1
|
Li L, Wang L. Linking visual-frontoparietal network neural dynamics to spontaneous cognitive processing. Neuroimage 2025; 312:121229. [PMID: 40294710 DOI: 10.1016/j.neuroimage.2025.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/31/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Previous studies in neuroscience have predominantly focused on the role of the default mode network (DMN) in spontaneous thought, with the contributions of other brain regions remaining largely unexplored. In this study, we hypothesized that the visual-frontoparietal network (VFPN) would exhibit distinct macroscopic patterns associated with spontaneous cognitive processing. To test this hypothesis, we analyzed four functional magnetic resonance imaging (fMRI) datasets. Our results revealed that self-reported cognitive states during rest were strongly correlated with specific macroscopic patterns in the VFPN. These patterns were also observed during movie viewing/listening and had previously been identified in multistable perception tasks. Further analysis showed that the microscopic activation patterns in the visual areas were closely linked to self-reported cognitive states. Additionally, we found that memory replay in the visual areas was more pronounced when the frontoparietal network was active, compared to when it was inactive. Finally, fluctuations in the VFPN and their coupling with the hippocampus were significant predictors of offline memory enhancement. In conclusion, these findings demonstrate consistent patterns in the visual and frontoparietal brain regions during resting states that are closely associated with cognitive activity, providing strong evidence for the significant roles of regions beyond the DMN in spontaneous thought.
Collapse
Affiliation(s)
- Leinian Li
- School of psychology, Shandong Normal University, Jinan, China
| | - Li Wang
- Curriculum and Teaching Materials Research Institution, People's Education Press, Beijing, China..
| |
Collapse
|
2
|
Watanabe T, Inoue K, Kuniyoshi Y, Nakajima K, Aihara K. Comparison of Large Language Model with Aphasia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414016. [PMID: 40369908 DOI: 10.1002/advs.202414016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/28/2025] [Indexed: 05/16/2025]
Abstract
Large language models (LLMs) respond fluently but often inaccurately, which resembles aphasia in humans. Does this behavioral similarity indicate any resemblance in internal information processing between LLMs and aphasic humans? Here, we address this question by comparing the network dynamics between LLMs-ALBERT, GPT-2, Llama-3.1 and one Japanese variant of Llama-and various aphasic brains. Using energy landscape analysis, we quantify how frequently the network activity pattern is likely to move from one state to another (transition frequency) and how long it tends to dwell in each state (dwelling time). First, by investigating the frequency spectrums of these two indices for brain dynamics, we find that the degrees of the polarization of the transition frequency and dwelling time enable accurate classification of receptive aphasia, expressive aphasia and controls: receptive aphasia shows the bimodal distributions for both indices, whereas expressive aphasia exhibits the most uniform distributions. In parallel, we identify highly polarized distributions in both transition frequency and dwelling time in the network dynamics in the four LLMs. These findings indicate the similarity in internal information processing between LLMs and receptive aphasia, and the current approach can provide a novel diagnosis and classification tool for LLMs and help their performance improve.
Collapse
Affiliation(s)
- Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Katsuma Inoue
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yasuo Kuniyoshi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kohei Nakajima
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kazuyuki Aihara
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Burns AP, Fortel I, Zhan L, Lazarov O, Mackin RS, Demos AP, Bendlin B, Leow A. Longitudinal excitation-inhibition balance altered by sex and APOE-ε4. Commun Biol 2025; 8:488. [PMID: 40133608 PMCID: PMC11937384 DOI: 10.1038/s42003-025-07876-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Neuronal hyperexcitation affects memory and neural processing across the Alzheimer's disease (AD) cognitive continuum. Levetiracetam, an antiepileptic, shows promise in improving cognitive impairment by restoring the neural excitation/inhibition balance in AD patients. We previously identified a hyper-excitable phenotype in cognitively unimpaired female APOE-ε4 carriers relative to male counterparts cross-sectionally. This sex difference lacks longitudinal validation; however, clarifying the vulnerability of female ε4-carriers could better inform antiepileptic treatment efficacy. Here, we investigated this sex-by-ε4 interaction using a longitudinal design. We used resting-state fMRI and diffusion tensor imaging collected longitudinally from 106 participants who were cognitively unimpaired for at least one scan event but may have been assessed to have clinical dementia ratings corresponding to early mild cognitive impairment over time. By including scan events where participants transitioned to mild cognitive impairment, we modeled the trajectory of the whole-brain excitation-inhibition ratio throughout the preclinical cognitively healthy continuum and extended to early impairment. A linear mixed model revealed a significant three-way interaction among sex, ε4-status, and time, with female ε4-carriers showing a significant hyper-excitable trajectory. These findings suggest a possible pathway for preventative therapy targeting preclinical hyperexcitation in female ε4-carriers.
Collapse
Affiliation(s)
- Andrew P Burns
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| | - Igor Fortel
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois Chicago, 808 S. Wood St, Chicago, IL, 60612, USA
| | - R Scott Mackin
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, 675 18th St, San Francisco, CA, 94107, USA
- Department of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Alexander P Demos
- Department of Psychology, University of Illinois Chicago (UIC), 1007 W Harrison St, Chicago, IL, 60607, USA
| | - Barbara Bendlin
- Department of Medicine, University of Wisconsin-Madison, 5158 Medical Foundation Centennial Building, 1685 Highland Ave, Madison, WI, 53792, USA
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison, 600 Highland Ave J5/1 Mezzanine, Madison, WI, 53792, USA
| | - Alex Leow
- Department of Biomedical Engineering University of Illinois Chicago (UIC), 851 S Morgan St, Chicago, IL, 60607, USA.
| |
Collapse
|
4
|
Hosaka Y, Hieda T, Li R, Hayashi K, Jimura K, Matsui T. Surrogate data analyses of the energy landscape analysis of resting-state brain activity. Front Neural Circuits 2025; 19:1500227. [PMID: 40160867 PMCID: PMC11949950 DOI: 10.3389/fncir.2025.1500227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
The spatiotemporal dynamics of resting-state brain activity can be characterized by switching between multiple brain states, and numerous techniques have been developed to extract such dynamic features from resting-state functional magnetic resonance imaging (fMRI) data. However, many of these techniques are based on momentary temporal correlation and co-activation patterns and merely reflect linear features of the data, suggesting that the dynamic features, such as state-switching, extracted by these techniques may be misinterpreted. To examine whether such misinterpretations occur when using techniques that are not based on momentary temporal correlation or co-activation patterns, we addressed Energy Landscape Analysis (ELA) based on pairwise-maximum entropy model (PMEM), a statistical physics-inspired method that was designed to extract multiple brain states and dynamics of resting-state fMRI data. We found that the shape of the energy landscape and the first-order transition probability derived from ELA were similar between real data and surrogate data suggesting that these features were largely accounted for by stationary and linear properties of the real data without requiring state-switching among locally stable states. To confirm that surrogate data were distinct from the real data, we replicated a previous finding that some topological properties of resting-state fMRI data differed between the real and surrogate data. Overall, we found that linear models largely reproduced the first order ELA-derived features (i.e., energy landscape and transition probability) with some notable differences.
Collapse
Affiliation(s)
- Yuki Hosaka
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Takemi Hieda
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Ruixiang Li
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Kenji Hayashi
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | - Koji Jimura
- Department of Informatics, Gumma University, Maebashi, Japan
| | - Teppei Matsui
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
5
|
Su CW, Tang Y, Tang NL, Liu N, Li JW, Qi S, Wang HN, Huang ZG. Unveiling the dynamic effects of major depressive disorder and its rTMS interventions through energy landscape analysis. Front Neurosci 2025; 19:1444999. [PMID: 40109660 PMCID: PMC11920141 DOI: 10.3389/fnins.2025.1444999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Brain dynamics offer a more direct insight into brain function than network structure, providing a profound understanding of dysregulation and control mechanisms within intricate brain systems. This study investigates the dynamics of functional brain networks in major depressive disorder (MDD) patients to decipher the mechanisms underlying brain dysfunction during depression and assess the impact of repetitive transcranial magnetic stimulation (rTMS) intervention. Methods We employed energy landscape analysis of functional magnetic resonance imaging (fMRI) data to examine the dynamics of functional brain networks in MDD patients. The analysis focused on key dynamical indicators of the default mode network (DMN), the salience network (SN), and the central execution network (CEN). The effects of rTMS intervention on these networks were also evaluated. Results Our findings revealed notable dynamical alterations in the pDMN, the vDMN, and the aSN, suggesting their potential as diagnostic and therapeutic markers. Particularly striking was the altered activity observed in the dDMN in the MDD group, indicative of patterns associated with depressive rumination. Notably, rTMS intervention partially reverses the identified dynamical alterations. Discussion Our results shed light on the intrinsic dysfunction mechanisms of MDD from a dynamic standpoint and highlight the effects of rTMS intervention. The identified alterations in brain network dynamics provide promising analytical markers for the diagnosis and treatment of MDD. Future studies should further explore the clinical applications of these markers and the comprehensive dynamical effects of rTMS intervention.
