1
|
Fernández M, Duarte C, Aldana M, Delgado-Rioseco J, Blanco-Herrera F, Varas O, Quijón PA, Quintanilla-Ahumada D, García-Huidobro MR, Pulgar J. The importance of upwelling conditions as drivers of feeding behavior and thermal tolerance in a prominent intertidal fish. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106896. [PMID: 39647425 DOI: 10.1016/j.marenvres.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Upwelling, as a large oceanographic phenomenon, increases coastal productivity and influences all levels of biological complexity. Despite decades of research on it, much remains to be understood about the impact of upwelling on the feeding behavior and thermal tolerance of important groups such as fish. Hence, our aim was to investigate how upwelling conditions modify the feeding behavior and thermal tolerance of a prominent intertidal fish, Girella laevifrons. We collected purple mussels (Perumytilus purpuratus) from upwelling (U) and downwelling sites (DU) in central Chile, and used them as prey in feeding trials and measuring the concentration of organic matter and proteins in their tissues. We assessed fish consumption rates and growth in fish collected from the same U and DU sites, feeding on either U or DU mussels. Lastly, we assessed the thermal tolerance of U and DU fish fed with the aforementioned U vs DU mussels. We found that U mussels held higher concentrations of organic matter and proteins compared to their DU counterparts. U mussels were also selected and consumed in larger amounts than DU mussels, although the origin of the fish also influenced consumption rates. Thermal tolerance assays revealed that U fish exhibited higher maximum performance (Max.pf) and critical thermal maxima (Ctmax) and lower sensitivity to temperature changes (as measured by Q10), compared to DU fish. Altogether, these results point to a strong influence of upwelling on the quality of organisms' tissues, indirectly altering key aspects of fish feeding behavior and thermal tolerance. These findings also contribute to understanding the physiological adjustments organisms make in productive upwelling systems, and how they may change in the future with ongoing climate events.
Collapse
Affiliation(s)
- Melissa Fernández
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Cristian Duarte
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Santiago, Chile
| | - Marcela Aldana
- Centro de Investigación e Innovación para El Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Joaquín Delgado-Rioseco
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Biotecnología Vegetal, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago, Chile; Millennium Science Initiative Program (ANID), Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Francisca Blanco-Herrera
- Centro de Biotecnología Vegetal, Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Oscar Varas
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Pedro A Quijón
- Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Diego Quintanilla-Ahumada
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Coastal Ecology Laboratory, Department of Biology, University of Prince Edward Island, Charlottetown, PE, Canada
| | - M Roberto García-Huidobro
- Centro de Investigación e Innovación para El Cambio Climático, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - José Pulgar
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Centro de Investigaciones Marinas de Quintay, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
2
|
Peluso L, Faúndez J, Navarrete SA, Broitman BR, Aiken CM, Saenz-Agudelo P. Oceanographical-driven dispersal and environmental variation explain genetic structure in an upwelling coastal ecosystem. Sci Rep 2024; 14:21942. [PMID: 39304706 DOI: 10.1038/s41598-024-72841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The seascape comprises multiple environmental variables that interact with species biology to determine patterns of spatial genetic variation. The environment imposes spatially variable selective forces together with homogenizing and diverging drivers that facilitate or restrict dispersal, which is a complex, time-dependent process. Understanding how the seascape influences spatial patterns of genetic variation remains elusive, particularly in coastal upwelling systems. Here, we combine genome-wide SNP data, Lagrangian larval dispersal simulated over a hydrodynamic model, and ocean environmental information to quantify the relative contribution of ocean circulation and environmental heterogeneity as drivers of the spatial genetic structure of two congeneric intertidal limpets, Scurria scurra and S. araucana, along the central coast of Chile. We find that a genetic break observed in both limpet species coincides with a break in connectivity shown by the Lagrangian dispersal, suggesting that mean ocean circulation is an important seascape feature, in particular for S. scurra. For S. araucana, environmental variation appears as a better predictor of genetic structure than ocean circulation. Overall, our study shows broad patterns of seascape forcing on genetic diversity and contributes to our understanding of the complex ecological and evolutionary interactions along coastal upwelling systems.
Collapse
Affiliation(s)
- Lívia Peluso
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Faúndez
- Departamento de Oceanografía y Medio Ambiente, Instituto de Fomento Pesquero, Valparaíso, Chile
- Facultad de Ciencias Biológicas, Estación Costera de Investigaciones Marinas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio A Navarrete
- Coastal Socio-Ecological Millennium Institute, SECOS, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reef Ecosystems (NUTME), Valparaíso, Chile
- Facultad de Ciencias Biológicas, Estación Costera de Investigaciones Marinas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Oceanographic Research, COPAS-COASTAL, Universidad de Concepción, Concepción, Chile
- Marine Energy Research and Innovation Energy, MERIC, Estación Costera de Investigaciones Marinas, P. Universidad Católica de Chile, Santiago, Chile
| | - Bernardo R Broitman
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Viña del Mar, Santiago, Chile
- Coastal Socio-Ecological Millennium Institute, SECOS, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus UPWELL, Santiago, Chile
| | - Christopher M Aiken
- Coastal Marine Ecosystems Research Centre, CQUniversity, Gladstone, Australia
| | - Pablo Saenz-Agudelo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.
