to their physiological limits. Highest mortality was observed in adult corals, while calcification rates decreased the most in juveniles. We observed a three-month delay in response, presumably because energy reserves declined, suggesting that short-term experiments overestimate coral resilience. Elevated summer temperatures and reduced food supply are likely to have the greatest impact on live CWCs in the future, leading to reduced coral growth and population shifts due to delayed juvenile maturation and high adult mortality.
Collapse
Affiliation(s)
- Kristina K Beck
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; University of Bremen, Bremen, Germany.
| | - Jan Nierste
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; University of Rostock, Rostock, Germany
| | | | - Esther Lüdtke
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Christoph Naab
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; University of Augsburg, Augsburg, Germany
| | - Christoph Held
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Gernot Nehrke
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Grit Steinhoefel
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Jürgen Laudien
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Claudio Richter
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; University of Bremen, Bremen, Germany
| | - Marlene Wall
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| |
Collapse
|
4
|
Xu W, Ahmed W, Mahmood M, Li W, Mehmood S. Physiological and biochemical responses of soft coral Sarcophyton trocheliophorum to doxycycline hydrochloride exposure. Sci Rep 2023; 13:17665. [PMID: 37848653 PMCID: PMC10582170 DOI: 10.1038/s41598-023-44383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
In light of the rapid expansion of the marine aquaculture industry, there has been widespread and irregular usage of aquatic drugs to combat biological diseases, which significantly impact the neighboring aquatic ecosystems. This study delves into the impact of the antibiotic aquatic drug known as doxycycline hydrochloride (DOX) on offshore soft corals, providing valuable data for the responsible use and management of aquatic drugs. In this investigation, we subjected Sarcophyton trocheliophorum to acute exposure to varying concentrations of DOX (0, 1, 5, and 10 mg L-1). We meticulously assessed critical parameters and observed alterations in protein levels, superoxide dismutase (SOD) activity, catalase (CAT) activity, lipid peroxidation (LPO), malondialdehyde (MDA) levels, Acid phosphatase (ACP) activity, alkaline phosphatase (AKP) activity, glutathione (GSH) concentration, glutathione S-transferase (GST) activity, glutathione Peroxidase (GSH-Px) activity, zooxanthellae density, and chlorophyll content. Our findings reveal that in the presence of DOX-induced environmental stress, there is a significant increase in LPO, MDA, chlorophyll, carotenoid levels, and the activities of ACP, GST, and GSH-Px in soft corals. Simultaneously, there is a noteworthy decrease in zooxanthellae density. Additionally, the protein concentration and SOD activity in soft corals experience substantial reduction when exposed to 5 mg L-1 DOX. Notably, CAT activity varies significantly in environments with 1 and 10 mg L-1 DOX. Moreover, these conditions exhibit a discernible influence on AKP activity, GSH content, and chlorophyll levels. These findings suggest that DOX exposure carries the potential for toxicity in aquaculture settings, affecting protein synthesis in soft corals and influencing oxidative stress, lipid peroxidation, immunity, and detoxification processes within these organisms. There is also a risk of compromising the coral defense system, potentially leading to coral bleaching. Furthermore, this study underscores the significant impact on photosynthesis, growth, and the metabolic dynamics of the coral-zooxanthellae symbiotic system. Consequently, our research offers vital insights into the mortality and bleaching effects of aquatic drugs on marine corals, offering a foundation for the prudent use and management of such substances.
Collapse
Affiliation(s)
- Wenxin Xu
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohsin Mahmood
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Weidong Li
- College of Ecology and Environment, Hainan University, Haikou, 570228, China.
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Sajid Mehmood
- College of Ecology and Environment, Hainan University, Haikou, 570228, China.