Collapse
Affiliation(s)
- Chun-Wang Su
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yurui Tang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Nai-Long Tang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
- Department of Psychiatry, The 907th Hospital of the PLA Joint Logistics Support Force, Nanping, Fujian, China
| | - Nian Liu
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
- Department of Psychiatry, The 904th Hospital of the PLA Joint Logistics Support Force, Changzhou, Jiangsu, China
| | - Jing-Wen Li
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Shun Qi
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hua-Ning Wang
- Department of Psychiatry, First Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, China
| | - Zi-Gang Huang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Saberi M, Rieck JR, Golafshan S, Grady CL, Misic B, Dunkley BT, Khatibi A. The brain selectively allocates energy to functional brain networks under cognitive control. Sci Rep 2024; 14:32032. [PMID: 39738735 PMCID: PMC11686059 DOI: 10.1038/s41598-024-83696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Network energy has been conceptualized based on structural balance theory in the physics of complex networks. We utilized this framework to assess the energy of functional brain networks under cognitive control and to understand how energy is allocated across canonical functional networks during various cognitive control tasks. We extracted network energy from functional connectivity patterns of subjects who underwent fMRI scans during cognitive tasks involving working memory, inhibitory control, and cognitive flexibility, in addition to task-free scans. We found that the energy of the whole-brain network increases when exposed to cognitive control tasks compared to the task-free resting state, which serves as a reference point. The brain selectively allocates this elevated energy to canonical functional networks; sensory networks receive more energy to support flexibility for processing sensory stimuli, while cognitive networks relevant to the task, functioning efficiently, require less energy. Furthermore, employing network energy, as a global network measure, improves the performance of predictive modeling, particularly in classifying cognitive control tasks and predicting chronological age. Our results highlight the robustness of this framework and the utility of network energy in understanding brain and cognitive mechanisms, including its promising potential as a biomarker for mental conditions and neurological disorders.
Collapse
Affiliation(s)
- Majid Saberi
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada.
- Headache and Orofacial Pain Effort (H.O.P.E.) Laboratory, Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| | - Jenny R Rieck
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Shamim Golafshan
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Cheryl L Grady
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Bratislav Misic
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Benjamin T Dunkley
- Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
7
|
Theis N, Bahuguna J, Rubin JE, Banerjee SS, Muldoon B, Prasad KM. Energy of functional brain states correlates with cognition in adolescent-onset schizophrenia and healthy persons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565753. [PMID: 37987003 PMCID: PMC10659315 DOI: 10.1101/2023.11.06.565753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Adolescent-onset schizophrenia (AOS) is rare, under-studied, and associated with more severe cognitive impairments and poorer outcomes than adult-onset schizophrenia. Neuroimaging has shown altered regional activations (first-order effects) and functional connectivity (second-order effects) in AOS compared to controls. The pairwise maximum entropy model (MEM) integrates first- and second-order factors into a single quantity called energy, which is inversely related to probability of occurrence of brain activity patterns. We take a combinatorial approach to study multiple brain-wide MEMs of task-associated components; hundreds of independent MEMs for various sub-systems are fit to 7 Tesla functional MRI scans. Acquisitions were collected from 23 AOS individuals and 53 healthy controls while performing the Penn Conditional Exclusion Test (PCET) for executive function, which is known to be impaired in AOS. Accuracy of PCET performance was significantly reduced among AOS compared to controls. A majority of the models showed significant negative correlation between PCET scores and the total energy attained over the fMRI. Across all instantiations, the AOS group was associated with significantly more frequent occurrence of states of higher energy, assessed with a mixed effects model. An example MEM instance was investigated further using energy landscapes, which visualize high and low energy states on a low-dimensional plane, and trajectory analysis, which quantify the evolution of brain states throughout this landscape. Both supported patient-control differences in the energy profiles. Severity of psychopathology was correlated positively with energy. The MEM's integrated representation of energy in task-associated systems can help characterize pathophysiology of AOS, cognitive impairments, and psychopathology.
Collapse
Affiliation(s)
- Nicholas Theis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jyotika Bahuguna
- Department of Neuroscience, Laboratoire de Neurosciences Cognitive et Adaptive, University of Strasbourg, France
| | | | | | - Brendan Muldoon
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Fan L, Su C, Li Y, Guo J, Huang Z, Zhang W, Liu T, Wang J. The alterations of repetitive transcranial magnetic stimulation on the energy landscape of resting-state networks differ across the human cortex. Hum Brain Mapp 2024; 45:e70029. [PMID: 39465912 PMCID: PMC11514123 DOI: 10.1002/hbm.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention tool for the noninvasive modulation of brain activity and behavior in neuroscience research and clinical settings. However, the resting-state dynamic evolution of large-scale functional brain networks following rTMS has rarely been investigated. Here, using resting-state fMRI images collected from 23 healthy individuals before (baseline) and after 1 Hz rTMS of the left frontal (FRO) and occipital (OCC) lobes, we examined the different effects of rTMS on brain dynamics across the human cortex. By fitting a pairwise maximum entropy model (pMEM), we constructed an energy landscape for the baseline and poststimulus conditions by fitting a pMEM. We defined dominant brain states (local minima) in the energy landscape with synergistic activation and deactivation patterns of large-scale functional networks. We calculated state dynamics including appearance probability, transitions and duration. The results showed that 1 Hz rTMS induced increased and decreased state probability, transitions and duration when delivered to the FRO and OCC targets, respectively. Most importantly, the shortest path and minimum cost between dominant brain states were altered after stimulation. The absolute sum of the costs from the source states to the destinations was lower after OCC stimulation than after FRO stimulation. In conclusion, our study characterized the dynamic trajectory of state transitions in the energy landscape and suggested that local rTMS can induce significant dynamic perturbation involving stimulated and distant functional networks, which aligns with the modern view of the dynamic and complex brain. Our results suggest low-dimensional mapping of rTMS-induced brain adaption, which will contribute to a broader and more effective application of rTMS in clinical settings.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jinjia Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Zi‐Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
- The Key Laboratory of Neuro‐informatics & Rehabilitation Engineering of Ministry of Civil AffairsXi'anShaanxiP. R. China
| |
Collapse
|
9
|
Rosch RE, Burrows DRW, Lynn CW, Ashourvan A. Spontaneous Brain Activity Emerges from Pairwise Interactions in the Larval Zebrafish Brain. PHYSICAL REVIEW. X 2024; 14:physrevx.14.031050. [PMID: 39925410 PMCID: PMC7617382 DOI: 10.1103/physrevx.14.031050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Brain activity is characterized by brainwide spatiotemporal patterns that emerge from synapse-mediated interactions between individual neurons. Calcium imaging provides access to in vivo recordings of whole-brain activity at single-neuron resolution and, therefore, allows the study of how large-scale brain dynamics emerge from local activity. In this study, we use a statistical mechanics approach-the pairwise maximum entropy model-to infer microscopic network features from collective patterns of activity in the larval zebrafish brain and relate these features to the emergence of observed whole-brain dynamics. Our findings indicate that the pairwise interactions between neural populations and their intrinsic activity states are sufficient to explain observed whole-brain dynamics. In fact, the pairwise relationships between neuronal populations estimated with the maximum entropy model strongly correspond to observed structural connectivity patterns. Model simulations also demonstrated how tuning pairwise neuronal interactions drives transitions between observed physiological regimes and pathologically hyperexcitable whole-brain regimes. Finally, we use virtual resection to identify the brain structures that are important for maintaining the brain in a physiological dynamic regime. Together, our results indicate that whole-brain activity emerges from a complex dynamical system that transitions between basins of attraction whose strength and topology depend on the connectivity between brain areas.
Collapse
Affiliation(s)
- Richard E. Rosch
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Departments of Neurology and Pediatrics, Columbia University Irving Medical Center, New York City, New York, USA
- Department of Imaging Neuroscience, University College London, London, United Kingdom
| | - Dominic R. W. Burrows
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom and Department of Cognitive Science, University of California, San Diego, California, USA
| | - Christopher W. Lynn
- Department of Physics, Quantitative Biology Institute, and Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - Arian Ashourvan
- Department of Psychology, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
10
|
Khanra P, Nakuci J, Muldoon S, Watanabe T, Masuda N. Reliability of energy landscape analysis of resting-state functional MRI data. ARXIV 2024:arXiv:2305.19573v2. [PMID: 37396616 PMCID: PMC10312792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Energy landscape analysis is a data-driven method to analyze multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test-retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e., within-participant reliability) than across different sets of sessions from different participants (i.e., between-participant reliability). We show that the energy landscape analysis has significantly higher within-participant than between-participant test-retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test-retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual-level energy landscape analysis for given data sets with a statistically controlled reliability.
