1
|
Liu X, Zhang QG. More extinction driven by the Red Queen in smaller habitats. Ecology 2025; 106:e70018. [PMID: 39925187 DOI: 10.1002/ecy.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025]
Abstract
Populations in antagonistic coevolutionary interactions may "run or die," and their fates are determined by their evolutionary potential. The asymmetry of evolutionary speed between coevolving partners, for example, resulting from genetic constraints, can be mitigated in larger populations. We therefore hypothesize more frequent extinction driven by antagonistic coevolution with declining habitat size. In bacterium-virus systems, viruses (the consumers) typically suffer an evolutionary disadvantage due to constraints of genetic variation; and this pattern may apply to host-parasite interactions in general. Here, in our experiment with the bacterium Pseudomonas fluorescens SBW25 and its lytic phage virus SBW25Φ2, the likelihood of viral extinction was greater in smaller habitats. Among viral populations that did persist, those from small habitats showed lower infectivity and their coevolving bacterial populations had greater densities. Therefore, the impact of habitat size reduction on biodiversity could be exacerbated by coevolutionary processes. Our results also lead to a number of suggestions for biocontrol practices, particularly for evolutionary training of phages.
Collapse
Affiliation(s)
- Xiao Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Kaur A, Russell I, Liu R, Holland A, Bhandari R, Potnis N. Navigating Host Immunity and Concurrent Ozone Stress: Strain-Resolved Metagenomics Reveals Maintenance of Intraspecific Diversity and Genetic Variation in Xanthomonas on Pepper. Evol Appl 2025; 18:e70069. [PMID: 39816160 PMCID: PMC11732741 DOI: 10.1111/eva.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/17/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
The evolving threat of new pathogen variants in the face of global environmental changes poses a risk to a sustainable crop production. Predicting and responding to how climate change affects plant-pathosystems is challenging, as environment affects host-pathogen interactions from molecular to the community level, and with eco-evolutionary feedbacks at play. To address this knowledge gap, we studied short-term within-host eco-evolutionary changes in the pathogen, Xanthomonas perforans, on resistant and susceptible pepper in the open-top chambers (OTCs) under elevated Ozone (O3) conditions in a single growing season. We observed increased disease severity with greater variance on the resistant cultivar under elevated O3, yet no apparent change on the susceptible cultivar. Despite the dominance of a single pathogen genotype on the susceptible cultivar, the resistant cultivar supported a heterogeneous pathogen population. Altered O3 levels led to a strain turnover, with a relatively greater gene flux on the resistant cultivar. Both standing genetic variation and de novo parallel mutations contributed toward evolutionary modifications during adaptation onto the resistant cultivar. The presence of elevated O3, however, led to a relatively higher genetic polymorphism, with random and transient mutations. Population heterogeneity along with genetic variation, and the promotion of interdependency are mechanisms by which pathogen responds to stressors. While parallel mutations may provide clues to predicting long-term pathogen evolution and adaptive potential. And, a high proportion of transient mutations suggest less predictable pathogen evolution under climatic alterations. This knowledge is relevant as we study the risk of pathogen emergence and the mechanisms and constraints underlying long-term pathogen adaptation under climatic shifts.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Ivory Russell
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Ranlin Liu
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Auston Holland
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Rishi Bhandari
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| | - Neha Potnis
- Department of Entomology and Plant PathologyAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
3
|
Le Pennec G, Retel C, Kowallik V, Becks L, Feulner PGD. Demographic fluctuations and selection during host-parasite co-evolution interactively increase genetic diversity. Mol Ecol 2024; 33:e16939. [PMID: 36997280 DOI: 10.1111/mec.16939] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
Host-parasite interactions can cause strong demographic fluctuations accompanied by selective sweeps of resistance/infectivity alleles. Both demographic bottlenecks and frequent sweeps are expected to reduce the amount of segregating genetic variation and therefore might constrain adaptation during co-evolution. Recent studies, however, suggest that the interaction of demographic and selective processes is a key component of co-evolutionary dynamics and may rather positively affect levels of genetic diversity available for adaptation. Here, we provide direct experimental testing of this hypothesis by disentangling the effects of demography, selection and their interaction in an experimental host-parasite system. We grew 12 populations of a unicellular, asexually reproducing algae (Chlorella variabilis) that experienced either growth followed by constant population sizes (three populations), demographic fluctuations (three populations), selection induced by exposure to a virus (three populations), or demographic fluctuations together with virus-induced selection (three populations). After 50 days (~50 generations), we conducted whole-genome sequencing of each algal host population. We observed more genetic diversity in populations that jointly experienced selection and demographic fluctuations than in populations where these processes were experimentally separated. In addition, in those three populations that jointly experienced selection and demographic fluctuations, experimentally measured diversity exceeds expected values of diversity that account for the cultures' population sizes. Our results suggest that eco-evolutionary feedbacks can positively affect genetic diversity and provide the necessary empirical measures to guide further improvements of theoretical models of adaptation during host-parasite co-evolution.