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Maier SR, Brooke S, De Clippele LH, de Froe E, van der Kaaden AS, Kutti T, Mienis F, van Oevelen D. On the paradox of thriving cold-water coral reefs in the food-limited deep sea. Biol Rev Camb Philos Soc 2023; 98:1768-1795. [PMID: 37236916 DOI: 10.1111/brv.12976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
The deep sea is amongst the most food-limited habitats on Earth, as only a small fraction (<4%) of the surface primary production is exported below 200 m water depth. Here, cold-water coral (CWC) reefs form oases of life: their biodiversity compares with tropical coral reefs, their biomass and metabolic activity exceed other deep-sea ecosystems by far. We critically assess the paradox of thriving CWC reefs in the food-limited deep sea, by reviewing the literature and open-access data on CWC habitats. This review shows firstly that CWCs typically occur in areas where the food supply is not constantly low, but undergoes pronounced temporal variation. High currents, downwelling and/or vertically migrating zooplankton temporally boost the export of surface organic matter to the seabed, creating 'feast' conditions, interspersed with 'famine' periods during the non-productive season. Secondly, CWCs, particularly the most common reef-builder Desmophyllum pertusum (formerly known as Lophelia pertusa), are well adapted to these fluctuations in food availability. Laboratory and in situ measurements revealed their dietary flexibility, tissue reserves, and temporal variation in growth and energy allocation. Thirdly, the high structural and functional diversity of CWC reefs increases resource retention: acting as giant filters and sustaining complex food webs with diverse recycling pathways, the reefs optimise resource gains over losses. Anthropogenic pressures, including climate change and ocean acidification, threaten this fragile equilibrium through decreased resource supply, increased energy costs, and dissolution of the calcium-carbonate reef framework. Based on this review, we suggest additional criteria to judge the health of CWC reefs and their chance to persist in the future.
Collapse
Affiliation(s)
- Sandra R Maier
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Kivioq 2, PO Box 570, Nuuk, 3900, Greenland
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| | - Sandra Brooke
- Coastal & Marine Laboratory, Florida State University, 3618 Coastal Highway 98, St. Teresa, FL, 32327, USA
| | - Laurence H De Clippele
- Changing Oceans Research Group, School of GeoSciences, University of Edinburgh, Grant Institute, King's Buildings, Edinburgh, EH9 3FE, UK
| | - Evert de Froe
- Centre for Fisheries Ecosystem Research, Fisheries and Marine Institute at Memorial University of Newfoundland, 155 Ridge Rd, St. John's, NL A1C 5R3, Newfoundland and Labrador, Canada
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, Den Burg (Texel), 1790 AB, The Netherlands
| | - Anna-Selma van der Kaaden
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| | - Tina Kutti
- Institute of Marine Research (IMR), PO box 1870 Nordnes, Bergen, NO-5817, Norway
| | - Furu Mienis
- Department of Ocean Systems, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, Den Burg (Texel), 1790 AB, The Netherlands
| | - Dick van Oevelen
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research (NIOZ), Korringaweg 7, Yerseke, 4401 NT, The Netherlands
| |
Collapse
|
6
|
Tignat-Perrier R, van de Water JAJM, Allemand D, Ferrier-Pagès C. Holobiont responses of mesophotic precious red coral Corallium rubrum to thermal anomalies. ENVIRONMENTAL MICROBIOME 2023; 18:70. [PMID: 37580830 PMCID: PMC10424431 DOI: 10.1186/s40793-023-00525-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Marine heat waves (MHWs) have increased in frequency and intensity worldwide, causing mass mortality of benthic organisms and loss of biodiversity in shallow waters. The Mediterranean Sea is no exception, with shallow populations of habitat-forming octocorals facing the threat of local extinction. The mesophotic zone, which is less affected by MHWs, may be of ecological importance in conservation strategies for these species. However, our understanding of the response of mesophotic octocoral holobionts to changes in seawater temperature remains limited. To address this knowledge gap, we conducted a study on an iconic Mediterranean octocoral, the red coral Corallium rubrum sampled at 60 m depth and 15 °C. We exposed the colonies to temperatures they occasionally experience (18 °C) and temperatures that could occur at the end of the century if global warming continues (21 °C). We also tested their response to extremely cold and warm temperatures (12 °C and 24 °C). Our results show a high tolerance of C. rubrum to a two-month long exposure to temperatures ranging from 12 to 21 °C as no colony showed signs of tissue loss, reduced feeding ability, stress-induced gene expression, or disruption of host-bacterial symbioses. At 24 °C, however, we measured a sharp decrease in the relative abundance of Spirochaetaceae, which are the predominant bacterial symbionts under healthy conditions, along with a relative increase in Vibrionaceae. Tissue loss and overexpression of the tumor necrosis factor receptor 1 gene were also observed after two weeks of exposure. In light of ongoing global warming, our study helps predict the consequences of MHWs on mesophotic coralligenous reefs and the biodiversity that depends on them.