Collapse
Affiliation(s)
- Pitambar Khanra
- Department of Mathematics, State University of New York at Buffalo, Buffalo, USA
| | - Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, USA
| | - Sarah Muldoon
- Department of Mathematics, State University of New York at Buffalo, Buffalo, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, USA
| | - Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo, Japan
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, USA
| |
Collapse
|
11
|
Khanra P, Nakuci J, Muldoon S, Watanabe T, Masuda N. Reliability of energy landscape analysis of resting-state functional MRI data. Eur J Neurosci 2024; 60:4265-4290. [PMID: 38837814 DOI: 10.1111/ejn.16390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 04/05/2024] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
Energy landscape analysis is a data-driven method to analyse multidimensional time series, including functional magnetic resonance imaging (fMRI) data. It has been shown to be a useful characterization of fMRI data in health and disease. It fits an Ising model to the data and captures the dynamics of the data as movement of a noisy ball constrained on the energy landscape derived from the estimated Ising model. In the present study, we examine test-retest reliability of the energy landscape analysis. To this end, we construct a permutation test that assesses whether or not indices characterizing the energy landscape are more consistent across different sets of scanning sessions from the same participant (i.e. within-participant reliability) than across different sets of sessions from different participants (i.e. between-participant reliability). We show that the energy landscape analysis has significantly higher within-participant than between-participant test-retest reliability with respect to four commonly used indices. We also show that a variational Bayesian method, which enables us to estimate energy landscapes tailored to each participant, displays comparable test-retest reliability to that using the conventional likelihood maximization method. The proposed methodology paves the way to perform individual-level energy landscape analysis for given data sets with a statistically controlled reliability.
Collapse
Affiliation(s)
- Pitambar Khanra
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, USA
| | - Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sarah Muldoon
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, New York, USA
| | - Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, New York, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, New York, USA
| |
Collapse
|
12
|
Kondo HM, Oba T, Ezaki T, Kochiyama T, Shimada Y, Ohira H. Striatal GABA levels correlate with risk sensitivity in monetary loss. Front Neurosci 2024; 18:1439656. [PMID: 39145302 PMCID: PMC11321969 DOI: 10.3389/fnins.2024.1439656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Background Decision-making under risk is a common challenge. It is known that risk-taking behavior varies between contexts of reward and punishment, yet the mechanisms underlying this asymmetry in risk sensitivity remain unclear. Methods This study used a monetary task to investigate neurochemical mechanisms and brain dynamics underpinning risk sensitivity. Twenty-eight participants engaged in a task requiring selection of visual stimuli to maximize monetary gains and minimize monetary losses. We modeled participant trial-and-error processes using reinforcement learning. Results Participants with higher subjective utility parameters showed risk preference in the gain domain (r = -0.59) and risk avoidance in the loss domain (r = -0.77). Magnetic resonance spectroscopy (MRS) revealed that risk avoidance in the loss domain was associated with γ-aminobutyric acid (GABA) levels in the ventral striatum (r = -0.42), but not in the insula (r = -0.15). Using functional magnetic resonance imaging (fMRI), we tested whether risk-sensitive brain dynamics contribute to participant risky choices. Energy landscape analyses demonstrated that higher switching rates between brain states, including the striatum and insula, were correlated with risk avoidance in the loss domain (r = -0.59), a relationship not observed in the gain domain (r = -0.02). Conclusions These findings from MRS and fMRI suggest that distinct mechanisms are involved in gain/loss decision making, mediated by subcortical neurometabolite levels and brain dynamic transitions.
Collapse
Affiliation(s)
| | - Takeyuki Oba
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Takahiro Ezaki
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | | | - Yasuhiro Shimada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Osaka, Japan
| | - Hideki Ohira
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
13
|
Zhang K, Nakaoka S. An energy landscape approach reveals the potential key bacteria contributing to the development of inflammatory bowel disease. PLoS One 2024; 19:e0302151. [PMID: 38885178 PMCID: PMC11182530 DOI: 10.1371/journal.pone.0302151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/28/2024] [Indexed: 06/20/2024] Open
Abstract
The dysbiosis of microbiota has been reported to be associated with numerous human pathophysiological processes, including inflammatory bowel disease (IBD). With advancements in high-throughput sequencing, various methods have been developed to study the alteration of microbiota in the development and progression of diseases. However, a suitable approach to assess the global stability of the microbiota in disease states through time-series microbiome data is yet to be established. In this study, we have introduced a novel Energy Landscape construction method, which incorporates the Latent Dirichlet Allocation (LDA) model and the pairwise Maximum Entropy (MaxEnt) model for their complementary advantages, and demonstrate its utility by applying it to an IBD time-series dataset. Through this approach, we obtained the microbial assemblages' energy profile of the whole microbiota under the IBD condition and uncovered the hidden stable stages of microbiota structure during the disease development with time-series microbiome data. The Bacteroides-dominated assemblages presenting in multiple stable states suggest the potential contribution of Bacteroides and interactions with other microbial genera, like Alistipes, and Faecalibacterium, to the development of IBD. Our proposed method provides a novel and insightful tool for understanding the alteration and stability of the microbiota under disease states and offers a more holistic view of the complex dynamics at play in microbiota-mediated diseases.
Collapse
Affiliation(s)
- Kaiyang Zhang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Theis N, Bahuguna J, Rubin JE, Cape J, Iyengar S, Prasad KM. Diagnostically distinct resting state fMRI energy distributions: A subject-specific maximum entropy modeling study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576937. [PMID: 38328170 PMCID: PMC10849576 DOI: 10.1101/2024.01.23.576937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Objective Existing neuroimaging studies of psychotic and mood disorders have reported brain activation differences (first-order properties) and altered pairwise correlation-based functional connectivity (second-order properties). However, both approaches have certain limitations that can be overcome by integrating them in a pairwise maximum entropy model (MEM) that better represents a comprehensive picture of fMRI signal patterns and provides a system-wide summary measure called energy. This study examines the applicability of individual-level MEM for psychiatry and identifies image-derived model coefficients related to model parameters. Method MEMs are fit to resting state fMRI data from each individual with schizophrenia/schizoaffective disorder, bipolar disorder, and major depression (n=132) and demographically matched healthy controls (n=132) from the UK Biobank to different subsets of the default mode network (DMN) regions. Results The model satisfactorily explained observed brain energy state occurrence probabilities across all participants, and model parameters were significantly correlated with image-derived coefficients for all groups. Within clinical groups, averaged energy level distributions were higher in schizophrenia/schizoaffective disorder but lower in bipolar disorder compared to controls for both bilateral and unilateral DMN. Major depression energy distributions were higher compared to controls only in the right hemisphere DMN. Conclusions Diagnostically distinct energy states suggest that probability distributions of temporal changes in synchronously active nodes may underlie each diagnostic entity. Subject-specific MEMs allow for factoring in the individual variations compared to traditional group-level inferences, offering an improved measure of biologically meaningful correlates of brain activity that may have potential clinical utility.
Collapse
Affiliation(s)
- Nicholas Theis
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jyotika Bahuguna
- Department of Neuroscience, Laboratoire de Neurosciences Cognitive et Adaptive, University of Strasbourg, France
| | | | - Joshua Cape
- Department of Statistics, University of Wisconsin-Madison, WI, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh, PA, USA
| | - Konasale M. Prasad
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Xing L, Guo Z, Long Z. Energy landscape analysis of brain network dynamics in Alzheimer's disease. Front Aging Neurosci 2024; 16:1375091. [PMID: 38813531 PMCID: PMC11133694 DOI: 10.3389/fnagi.2024.1375091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Background Alzheimer's disease (AD) is a common neurodegenerative dementia, characterized by abnormal dynamic functional connectivity (DFC). Traditional DFC analysis, assuming linear brain dynamics, may neglect the complexity of the brain's nonlinear interactions. Energy landscape analysis offers a holistic, nonlinear perspective to investigate brain network attractor dynamics, which was applied to resting-state fMRI data for AD in this study. Methods This study utilized resting-state fMRI data from 60 individuals, comparing 30 Alzheimer's patients with 30 controls, from the Alzheimer's Disease Neuroimaging Initiative. Energy landscape analysis was applied to the data to characterize the aberrant brain network dynamics of AD patients. Results The AD group stayed in the co-activation state for less time than the healthy control (HC) group, and a positive correlation was identified between the transition frequency of the co-activation state and behavior performance. Furthermore, the AD group showed a higher occurrence frequency and transition frequency of the cognitive control state and sensory integration state than the HC group. The transition between the two states was positively correlated with behavior performance. Conclusion The results suggest that the co-activation state could be important to cognitive processing and that the AD group possibly raised cognitive ability by increasing the occurrence and transition between the impaired cognitive control and sensory integration states.