Collapse
Affiliation(s)
- Guénolé Le Pennec
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Cas Retel
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Vienna Kowallik
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Albert-Ludwigs University Freiburg, Faculty of Environment and Natural Resources, Professorship of Forest Entomology and Protection, Stegen-Wittental, Germany
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Aquatic Ecology and Evolution, Limnological Institute University of Konstanz, Konstanz, Germany
| | - Philine G D Feulner
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
- Division of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Ponce-Cusi R, Bravo L, Paez KJ, Pinto JA, Pilco-Ferreto N. Host-Pathogen Interaction: Biology and Public Health. Methods Mol Biol 2024; 2751:3-18. [PMID: 38265706 DOI: 10.1007/978-1-0716-3617-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Interactions between host and pathogenic microorganisms are common in nature and have a significant impact on host health, often leading to several types of infections. These interactions have evolved as a result of the ongoing battle between the host's defense mechanisms and the pathogens' invasion strategies. In this chapter, we will explore the evolution of host-pathogen interactions, explore their molecular mechanisms, examine the different stages of interaction, and discuss the development of pharmacological treatments. Understanding these interactions is crucial for improving public health, as it enables us to develop effective strategies to prevent and control infectious diseases. By gaining insights into the intricate dynamics between pathogens and their hosts, we can work towards reducing the burden of such diseases on society.
Collapse
Affiliation(s)
- Richard Ponce-Cusi
- Escuela Profesional de Medicina, Facultad de Ciencias de la Salud, Universidad Nacional de Moquegua, Moquegua, Peru.
| | - Leny Bravo
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Kevin J Paez
- Escuela Profesional de Medicina Humana - Filial Ica, Universidad Privada San Juan Bautista, Ica, Peru
| | - Joseph A Pinto
- Escuela Profesional de Medicina Humana - Filial Ica, Universidad Privada San Juan Bautista, Ica, Peru
| | - Nesstor Pilco-Ferreto
- Unidad de Posgrado. Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| |
Collapse
|
5
|
Petersen C, Hamerich IK, Adair KL, Griem-Krey H, Torres Oliva M, Hoeppner MP, Bohannan BJM, Schulenburg H. Host and microbiome jointly contribute to environmental adaptation. THE ISME JOURNAL 2023; 17:1953-1965. [PMID: 37673969 PMCID: PMC10579302 DOI: 10.1038/s41396-023-01507-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Most animals and plants have associated microorganisms, collectively referred to as their microbiomes, which can provide essential functions. Given their importance, host-associated microbiomes have the potential to contribute substantially to adaptation of the host-microbiome assemblage (the "metaorganism"). Microbiomes may be especially important for rapid adaptation to novel environments because microbiomes can change more rapidly than host genomes. However, it is not well understood how hosts and microbiomes jointly contribute to metaorganism adaptation. We developed a model system with which to disentangle the contributions of hosts and microbiomes to metaorganism adaptation. We established replicate mesocosms containing the nematode Caenorhabditis elegans co-cultured with microorganisms in a novel complex environment (laboratory compost). After approximately 30 nematode generations (100 days), we harvested worm populations and associated microbiomes, and subjected them to a common garden experiment designed to unravel the impacts of microbiome composition and host genetics on metaorganism adaptation. We observed that adaptation took different trajectories in different mesocosm lines, with some increasing in fitness and others decreasing, and that interactions between host and microbiome played an important role in these contrasting evolutionary paths. We chose two exemplary mesocosms (one with a fitness increase and one with a decrease) for detailed study. For each example, we identified specific changes in both microbiome composition (for both bacteria and fungi) and nematode gene expression associated with each change in fitness. Our study provides experimental evidence that adaptation to a novel environment can be jointly influenced by host and microbiome.
