1
|
Piross IS, Lecheval V, Powell S, Donaldson-Matasci MC, Robinson EJH. Strong and weak environmental perturbations cause contrasting restructure of ant transportation networks. Proc Biol Sci 2025; 292:20242342. [PMID: 40199354 PMCID: PMC11978439 DOI: 10.1098/rspb.2024.2342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/02/2024] [Accepted: 02/28/2025] [Indexed: 04/10/2025] Open
Abstract
Dynamic transportation networks are embedded in all levels of biological organization. Ever-growing anthropogenic disturbances and an increasingly variable climate highlight the importance of understanding how these networks restructure under environmental perturbations. Polydomous wood ants provide a convenient model system to study the resilience of self-organizing multi-source, multi-sink transportation networks. We used 10 years of longitudinal empirical data on both unperturbed and experimentally manipulated colony networks to develop and validate a comprehensive dynamic simulation model to study network restructuring after resource removal. We performed simulation experiments to study the effects of excluding food sources with varying importance, either temporarily or permanently, imitating pulse and press perturbations of the networks. We found that removing heavily used resources, corresponding to a strong targeted perturbation, persistently decreased network efficiency, unlike random or weak perturbations. We also found that strong perturbations had excessively adverse effects on robustness and function, reducing the networks' ability to withstand potential future perturbations. When transportation networks develop around the efficient use of a few key resources, they may be unable to quickly recover from the loss of these through self-organized restructuring. Our findings highlight the importance of considering the interaction of perturbation strength and network structure in studying transportation network dynamics.
Collapse
Affiliation(s)
- Imre Sándor Piross
- Department of Biology, University of York, York, UK
- HUN-REN Centre for Ecological Research, Institute of Ecology and Botany, Budapest, Hungary
| | - Valentin Lecheval
- Department of Biology, Faculty of Life Sciences, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | - Scott Powell
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | | | | |
Collapse
|
2
|
Lawhorn KA, Richards JH, Gora EM, Burchfield JC, Bitzer PM, Gutierrez C, Yanoviak SP. The influence of lightning on insect and fungal dynamics in a lowland tropical forest. Ecology 2025; 106:e4521. [PMID: 39871008 DOI: 10.1002/ecy.4521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 01/29/2025]
Abstract
Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning-damaged trees are a consistent resource for tropical saproxylic (i.e., dead wood-dependent) organisms, but patterns of consumer colonization and succession following lightning strikes are not known. Here, we documented the occurrence of four common consumer taxa spanning multiple trophic levels-beetles, Azteca ants, termites, and fungi-in lightning strike sites and nearby undamaged control sites over time in a lowland forest of Panama. Beetle abundance was 10 times higher in lightning strike sites than in paired control sites, and beetle assemblages were compositionally distinct. Those in strike sites were initially dominated by bark and ambrosia beetles (Curculionidae: Platypodinae, Scolytinae); bark and ambrosia beetles, and predaceous taxa increased in abundance relatively synchronously. Beetle activity and fungal fruiting bodies, respectively, were 3.8 and 12.2 times more likely to be observed in lightning-damaged trees in strike sites versus undamaged trees in paired control sites, whereas the occurrence probabilities of Azteca ants and termites were similar between damaged trees in lightning strike sites and undamaged trees in control sites. Tree size also was important; larger dead trees in strike sites were more likely to support beetles, termites, and fungal fruiting bodies, and larger trees-regardless of mortality status-were more likely to host Azteca. Beetle presence was associated with higher rates of subsequent fungal presence, providing some evidence of beetle-associated priority effects on colonization patterns. These results suggest that lightning plays a key role in supporting tropical insect and fungal consumers by providing localized patches of suitable habitat. Any climate-driven changes in lightning frequency in tropical forests will likely affect a broad suite of consumer organisms, potentially altering ecosystem-level processes.
Collapse
Affiliation(s)
- Kane A Lawhorn
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Jeannine H Richards
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Evan M Gora
- Smithsonian Tropical Research Institute, Balboa, Panama
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| | - Jeffrey C Burchfield
- Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Phillip M Bitzer
- Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | | | - Stephen P Yanoviak
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
- Smithsonian Tropical Research Institute, Balboa, Panama
| |
Collapse
|
3
|
Ballarin CS, Vizentin-Bugoni J, Hachuy-Filho L, Amorim FW. Imprints of indirect interactions on a resource-mediated ant-plant network across different levels of network organization. Oecologia 2024; 204:661-673. [PMID: 38448764 DOI: 10.1007/s00442-024-05522-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Indirect interactions are pivotal in the evolution of interacting species and the assembly of populations and communities. Nevertheless, despite recently being investigated in plant-animal mutualism at the community level, indirect interactions have not been studied in resource-mediated mutualisms involving plant individuals that share different animal species as partners within a population (i.e., individual-based networks). Here, we analyzed an individual-based ant-plant network to evaluate how resource properties affect indirect interaction patterns and how changes in indirect links leave imprints in the network across multiple levels of network organization. Using complementary analytical approaches, we described the patterns of indirect interactions at the micro-, meso-, and macro-scale. We predicted that plants offering intermediate levels of nectar quantity and quality interact with more diverse ant assemblages. The increased number of ant species would cause a higher potential for indirect interactions in all scales evaluated. We found that nectar properties modified patterns of indirect interactions of plant individuals that share mutualistic partners, leaving imprints across different network scales. To our knowledge, this is the first study tracking indirect interactions in multiple scales within an individual-based network. We show that functional traits of interacting species, such as nectar properties, may lead to changes in indirect interactions, which could be tracked across different levels of the network organization evaluated.
Collapse
Affiliation(s)
- Caio S Ballarin
- Laboratório de Ecologia da Polinização e Interações, LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil.
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil.
| | - Jeferson Vizentin-Bugoni
- Programa de Pós-Graduação Em Biodiversidade Animal, Departamento de Ecologia, Zoologia e Genética, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, RS, CEP 96010-900, Brasil
| | - Leandro Hachuy-Filho
- Laboratório de Ecologia da Polinização e Interações, LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
- Programa de Pós-Graduação Em Zoologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil
| | - Felipe W Amorim
- Laboratório de Ecologia da Polinização e Interações, LEPI, Departamento de Biodiversidade e Bioestatística, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Prof. Dr. Antonio Celso Wagner Zanin, Botucatu, São Paulo, CEP 18618-689, Brazil
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil
- Programa de Pós-Graduação Em Zoologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, São Paulo, CEP 18618-689, Brazil
| |
Collapse
|