Collapse
Affiliation(s)
- Le Xing
- The State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zhitao Guo
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zhiying Long
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
Olsen VK, Whitlock JR, Roudi Y. The quality and complexity of pairwise maximum entropy models for large cortical populations. PLoS Comput Biol 2024; 20:e1012074. [PMID: 38696532 DOI: 10.1371/journal.pcbi.1012074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/14/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024] Open
Abstract
We investigate the ability of the pairwise maximum entropy (PME) model to describe the spiking activity of large populations of neurons recorded from the visual, auditory, motor, and somatosensory cortices. To quantify this performance, we use (1) Kullback-Leibler (KL) divergences, (2) the extent to which the pairwise model predicts third-order correlations, and (3) its ability to predict the probability that multiple neurons are simultaneously active. We compare these with the performance of a model with independent neurons and study the relationship between the different performance measures, while varying the population size, mean firing rate of the chosen population, and the bin size used for binarizing the data. We confirm the previously reported excellent performance of the PME model for small population sizes N < 20. But we also find that larger mean firing rates and bin sizes generally decreases performance. The performance for larger populations were generally not as good. For large populations, pairwise models may be good in terms of predicting third-order correlations and the probability of multiple neurons being active, but still significantly worse than small populations in terms of their improvement over the independent model in KL-divergence. We show that these results are independent of the cortical area and of whether approximate methods or Boltzmann learning are used for inferring the pairwise couplings. We compared the scaling of the inferred couplings with N and find it to be well explained by the Sherrington-Kirkpatrick (SK) model, whose strong coupling regime shows a complex phase with many metastable states. We find that, up to the maximum population size studied here, the fitted PME model remains outside its complex phase. However, the standard deviation of the couplings compared to their mean increases, and the model gets closer to the boundary of the complex phase as the population size grows.
Collapse
Affiliation(s)
- Valdemar Kargård Olsen
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonathan R Whitlock
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yasser Roudi
- Kavli Institute for Systems Neuroscience, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Mathematics, King's College London, London, United Kingdom
| |
Collapse
|
17
|
Miyata J, Sasamoto A, Ezaki T, Isobe M, Kochiyama T, Masuda N, Mori Y, Sakai Y, Sawamoto N, Tei S, Ubukata S, Aso T, Murai T, Takahashi H. Associations of conservatism and jumping to conclusions biases with aberrant salience and default mode network. Psychiatry Clin Neurosci 2024; 78:322-331. [PMID: 38414202 PMCID: PMC11488637 DOI: 10.1111/pcn.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 12/15/2023] [Accepted: 01/21/2024] [Indexed: 02/29/2024]
Abstract
AIM While conservatism bias refers to the human need for more evidence for decision-making than rational thinking expects, the jumping to conclusions (JTC) bias refers to the need for less evidence among individuals with schizophrenia/delusion compared to healthy people. Although the hippocampus-midbrain-striatal aberrant salience system and the salience, default mode (DMN), and frontoparietal networks ("triple networks") are implicated in delusion/schizophrenia pathophysiology, the associations between conservatism/JTC and these systems/networks are unclear. METHODS Thirty-seven patients with schizophrenia and 33 healthy controls performed the beads task, with large and small numbers of bead draws to decision (DTD) indicating conservatism and JTC, respectively. We performed independent component analysis (ICA) of resting functional magnetic resonance imaging (fMRI) data. For systems/networks above, we investigated interactions between diagnosis and DTD, and main effects of DTD. We similarly applied ICA to structural and diffusion MRI to explore the associations between DTD and gray/white matter. RESULTS We identified a significant main effect of DTD with functional connectivity between the striatum and DMN, which was negatively correlated with delusion severity in patients, indicating that the greater the anti-correlation between these networks, the stronger the JTC and delusion. We further observed the main effects of DTD on a gray matter network resembling the DMN, and a white matter network connecting the functional and gray matter networks (all P < 0.05, family-wise error [FWE] correction). Function and gray/white matter showed no significant interactions. CONCLUSION Our results support the novel association of conservatism and JTC biases with aberrant salience and default brain mode.
Collapse
Grants
- Kyoto University
- JP18dm0307008 Japan Agency for Medical Research and Development
- JP21uk1024002 Japan Agency for Medical Research and Development
- JPMJMS2021 Japan Science and Technology Agency
- Novartis Pharma Research Grant
- SENSHIN Medical Research Foundation
- JP17H04248 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP18H05130 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP19H03583 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP20H05064 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP20K21567 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP21K07544 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- JP26461767 Japan Society for the Promotion of Science and Ministry of Education, Culture, Sports, Science and Technology KAKENHI
- Takeda Science Foundation
- Uehara Memorial Foundation
- Kyoto University
- Japan Agency for Medical Research and Development
- Japan Science and Technology Agency
- SENSHIN Medical Research Foundation
- Takeda Science Foundation
- Uehara Memorial Foundation
Collapse
Affiliation(s)
- Jun Miyata
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of PsychiatryAichi Medical UniversityAichiJapan
| | - Akihiko Sasamoto
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takahiro Ezaki
- PRESTO, Japan Science and Technology AgencySaitamaJapan
- Research Center for Advanced Science and TechnologyThe University of TokyoTokyoJapan
| | - Masanori Isobe
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | | | - Naoki Masuda
- Department of MathematicsState University of New York at BuffaloBuffaloNew YorkUSA
- Computational and Data‐Enabled Science and Engineering ProgramState University of New York at BuffaloBuffaloNew YorkUSA
| | - Yasuo Mori
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yuki Sakai
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Shisei Tei
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
- School of Human and Social SciencesTokyo International UniversityTokyoJapan
| | - Shiho Ubukata
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
- Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Toshihiko Aso
- Laboratory for Brain Connectomics ImagingRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Hidehiko Takahashi
- Department of Psychiatry, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
18
|
Hmamouche Y, Ochs M, Prévot L, Chaminade T. Interpretable prediction of brain activity during conversations from multimodal behavioral signals. PLoS One 2024; 19:e0284342. [PMID: 38512831 PMCID: PMC10956754 DOI: 10.1371/journal.pone.0284342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/29/2023] [Indexed: 03/23/2024] Open
Abstract
We present an analytical framework aimed at predicting the local brain activity in uncontrolled experimental conditions based on multimodal recordings of participants' behavior, and its application to a corpus of participants having conversations with another human or a conversational humanoid robot. The framework consists in extracting high-level features from the raw behavioral recordings and applying a dynamic prediction of binarized fMRI-recorded local brain activity using these behavioral features. The objective is to identify behavioral features required for this prediction, and their relative weights, depending on the brain area under investigation and the experimental condition. In order to validate our framework, we use a corpus of uncontrolled conversations of participants with a human or a robotic agent, focusing on brain regions involved in speech processing, and more generally in social interactions. The framework not only predicts local brain activity significantly better than random, it also quantifies the weights of behavioral features required for this prediction, depending on the brain area under investigation and on the nature of the conversational partner. In the left Superior Temporal Sulcus, perceived speech is the most important behavioral feature for predicting brain activity, regardless of the agent, while several features, which differ between the human and robot interlocutors, contribute to the prediction in regions involved in social cognition, such as the TemporoParietal Junction. This framework therefore allows us to study how multiple behavioral signals from different modalities are integrated in individual brain regions during complex social interactions.
Collapse
Affiliation(s)
- Youssef Hmamouche
- International Artificial Intelligence Center of Morocco, University Mohammed VI Polytechnique, Rabat, Morocco
| | - Magalie Ochs
- LIS UMR 7020, CNRS, Aix Marseille Université, Université de Toulon, Marseille, France
| | - Laurent Prévot
- LPL UMR 7309, CNRS, Aix Marseille Université, Marseille, France
| | | |
Collapse
|
19
|
Islam S, Khanra P, Nakuci J, Muldoon SF, Watanabe T, Masuda N. State-transition dynamics of resting-state functional magnetic resonance imaging data: model comparison and test-to-retest analysis. BMC Neurosci 2024; 25:14. [PMID: 38438838 PMCID: PMC10913599 DOI: 10.1186/s12868-024-00854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Electroencephalogram (EEG) microstate analysis entails finding dynamics of quasi-stable and generally recurrent discrete states in multichannel EEG time series data and relating properties of the estimated state-transition dynamics to observables such as cognition and behavior. While microstate analysis has been widely employed to analyze EEG data, its use remains less prevalent in functional magnetic resonance imaging (fMRI) data, largely due to the slower timescale of such data. In the present study, we extend various data clustering methods used in EEG microstate analysis to resting-state fMRI data from healthy humans to extract their state-transition dynamics. We show that the quality of clustering is on par with that for various microstate analyses of EEG data. We then develop a method for examining test-retest reliability of the discrete-state transition dynamics between fMRI sessions and show that the within-participant test-retest reliability is higher than between-participant test-retest reliability for different indices of state-transition dynamics, different networks, and different data sets. This result suggests that state-transition dynamics analysis of fMRI data could discriminate between different individuals and is a promising tool for performing fingerprinting analysis of individuals.