- Millenium Nucleus for Ecology and Conservation of Temperate Mesophotic Reef Ecosystems (NUTME), Valparaíso, Chile.
| |
Collapse
|
3
|
Gravem SA, Poirson BN, Robinson JW, Menge BA. Resistance of rocky intertidal communities to oceanic climate fluctuations. PLoS One 2024; 19:e0297697. [PMID: 38809830 PMCID: PMC11135789 DOI: 10.1371/journal.pone.0297697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 05/31/2024] Open
Abstract
A powerful way to predict how ecological communities will respond to future climate change is to test how they have responded to the climate of the past. We used climate oscillations including the Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation, and El Niño Southern Oscillation (ENSO) and variation in upwelling, air temperature, and sea temperatures to test the sensitivity of nearshore rocky intertidal communities to climate variability. Prior research shows that multiple ecological processes of key taxa (growth, recruitment, and physiology) were sensitive to environmental variation during this time frame. We also investigated the effect of the concurrent sea star wasting disease outbreak in 2013-2014. We surveyed nearly 150 taxa from 11 rocky intertidal sites in Oregon and northern California annually for up to 14-years (2006-2020) to test if community structure (i.e., the abundance of functional groups) and diversity were sensitive to past environmental variation. We found little to no evidence that these communities were sensitive to annual variation in any of the environmental measures, and that each metric was associated with < 8.6% of yearly variation in community structure. Only the years elapsed since the outbreak of sea star wasting disease had a substantial effect on community structure, but in the mid-zone only where spatially dominant mussels are a main prey of the keystone predator sea star, Pisaster ochraceus. We conclude that the established sensitivity of multiple ecological processes to annual fluctuations in climate has not yet scaled up to influence community structure. Hence, the rocky intertidal system along this coastline appears resistant to the range of oceanic climate fluctuations that occurred during the study. However, given ongoing intensification of climate change and increasing frequencies of extreme events, future responses to climate change seem likely.
Collapse
Affiliation(s)
- Sarah A. Gravem
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Brittany N. Poirson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Jonathan W. Robinson
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| | - Bruce A. Menge
- Department of Integrative Biology, Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO), Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
4
|
Oliveira BM, Roelof B, Fath BD, Joseph H. Coastal ecosystem services and climate change: Case study for integrated modeling and valuation. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
5
|
Navarrete SA, Barahona M, Weidberg N, Broitman BR. Climate change in the coastal ocean: shifts in pelagic productivity and regionally diverging dynamics of coastal ecosystems. Proc Biol Sci 2022; 289:20212772. [PMID: 35259989 PMCID: PMC8914614 DOI: 10.1098/rspb.2021.2772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Climate change has led to intensification and poleward migration of the Southeastern Pacific Anticyclone, forcing diverging regions of increasing, equatorward and decreasing, poleward coastal phytoplankton productivity along the Humboldt Upwelling Ecosystem, and a transition zone around 31° S. Using a 20-year dataset of barnacle larval recruitment and adult abundances, we show that striking increases in larval arrival have occurred since 1999 in the region of higher productivity, while slower but significantly negative trends dominate poleward of 30° S, where years of recruitment failure are now common. Rapid increases in benthic adults result from fast recruitment-stock feedbacks following increased recruitment. Slower population declines in the decreased productivity region may result from aging but still reproducing adults that provide temporary insurance against population collapses. Thus, in this region of the ocean where surface waters have been cooling down, climate change is transforming coastal pelagic and benthic ecosystems through altering primary productivity, which seems to propagate up the food web at rates modulated by stock-recruitment feedbacks and storage effects. Slower effects of downward productivity warn us that poleward stocks may be closer to collapse than current abundances may suggest.
Collapse
Affiliation(s)
- Sergio A Navarrete
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), and Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute for Coastal Socio-Ecology (SECOS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Barahona
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), and Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias, Facultad de Artes Liberales, Nucleo Milenio UPWELL, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| | - Nicolas Weidberg
- Estación Costera de Investigaciones Marinas, Las Cruces, Center for Applied Ecology and Sustainability (CAPES), and Millennium Nucleus for Ecology and Conservation of Temperate Mesophotic Reefs (NUTME), Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.,Facultad de Ciencias del Mar, Universidad de Vigo, Vigo, Galicia, Spain
| | - Bernardo R Broitman
- Millennium Institute for Coastal Socio-Ecology (SECOS), Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias, Facultad de Artes Liberales, Nucleo Milenio UPWELL, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Chile
| |
Collapse
|