Collapse
Affiliation(s)
- Carola Petersen
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | - Inga K Hamerich
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | - Karen L Adair
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Hanne Griem-Krey
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
| | | | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | | | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany.
- Max-Planck Institute for Evolutionary Biology, Ploen, Germany.
| |
Collapse
|
6
|
Sromek L, Ylinen E, Kunnasranta M, Maduna SN, Sinisalo T, Michell CT, Kovacs KM, Lydersen C, Ieshko E, Andrievskaya E, Alexeev V, Leidenberger S, Hagen SB, Nyman T. Loss of species and genetic diversity during colonization: Insights from acanthocephalan parasites in northern European seals. Ecol Evol 2023; 13:e10608. [PMID: 37869427 PMCID: PMC10585441 DOI: 10.1002/ece3.10608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Studies on host-parasite systems that have experienced distributional shifts, range fragmentation, and population declines in the past can provide information regarding how parasite community richness and genetic diversity will change as a result of anthropogenic environmental changes in the future. Here, we studied how sequential postglacial colonization, shifts in habitat, and reduced host population sizes have influenced species richness and genetic diversity of Corynosoma (Acanthocephala: Polymorphidae) parasites in northern European marine, brackish, and freshwater seal populations. We collected Corynosoma population samples from Arctic, Baltic, Ladoga, and Saimaa ringed seal subspecies and Baltic gray seals, and then applied COI barcoding and triple-enzyme restriction-site associated DNA (3RAD) sequencing to delimit species, clarify their distributions and community structures, and elucidate patterns of intraspecific gene flow and genetic diversity. Our results showed that Corynosoma species diversity reflected host colonization histories and population sizes, with four species being present in the Arctic, three in the Baltic Sea, two in Lake Ladoga, and only one in Lake Saimaa. We found statistically significant population-genetic differentiation within all three Corynosoma species that occur in more than one seal (sub)species. Genetic diversity tended to be high in Corynosoma populations originating from Arctic ringed seals and low in the landlocked populations. Our results indicate that acanthocephalan communities in landlocked seal populations are impoverished with respect to both species and intraspecific genetic diversity. Interestingly, the loss of genetic diversity within Corynosoma species seems to have been less drastic than in their seal hosts, possibly due to their large local effective population sizes resulting from high infection intensities and effective intra-host population mixing. Our study highlights the utility of genomic methods in investigations of community composition and genetic diversity of understudied parasites.