Collapse
Affiliation(s)
- Saiful Islam
- Institute for Artificial Intelligence and Data Science, University at Buffalo, State University of New York at Buffalo, 215 Lockwood Hall, Buffalo, 14260, NY, USA
| | - Pitambar Khanra
- Department of Mathematics , University at Buffalo, State University of New York at Buffalo, 244 Mathematics Building , Buffalo, 14260, NY, USA
| | - Johan Nakuci
- School of Psychology, Georgia Institute of Technology, North Avenue, Atlanta, 30332, GA, USA
| | - Sarah F Muldoon
- Department of Mathematics , University at Buffalo, State University of New York at Buffalo, 244 Mathematics Building , Buffalo, 14260, NY, USA
- Institute for Artificial Intelligence and Data Science, University at Buffalo, State University of New York at Buffalo, 215 Lockwood Hall, Buffalo, 14260, NY, USA
- Neuroscience Program, University at Buffalo, State University of New York at Buffalo, 955 Main Street, Buffalo, 14203, NY, USA
| | - Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, 731 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoki Masuda
- Department of Mathematics , University at Buffalo, State University of New York at Buffalo, 244 Mathematics Building , Buffalo, 14260, NY, USA.
- Institute for Artificial Intelligence and Data Science, University at Buffalo, State University of New York at Buffalo, 215 Lockwood Hall, Buffalo, 14260, NY, USA.
| |
Collapse
|
20
|
Endo H, Ikeda S, Harada K, Yamagata H, Matsubara T, Matsuo K, Kawahara Y, Yamashita O. Manifold alteration between major depressive disorder and healthy control subjects using dynamic mode decomposition in resting-state fMRI data. Front Psychiatry 2024; 15:1288808. [PMID: 38352652 PMCID: PMC10861746 DOI: 10.3389/fpsyt.2024.1288808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background The World Health Organization has reported that approximately 300 million individuals suffer from the mood disorder known as MDD. Non-invasive measurement techniques have been utilized to reveal the mechanism of MDD, with rsfMRI being the predominant method. The previous functional connectivity and energy landscape studies have shown the difference in the coactivation patterns between MDD and HCs. However, these studies did not consider oscillatory temporal dynamics. Methods In this study, the dynamic mode decomposition, a method to compute a set of coherent spatial patterns associated with the oscillation frequency and temporal decay rate, was employed to investigate the alteration of the occurrence of dynamic modes between MDD and HCs. Specifically, The BOLD signals of each subject were transformed into dynamic modes representing coherent spatial patterns and discrete-time eigenvalues to capture temporal variations using dynamic mode decomposition. All the dynamic modes were disentangled into a two-dimensional manifold using t-SNE. Density estimation and density ratio estimation were applied to the two-dimensional manifolds after the two-dimensional manifold was split based on HCs and MDD. Results The dynamic modes that uniquely emerged in the MDD were not observed. Instead, we have found some dynamic modes that have shown increased or reduced occurrence in MDD compared with HCs. The reduced dynamic modes were associated with the visual and saliency networks while the increased dynamic modes were associated with the default mode and sensory-motor networks. Conclusion To the best of our knowledge, this study showed initial evidence of the alteration of occurrence of the dynamic modes between MDD and HCs. To deepen understanding of how the alteration of the dynamic modes emerges from the structure, it is vital to investigate the relationship between the dynamic modes, cortical thickness, and surface areas.
Collapse
Affiliation(s)
- Hidenori Endo
- Center for Advanced Intelligence Projects, RIKEN, Tokyo, Japan
- Department of Computational Brain Imaging, Advanced Telecommunications Research Institute International (ATR) Neural Information Analysis Laboratories, Kyoto, Japan
| | - Shigeyuki Ikeda
- Center for Advanced Intelligence Projects, RIKEN, Tokyo, Japan
- Department of Computational Brain Imaging, Advanced Telecommunications Research Institute International (ATR) Neural Information Analysis Laboratories, Kyoto, Japan
- Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Kenichiro Harada
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hirotaka Yamagata
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Toshio Matsubara
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Koji Matsuo
- Department of Psychiatry, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yoshinobu Kawahara
- Center for Advanced Intelligence Projects, RIKEN, Tokyo, Japan
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| | - Okito Yamashita
- Center for Advanced Intelligence Projects, RIKEN, Tokyo, Japan
- Department of Computational Brain Imaging, Advanced Telecommunications Research Institute International (ATR) Neural Information Analysis Laboratories, Kyoto, Japan
| |
Collapse
|
21
|
Yonezawa S, Haruki T, Koizumi K, Taketani A, Oshima Y, Oku M, Wada A, Sato T, Masuda N, Tahara J, Fujisawa N, Koshiyama S, Kadowaki M, Kitajima I, Saito S. Establishing Monoclonal Gammopathy of Undetermined Significance as an Independent Pre-Disease State of Multiple Myeloma Using Raman Spectroscopy, Dynamical Network Biomarker Theory, and Energy Landscape Analysis. Int J Mol Sci 2024; 25:1570. [PMID: 38338848 PMCID: PMC10855579 DOI: 10.3390/ijms25031570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple myeloma (MM) is a cancer of plasma cells. Normal (NL) cells are considered to pass through a precancerous state, such as monoclonal gammopathy of undetermined significance (MGUS), before transitioning to MM. In the present study, we acquired Raman spectra at three stages-834 NL, 711 MGUS, and 970 MM spectra-and applied the dynamical network biomarker (DNB) theory to these spectra. The DNB analysis identified MGUS as the unstable pre-disease state of MM and extracted Raman shifts at 1149 and 1527-1530 cm-1 as DNB variables. The distribution of DNB scores for each patient showed a significant difference between the mean values for MGUS and MM patients. Furthermore, an energy landscape (EL) analysis showed that the NL and MM stages were likely to become stable states. Raman spectroscopy, the DNB theory, and, complementarily, the EL analysis will be applicable to the identification of the pre-disease state in clinical samples.
Collapse
Affiliation(s)
- Shota Yonezawa
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Takayuki Haruki
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
- Faculty of Sustainable Design, University of Toyama, Toyama 930-8555, Japan
| | - Keiichi Koizumi
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Akinori Taketani
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Yusuke Oshima
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
- Faculty of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Makito Oku
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Akinori Wada
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
- Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Tsutomu Sato
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
- Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY 14260-2900, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY 14260-2200, USA
| | - Jun Tahara
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Noritaka Fujisawa
- Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Shota Koshiyama
- Division of Presymptomatic Disease, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Makoto Kadowaki
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Isao Kitajima
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| | - Shigeru Saito
- Research Center for Pre-Disease Science, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
22
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
23
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted excitation-inhibition balance in cognitively normal individuals at risk of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554061. [PMID: 37662359 PMCID: PMC10473582 DOI: 10.1101/2023.08.21.554061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. Objective Examine how AD risk factors (age, APOE-ɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. Methods Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). Results In absence of AD risk factors (APOE-ɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β = -0.007). Regression modeling including APOE-ɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β = 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β = 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the trail-making test (p < 0.05). Conclusion Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOE-ɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOE-ɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL
| | - Scott Mackin
- Department of Psychiatry, University of California - San Francisco, San Francisco, CA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
24
|
Shigemizu D, Akiyama S, Suganuma M, Furutani M, Yamakawa A, Nakano Y, Ozaki K, Niida S. Classification and deep-learning-based prediction of Alzheimer disease subtypes by using genomic data. Transl Psychiatry 2023; 13:232. [PMID: 37386009 DOI: 10.1038/s41398-023-02531-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common multifactorial neurodegenerative disease among elderly people. LOAD is heterogeneous, and the symptoms vary among patients. Genome-wide association studies (GWAS) have identified genetic risk factors for LOAD but not for LOAD subtypes. Here, we examined the genetic architecture of LOAD based on Japanese GWAS data from 1947 patients and 2192 cognitively normal controls in a discovery cohort and 847 patients and 2298 controls in an independent validation cohort. Two distinct groups of LOAD patients were identified. One was characterized by major risk genes for developing LOAD (APOC1 and APOC1P1) and immune-related genes (RELB and CBLC). The other was characterized by genes associated with kidney disorders (AXDND1, FBP1, and MIR2278). Subsequent analysis of albumin and hemoglobin values from routine blood test results suggested that impaired kidney function could lead to LOAD pathogenesis. We developed a prediction model for LOAD subtypes using a deep neural network, which achieved an accuracy of 0.694 (2870/4137) in the discovery cohort and 0.687 (2162/3145) in the validation cohort. These findings provide new insights into the pathogenic mechanisms of LOAD.