Collapse
Affiliation(s)
- Romie Tignat-Perrier
- Unité de Recherche sur la Biologie des Coraux Précieux CSM-CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco.
- Coral Ecophysiology Laboratory, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco.
| | - Jeroen A J M van de Water
- Unité de Recherche sur la Biologie des Coraux Précieux CSM-CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
- Coral Ecophysiology Laboratory, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, Korringaweg 7, 4401 NT, Yerseke, The Netherlands
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| | - Christine Ferrier-Pagès
- Coral Ecophysiology Laboratory, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, Principality of Monaco
| |
Collapse
|
7
|
Gasbarro R, Sowers D, Margolin A, Cordes EE. Distribution and predicted climatic refugia for a reef-building cold-water coral on the southeast US margin. GLOBAL CHANGE BIOLOGY 2022; 28:7108-7125. [PMID: 36054745 DOI: 10.1111/gcb.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Climate change is reorganizing the planet's biodiversity, necessitating proactive management of species and habitats based on spatiotemporal predictions of distributions across climate scenarios. In marine settings, climatic changes will predominantly manifest via warming, ocean acidification, deoxygenation, and changes in hydrodynamics. Lophelia pertusa, the main reef-forming coral present throughout the deep Atlantic Ocean (>200 m), is particularly sensitive to such stressors with stark reductions in suitable habitat predicted to accrue by 2100 in a business-as-usual scenario. However, with new occurrence data for this species along with higher-resolution bathymetry and climate data, it may be possible to locate further climatic refugia. Here, we synthesize new and published biogeographic, geomorphological, and climatic data to build ensemble, multi-scale habitat suitability models for L. pertusa on the continental margin of the southeast United States (SEUS). We then project these models in two timepoints (2050, 2100) and four climate change scenarios to characterize the occurrence probability of this critical cold-water coral (CWC) habitat now and in the future. Our models reveal the extent of reef habitat in the SEUS and corroborate it as the largest currently known essentially continuous CWC reef province on earth, and also predict abundance of L. pertusa to identify key areas, including those outside areas currently protected from bottom-contact fishing. Drastic reductions in L. pertusa climatic suitability index emerged primarily after 2050 and were concentrated at the shallower end (<~550 m) of the regional distribution under the Gulf Stream main axis. Our results thus suggest a depth-driven climate refuge effect where deeper, cooler reef sites experience lesser declines. The strength of this effect increases with climate scenario severity. Taken together, our study has implications for the regional and global management of this species, portending changes in the biodiversity reliant on CWC habitats and the critical ecosystem services they provide.
Collapse
Affiliation(s)
- Ryan Gasbarro
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Derek Sowers
- NOAA Office of Ocean Exploration and Research, Durham, New Hampshire, USA
| | - Alex Margolin
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Erik E Cordes
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Environmental stability and phenotypic plasticity benefit the cold-water coral Desmophyllum dianthus in an acidified fjord. Commun Biol 2022; 5:683. [PMID: 35810196 PMCID: PMC9271058 DOI: 10.1038/s42003-022-03622-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
The stratified Chilean Comau Fjord sustains a dense population of the cold-water coral (CWC) Desmophyllum dianthus in aragonite supersaturated shallow and aragonite undersaturated deep water. This provides a rare opportunity to evaluate CWC fitness trade-offs in response to physico-chemical drivers and their variability. Here, we combined year-long reciprocal transplantation experiments along natural oceanographic gradients with an in situ assessment of CWC fitness. Following transplantation, corals acclimated fast to the novel environment with no discernible difference between native and novel (i.e. cross-transplanted) corals, demonstrating high phenotypic plasticity. Surprisingly, corals exposed to lowest aragonite saturation (Ωarag < 1) and temperature (T < 12.0 °C), but stable environmental conditions, at the deep station grew fastest and expressed the fittest phenotype. We found an inverse relationship between CWC fitness and environmental variability and propose to consider the high frequency fluctuations of abiotic and biotic factors to better predict the future of CWCs in a changing ocean. The cold-water coral Desmophyllum dianthus benefits from stable environmental conditions in deep waters of Comau Fjord (Chile) and is able to acclimatise quickly to new environmental conditions after transplantation.
Collapse
|