Collapse
Affiliation(s)
- Ludmila Sromek
- Department of Marine Ecosystems Functioning, Institute of OceanographyUniversity of GdanskGdyniaPoland
| | - Eeva Ylinen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| | - Mervi Kunnasranta
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Natural Resources Institute FinlandJoensuuFinland
| | - Simo N. Maduna
- Department of Ecosystem in the Barents RegionNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| | - Tuula Sinisalo
- Department of Biological and Environmental SciencesUniversity of JyväskyläJyväskyläFinland
| | - Craig T. Michell
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Red Sea Research CenterKing Abdullah University of Science and TechnologyJeddahSaudi Arabia
| | | | | | - Evgeny Ieshko
- Institute of Biology, Karelian Research CentreRussian Academy of SciencesPetrozavodskRussia
| | | | | | - Sonja Leidenberger
- Department of Biology and Bioinformatics, School of BioscienceUniversity of SkövdeSkövdeSweden
| | - Snorre B. Hagen
- Department of Ecosystem in the Barents RegionNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| | - Tommi Nyman
- Department of Ecosystem in the Barents RegionNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| |
Collapse
|
7
|
Romero V, Kalinhoff C, Saa LR, Sánchez A. Fungi's Swiss Army Knife: Pleiotropic Effect of Melanin in Fungal Pathogenesis during Cattle Mycosis. J Fungi (Basel) 2023; 9:929. [PMID: 37755037 PMCID: PMC10532448 DOI: 10.3390/jof9090929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Fungal threats to public health, food security, and biodiversity have escalated, with a significant rise in mycosis cases globally. Around 300 million people suffer from severe fungal diseases annually, while one-third of food crops are decimated by fungi. Vertebrate, including livestock, are also affected. Our limited understanding of fungal virulence mechanisms hampers our ability to prevent and treat cattle mycoses. Here we aim to bridge knowledge gaps in fungal virulence factors and the role of melanin in evading bovine immune responses. We investigate mycosis in bovines employing a PRISMA-based methodology, bioinformatics, and data mining techniques. Our analysis identified 107 fungal species causing mycoses, primarily within the Ascomycota division. Candida, Aspergillus, Malassezia, and Trichophyton were the most prevalent genera. Of these pathogens, 25% produce melanin. Further research is required to explore the involvement of melanin and develop intervention strategies. While the literature on melanin-mediated fungal evasion mechanisms in cattle is lacking, we successfully evaluated the transferability of immunological mechanisms from other model mammals through homology. Bioinformatics enables knowledge transfer and enhances our understanding of mycosis in cattle. This synthesis fills critical information gaps and paves the way for proposing biotechnological strategies to mitigate the impact of mycoses in cattle.
Collapse
Affiliation(s)
- Víctor Romero
- Maestría en Biotecnología Agropecuaria, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador
- Museo de Zoología, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador
| | - Carolina Kalinhoff
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| | - Aminael Sánchez
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| |
Collapse
|
8
|
Venkataram S, Kryazhimskiy S. Evolutionary repeatability of emergent properties of ecological communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220047. [PMID: 37004728 PMCID: PMC10067272 DOI: 10.1098/rstb.2022.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 04/04/2023] Open
Abstract
Most species belong to ecological communities where their interactions give rise to emergent community-level properties, such as diversity and productivity. Understanding and predicting how these properties change over time has been a major goal in ecology, with important practical implications for sustainability and human health. Less attention has been paid to the fact that community-level properties can also change because member species evolve. Yet, our ability to predict long-term eco-evolutionary dynamics hinges on how repeatably community-level properties change as a result of species evolution. Here, we review studies of evolution of both natural and experimental communities and make the case that community-level properties at least sometimes evolve repeatably. We discuss challenges faced in investigations of evolutionary repeatability. In particular, only a handful of studies enable us to quantify repeatability. We argue that quantifying repeatability at the community level is critical for approaching what we see as three major open questions in the field: (i) Is the observed degree of repeatability surprising? (ii) How is evolutionary repeatability at the community level related to repeatability at the level of traits of member species? (iii) What factors affect repeatability? We outline some theoretical and empirical approaches to addressing these questions. Advances in these directions will not only enrich our basic understanding of evolution and ecology but will also help us predict eco-evolutionary dynamics. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Sandeep Venkataram
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Hite JL, Pfenning-Butterworth A, Auld SKJR. Commentary: Infectious disease — the ecological theater and the evolutionary play. Evol Ecol 2023. [DOI: 10.1007/s10682-023-10229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|