Collapse
Affiliation(s)
- Daichi Shigemizu
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan.
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| | - Shintaro Akiyama
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Mutsumi Suganuma
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Motoki Furutani
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Akiko Yamakawa
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| |
Collapse
|
25
|
Li Y, An S, Zhou T, Su C, Zhang S, Li C, Jiang J, Mu Y, Yao N, Huang ZG, Alzheimer’s Disease Neuroimaging Initiative. Triple-network analysis of Alzheimer's disease based on the energy landscape. Front Neurosci 2023; 17:1171549. [PMID: 37287802 PMCID: PMC10242117 DOI: 10.3389/fnins.2023.1171549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Research on the brain activity during resting state has found that brain activation is centered around three networks, including the default mode network (DMN), the salient network (SN), and the central executive network (CEN), and switches between multiple modes. As a common disease in the elderly, Alzheimer's disease (AD) affects the state transitions of functional networks in the resting state. Methods Energy landscape, as a new method, can intuitively and quickly grasp the statistical distribution of system states and information related to state transition mechanisms. Therefore, this study mainly uses the energy landscape method to study the changes of the triple-network brain dynamics in AD patients in the resting state. Results AD brain activity patterns are in an abnormal state, and the dynamics of patients with AD tend to be unstable, with an unusually high flexibility in switching between states. Also , the subjects' dynamic features are correlated with clinical index. Discussion The atypical balance of large-scale brain systems in patients with AD is associated with abnormally active brain dynamics. Our study are helpful for further understanding the intrinsic dynamic characteristics and pathological mechanism of the resting-state brain in AD patients.
Collapse
Affiliation(s)
- Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Simeng An
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tianlin Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Siping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chenxi Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an, Shaanxi, China
| | - Junjie Jiang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yunfeng Mu
- Department of Gynecological Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Nan Yao
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Department of Applied Physics, Xi'an University of Technology, Xi'an, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
- Research Center for Brain-inspired Intelligence, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- The State Key Laboratory of Congnitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | |
Collapse
|
26
|
Gupta D, Du X, Summerfelt A, Hong LE, Choa FS. Brain Connectivity Signature Extractions from TMS Invoked EEGs. SENSORS (BASEL, SWITZERLAND) 2023; 23:4078. [PMID: 37112420 PMCID: PMC10146617 DOI: 10.3390/s23084078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
(1) Background: The correlations between brain connectivity abnormality and psychiatric disorders have been continuously investigated and progressively recognized. Brain connectivity signatures are becoming exceedingly useful for identifying patients, monitoring mental health disorders, and treatment. By using electroencephalography (EEG)-based cortical source localization along with energy landscape analysis techniques, we can statistically analyze transcranial magnetic stimulation (TMS)-invoked EEG signals, for obtaining connectivity among different brain regions at a high spatiotemporal resolution. (2) Methods: In this study, we analyze EEG-based source localized alpha wave activity in response to TMS administered to three locations, namely, the left motor cortex (49 subjects), left prefrontal cortex (27 subjects), and the posterior cerebellum, or vermis (27 subjects) by using energy landscape analysis techniques to uncover connectivity signatures. We then perform two sample t-tests and use the (5 × 10-5) Bonferroni corrected p-valued cases for reporting six reliably stable signatures. (3) Results: Vermis stimulation invoked the highest number of connectivity signatures and the left motor cortex stimulation invoked a sensorimotor network state. In total, six out of 29 reliable, stable connectivity signatures are found and discussed. (4) Conclusions: We extend previous findings to localized cortical connectivity signatures for medical applications that serve as a baseline for future dense electrode studies.
Collapse
Affiliation(s)
- Deepa Gupta
- Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21227, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Ann Summerfelt
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - L. Elliot Hong
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Fow-Sen Choa
- Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21227, USA
| |
Collapse
|
27
|
Clark KB. Neural Field Continuum Limits and the Structure-Function Partitioning of Cognitive-Emotional Brain Networks. BIOLOGY 2023; 12:352. [PMID: 36979044 PMCID: PMC10045557 DOI: 10.3390/biology12030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023]
Abstract
In The cognitive-emotional brain, Pessoa overlooks continuum effects on nonlinear brain network connectivity by eschewing neural field theories and physiologically derived constructs representative of neuronal plasticity. The absence of this content, which is so very important for understanding the dynamic structure-function embedding and partitioning of brains, diminishes the rich competitive and cooperative nature of neural networks and trivializes Pessoa's arguments, and similar arguments by other authors, on the phylogenetic and operational significance of an optimally integrated brain filled with variable-strength neural connections. Riemannian neuromanifolds, containing limit-imposing metaplastic Hebbian- and antiHebbian-type control variables, simulate scalable network behavior that is difficult to capture from the simpler graph-theoretic analysis preferred by Pessoa and other neuroscientists. Field theories suggest the partitioning and performance benefits of embedded cognitive-emotional networks that optimally evolve between exotic classical and quantum computational phases, where matrix singularities and condensations produce degenerate structure-function homogeneities unrealistic of healthy brains. Some network partitioning, as opposed to unconstrained embeddedness, is thus required for effective execution of cognitive-emotional network functions and, in our new era of neuroscience, should be considered a critical aspect of proper brain organization and operation.
Collapse
Affiliation(s)
- Kevin B. Clark
- Cures Within Reach, Chicago, IL 60602, USA;
- Felidae Conservation Fund, Mill Valley, CA 94941, USA
- Campus and Domain Champions Program, Multi-Tier Assistance, Training, and Computational Help (MATCH) Track, National Science Foundation’s Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS), https://access-ci.org/
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Network for Life Detection (NfoLD), NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Multi-Omics and Systems Biology & Artificial Intelligence and Machine Learning Analysis Working Groups, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- Frontier Development Lab, NASA Ames Research Center, Mountain View, CA 94035, USA & SETI Institute, Mountain View, CA 94043, USA
- Peace Innovation Institute, The Hague 2511, Netherlands & Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016, USA
| |
Collapse
|
28
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528836. [PMID: 36824821 PMCID: PMC9948985 DOI: 10.1101/2023.02.16.528836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activity between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC well aligns with the observed FC when compared to that simulated with traditional structural connectome. Simulations were performed using the open source framework The Virtual Brain on High Performance Computing infrastructure.
Collapse
|
29
|
Varanasi S, Tuli R, Han F, Chen R, Choa FS. Age Related Functional Connectivity Signature Extraction Using Energy-Based Machine Learning Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031603. [PMID: 36772649 PMCID: PMC9920122 DOI: 10.3390/s23031603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 05/14/2023]
Abstract
The study of brain connectivity plays an important role in understanding the functional organizations of the brain. It also helps to identify connectivity signatures that can be used for evaluating neural disorders and monitoring treatment efficacy. In this work, age-related changes in brain connectivity are studied to obtain aging signatures based on various modeling techniques. These include an energy-based machine learning technique to identify brain network interaction differences between two age groups with a large (30 years) age gap between them. Disconnectivity graphs and activation maps of the seven prominent resting-state networks (RSN) were obtained from functional MRI data of old and young adult subjects. Two-sample t-tests were performed on the local minimums with Bonferroni correction to control the family-wise error rate. These local minimums are connectivity states showing not only which brain regions but also how strong they are working together. They work as aging signatures that can be used to differentiate young and old groups. We found that the attention network's connectivity signature is a state with all the regions working together and young subjects have a stronger average connectivity among these regions. We have also found a common pattern between young and old subjects where the left and right brain regions of the frontal network are sometimes working separately instead of together. In summary, in this work, we combined machine learning and statistical approaches to extract connectivity signatures, which can be utilized to distinguish aging brains and monitor possible treatment efficacy.
Collapse
Affiliation(s)
- Sravani Varanasi
- Department of Electrical Engineering and Computer Science, University of Maryland Baltimore County, Baltimore, MD 21250, USA
- Correspondence:
| | - Roopan Tuli
- Department of Electrical Engineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Fei Han
- The Hilltop Institute, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Fow-Sen Choa
- Department of Electrical Engineering and Computer Science, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|
30
|
Fan L, Li C, Huang ZG, Zhao J, Wu X, Liu T, Li Y, Wang J. The longitudinal neural dynamics changes of whole brain connectome during natural recovery from poststroke aphasia. NEUROIMAGE: CLINICAL 2022; 36:103190. [PMID: 36174256 PMCID: PMC9668607 DOI: 10.1016/j.nicl.2022.103190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/24/2022] [Accepted: 09/08/2022] [Indexed: 12/14/2022] Open
Abstract
Poststroke aphasia is one of the most dramatic functional deficits that results from direct damage of focal brain regions and dysfunction of large-scale brain networks. The reconstruction of language function depends on the hierarchical whole-brain dynamic reorganization. However, investigations into the longitudinal neural changes of large-scale brain networks for poststroke aphasia remain scarce. Here we characterize large-scale brain dynamics in left-frontal-stroke aphasia through energy landscape analysis. Using fMRI during an auditory comprehension task, we find that aphasia patients suffer serious whole-brain dynamics perturbation in the acute and subacute stages after stroke, in which the brains were restricted into two major activity patterns. Following spontaneous recovery process, the brain flexibility improved in the chronic stage. Critically, we demonstrated that the abnormal neural dynamics are correlated with the aberrant brain network coordination. Taken together, the energy landscape analysis exhibited that the acute poststroke aphasia has a constrained, low dimensional brain dynamics, which were replaced by less constrained and high dimensional dynamics at chronic aphasia. Our study provides a new perspective to profoundly understand the pathological mechanisms of poststroke aphasia.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Chenxi Li
- Department of the Psychology of Military Medicine, Air Force Medical University, Xi’an, Shaanxi 710032, PR China
| | - Zi-gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Jie Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, PR China,National Engineering Research Center of Health Care and Medical Devices. Guangzhou, Guangdong 510500, PR China,The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, Shaanxi 710049, PR China,Corresponding authors at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Biomedical Engineering, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, PR China.
| |
Collapse
|
31
|
Matsui T, Yamashita KI. Static and Dynamic Functional Connectivity Alterations in Alzheimer's Disease and Neuropsychiatric Diseases. Brain Connect 2022. [PMID: 35994384 DOI: 10.1089/brain.2022.0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, numerous studies have documented various alterations in resting brain activity in Alzheimer's disease (AD) and other neuropsychiatric diseases. In particular, disease-related alterations of functional connectivity (FC) in the resting state networks (RSN) have been documented. Altered FC in RSN is useful not only for interpreting the phenotype of diseases but also for diagnosing the diseases. More recently, several studies proposed the dynamics of resting-brain activity as a useful marker for detecting altered RSNs related to AD and other diseases. In contrast to previous studies, which focused on FC calculated using an entire fMRI scan (static FC), these newer studies focused the on temporal dynamics of FC within the scan (dynamic FC) to provide more sensitive measures to characterize RSNs. However, despite the increasing popularity of dFC, several studies cautioned that the results obtained in commonly used analyses for dFC require careful interpretation. In this mini-review, we review recent studies exploring alterations of static and dynamic functional connectivity in AD and other neuropsychiatric diseases. We then discuss how to utilize and interpret dFC for studying resting brain activity in diseases.
Collapse
Affiliation(s)
- Teppei Matsui
- Okayama University - Tsushima Campus, Tsushima-kita 1-1-1, Okayama, Japan, 700-8530;
| | | |
Collapse
|
32
|
Fortel I, Butler M, Korthauer LE, Zhan L, Ajilore O, Sidiropoulos A, Wu Y, Driscoll I, Schonfeld D, Leow A. Inferring excitation-inhibition dynamics using a maximum entropy model unifying brain structure and function. Netw Neurosci 2022; 6:420-444. [PMID: 35733430 PMCID: PMC9205431 DOI: 10.1162/netn_a_00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022] Open
Abstract
Neural activity coordinated across different scales from neuronal circuits to large-scale brain networks gives rise to complex cognitive functions. Bridging the gap between micro- and macroscale processes, we present a novel framework based on the maximum entropy model to infer a hybrid resting-state structural connectome, representing functional interactions constrained by structural connectivity. We demonstrate that the structurally informed network outperforms the unconstrained model in simulating brain dynamics, wherein by constraining the inference model with the network structure we may improve the estimation of pairwise BOLD signal interactions. Further, we simulate brain network dynamics using Monte Carlo simulations with the new hybrid connectome to probe connectome-level differences in excitation-inhibition balance between apolipoprotein E (APOE)-ε4 carriers and noncarriers. Our results reveal sex differences among APOE-ε4 carriers in functional dynamics at criticality; specifically, female carriers appear to exhibit a lower tolerance to network disruptions resulting from increased excitatory interactions. In sum, the new multimodal network explored here enables analysis of brain dynamics through the integration of structure and function, providing insight into the complex interactions underlying neural activity such as the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mitchell Butler
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Laura E. Korthauer
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yichao Wu
- Department of Math, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin–Milwaukee, Milwaukee, WI, USA
| | - Dan Schonfeld
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Alex Leow
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Kondo HM, Terashima H, Ezaki T, Kochiyama T, Kihara K, Kawahara JI. Dynamic Transitions Between Brain States Predict Auditory Attentional Fluctuations. Front Neurosci 2022; 16:816735. [PMID: 35368290 PMCID: PMC8972573 DOI: 10.3389/fnins.2022.816735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Achievement of task performance is required to maintain a constant level of attention. Attentional level fluctuates over the course of daily activities. However, brain dynamics leading to attentional fluctuation are still unknown. We investigated the underlying mechanisms of sustained attention using functional magnetic resonance imaging (fMRI). Participants were scanned with fMRI while performing an auditory, gradual-onset, continuous performance task (gradCPT). In this task, narrations gradually changed from one to the next. Participants pressed a button for frequent Go trials (i.e., male voices) as quickly as possible and withheld responses to infrequent No-go trials (i.e., female voices). Event-related analysis revealed that frontal and temporal areas, including the auditory cortex, were activated during successful and unsuccessful inhibition of predominant responses. Reaction-time (RT) variability throughout the auditory gradCPT was positively correlated with signal changes in regions of the dorsal attention network: superior frontal gyrus and superior parietal lobule. Energy landscape analysis showed that task-related activations could be clustered into different attractors: regions of the dorsal attention network and default mode network. The number of alternations between RT-stable and erratic periods increased with an increase in transitions between attractors in the brain. Therefore, we conclude that dynamic transitions between brain states are closely linked to auditory attentional fluctuations.
Collapse
Affiliation(s)
- Hirohito M. Kondo
- School of Psychology, Chukyo University, Nagoya, Japan
- *Correspondence: Hirohito M. Kondo,
| | - Hiroki Terashima
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Japan
| | - Takahiro Ezaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Ken Kihara
- Department of Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Jun I. Kawahara
- Department of Psychology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
34
|
Yuan J, Ji S, Luo L, Lv J, Liu T. Control energy assessment of spatial interactions among
macro‐scale
brain networks. Hum Brain Mapp 2022; 43:2181-2203. [PMID: 35072300 PMCID: PMC8996365 DOI: 10.1002/hbm.25780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Many recent studies have revealed that spatial interactions of functional brain networks derived from fMRI data can well model functional connectomes of the human brain. However, it has been rarely explored what the energy consumption characteristics are for such spatial interactions of macro‐scale functional networks, which remains crucial for the understanding of brain organization, behavior, and dynamics. To explore this unanswered question, this article presents a novel framework for quantitative assessment of energy consumptions of macro‐scale functional brain network's spatial interactions via two main effective computational methodologies. First, we designed a novel scheme combining dictionary learning and hierarchical clustering to derive macro‐scale consistent brain network templates that can be used to define a common reference space for brain network interactions and energy assessments. Second, the control energy consumption for driving the brain networks during their spatial interactions is computed from the viewpoint of the linear network control theory. Especially, the energetically favorable brain networks were identified and their energy characteristics were comprehensively analyzed. Experimental results on the Human Connectome Project (HCP) task‐based fMRI (tfMRI) data showed that the proposed methods can reveal meaningful, diverse energy consumption patterns of macro‐scale network interactions. In particular, those networks present remarkable differences in energy consumption. The energetically least favorable brain networks are stable and consistent across HCP tasks such as motor, language, social, and working memory tasks. In general, our framework provides a new perspective to characterize human brain functional connectomes by quantitative assessment for the energy consumption of spatial interactions of macro‐scale brain networks.
Collapse
Affiliation(s)
- Jing Yuan
- College of Artificial Intelligence Nankai University Tianjin China
| | - Senquan Ji
- College of Artificial Intelligence Nankai University Tianjin China
| | - Liao Luo
- College of Artificial Intelligence Nankai University Tianjin China
| | - Jinglei Lv
- School of Biomedical Engineering The University of Sydney Sydney New South Wales Australia
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Laboratory, Department of Computer Science and Bioimaging Research Center The University of Georgia Athens Georgia USA
| |
Collapse
|
35
|
Shen Y, Olson ER, Van Deelen TR. Spatially explicit modeling of community occupancy using Markov Random Field models with imperfect observation: Mesocarnivores in Apostle Islands National Lakeshore. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2021.109712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Watanabe T. Causal roles of prefrontal cortex during spontaneous perceptual switching are determined by brain state dynamics. eLife 2021; 10:69079. [PMID: 34713803 PMCID: PMC8631941 DOI: 10.7554/elife.69079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
The prefrontal cortex (PFC) is thought to orchestrate cognitive dynamics. However, in tests of bistable visual perception, no direct evidence supporting such presumable causal roles of the PFC has been reported except for a recent work. Here, using a novel brain-state-dependent neural stimulation system, we identified causal effects on percept dynamics in three PFC activities—right frontal eye fields, dorsolateral PFC (DLPFC), and inferior frontal cortex (IFC). The causality is behaviourally detectable only when we track brain state dynamics and modulate the PFC activity in brain-state-/state-history-dependent manners. The behavioural effects are underpinned by transient neural changes in the brain state dynamics, and such neural effects are quantitatively explainable by structural transformations of the hypothetical energy landscapes. Moreover, these findings indicate distinct functions of the three PFC areas: in particular, the DLPFC enhances the integration of two PFC-active brain states, whereas IFC promotes the functional segregation between them. This work resolves the controversy over the PFC roles in spontaneous perceptual switching and underlines brain state dynamics in fine investigations of brain-behaviour causality. A cube that seems to shift its spatial arrangement as you keep looking; the elegant silhouette of a pirouetting dancer, which starts to spin in the opposite direction the more you stare at it; an illustration that shows two profiles – or is it a vase? These optical illusions are examples of bistable visual perception. Beyond their entertaining aspect, they provide a way for scientists to explore the dynamics of human consciousness, and the neural regions involved in this process. Some studies show that bistable visual perception is associated with the activation of the prefrontal cortex, a brain area involved in complex cognitive processes. However, it is unclear whether this region is required for the illusions to emerge. Some research has showed that even if sections of the prefrontal cortex are temporally deactivated, participants can still experience the illusions. Instead, Takamitsu Watanabe proposes that bistable visual perception is a process tied to dynamic brain states – that is, that distinct regions of the prefontal cortex are required for this fluctuating visual awareness, depending on the state of the whole brain. Such causal link cannot be observed if brain activity is not tracked closely. To investigate this, the brain states of 65 participants were recorded as individuals were experiencing the optical illusions; the activity of their various brain regions could therefore be mapped, and then areas of the prefrontal cortex could precisely be inhibited at the right time using transcranial magnetic stimulation. This revealed that, indeed, prefrontal cortex regions were necessary for bistable visual perception, but not in a simple way. Instead, which ones were required and when depended on activity dynamics taking place in the whole brain. Overall, these results indicate that monitoring brain states is necessary to better understand – and ultimately, control – the neural pathways underlying perception and behaviour.
Collapse
Affiliation(s)
- Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, Tokyo, Japan.,RIKEN Centre for Brain Science, Saitama, Japan
| |
Collapse
|
37
|
The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat Commun 2021; 12:6016. [PMID: 34650039 PMCID: PMC8516926 DOI: 10.1038/s41467-021-26268-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Models of cognitive function typically focus on the cerebral cortex and hence overlook functional links to subcortical structures. This view does not consider the role of the highly-conserved ascending arousal system's role and the computational capacities it provides the brain. We test the hypothesis that the ascending arousal system modulates cortical neural gain to alter the low-dimensional energy landscape of cortical dynamics. Here we use spontaneous functional magnetic resonance imaging data to study phasic bursts in both locus coeruleus and basal forebrain, demonstrating precise time-locked relationships between brainstem activity, low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves. We extend our analysis to a cohort of experienced meditators and demonstrate locus coeruleus-mediated network dynamics were associated with internal shifts in conscious awareness. Together, these results present a view of brain organization that highlights the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and conscious awareness.
Collapse
|
38
|
Klepl D, He F, Wu M, Marco MD, Blackburn DJ, Sarrigiannis PG. Characterising Alzheimer's Disease with EEG-based Energy Landscape Analysis. IEEE J Biomed Health Inform 2021; 26:992-1000. [PMID: 34406951 DOI: 10.1109/jbhi.2021.3105397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, with around 50 million patients worldwide. Accessible and non-invasive methods of diagnosing and characterising AD are therefore urgently required. Electroencephalography (EEG) fulfils these criteria and is often used when studying AD. Several features derived from EEG were shown to predict AD with high accuracy, e.g. signal complexity and synchronisation. However, the dynamics of how the brain transitions between stable states have not been properly studied in the case of AD and EEG. Energy landscape analysis is a method that can be used to quantify these dynamics. This work presents the first application of this method to both AD and EEG. Energy landscape assigns energy value to each possible state, i.e. pattern of activations across brain regions. The energy is inversely proportional to the probability of occurrence. By studying the features of energy landscapes of 20 AD patients and 20 age-matched healthy counterparts (HC), significant differences are found. The dynamics of AD patients' EEG are shown to be more constrained - with more local minima, less variation in basin size, and smaller basins. We show that energy landscapes can predict AD with high accuracy, performing significantly better than baseline models. Moreover, these findings are replicated in a separate dataset including 9 AD and 10 HC above 70 years old.
Collapse
|
39
|
Variable rather than extreme slow reaction times distinguish brain states during sustained attention. Sci Rep 2021; 11:14883. [PMID: 34290318 PMCID: PMC8295386 DOI: 10.1038/s41598-021-94161-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/07/2021] [Indexed: 02/03/2023] Open
Abstract
A common behavioral marker of optimal attention focus is faster responses or reduced response variability. Our previous study found two dominant brain states during sustained attention, and these states differed in their behavioral accuracy and reaction time (RT) variability. However, RT distributions are often positively skewed with a long tail (i.e., reflecting occasional slow responses). Therefore, a larger RT variance could also be explained by this long tail rather than the variance around an assumed normal distribution (i.e., reflecting pervasive response instability based on both faster and slower responses). Resolving this ambiguity is important for better understanding mechanisms of sustained attention. Here, using a large dataset of over 20,000 participants who performed a sustained attention task, we first demonstrated the utility of the exGuassian distribution that can decompose RTs into a strategy factor, a variance factor, and a long tail factor. We then investigated which factor(s) differed between the two brain states using fMRI. Across two independent datasets, results indicate unambiguously that the variance factor differs between the two dominant brain states. These findings indicate that ‘suboptimal’ is different from ‘slow’ at the behavior and neural level, and have implications for theoretically and methodologically guiding future sustained attention research.
Collapse
|
40
|
Ponce-Alvarez A, Uhrig L, Deco N, Signorelli CM, Kringelbach ML, Jarraya B, Deco G. Macroscopic Quantities of Collective Brain Activity during Wakefulness and Anesthesia. Cereb Cortex 2021; 32:298-311. [PMID: 34231843 DOI: 10.1093/cercor/bhab209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/18/2023] Open
Abstract
The study of states of arousal is key to understand the principles of consciousness. Yet, how different brain states emerge from the collective activity of brain regions remains unknown. Here, we studied the fMRI brain activity of monkeys during wakefulness and anesthesia-induced loss of consciousness. We showed that the coupling between each brain region and the rest of the cortex provides an efficient statistic to classify the two brain states. Based on this and other statistics, we estimated maximum entropy models to derive collective, macroscopic properties that quantify the system's capabilities to produce work, to contain information, and to transmit it, which were all maximized in the awake state. The differences in these properties were consistent with a phase transition from critical dynamics in the awake state to supercritical dynamics in the anesthetized state. Moreover, information-theoretic measures identified those parameters that impacted the most the network dynamics. We found that changes in the state of consciousness primarily depended on changes in network couplings of insular, cingulate, and parietal cortices. Our findings suggest that the brain state transition underlying the loss of consciousness is predominantly driven by the uncoupling of specific brain regions from the rest of the network.
Collapse
Affiliation(s)
- Adrián Ponce-Alvarez
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Lynn Uhrig
- Life Science Division, NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France
| | - Nikolas Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Camilo M Signorelli
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08005, Spain.,Life Science Division, NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France.,Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.,Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark.,Department of Neurosciences, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
| | - Béchir Jarraya
- Life Science Division, NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France.,UniCog, INSERM, Gif-sur-Yvette 91191, France.,Université Paris-Saclay, UVSQ, Versailles 78000, France.,Neuromodulation Unit, Foch Hospital, Suresnes 92150, France
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08005, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
41
|
Suzuki K, Nakaoka S, Fukuda S, Masuya H. Energy landscape analysis elucidates the multistability of ecological communities across environmental gradients. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenta Suzuki
- Integrated Bioresource Information Division BioResource Research Center RIKEN 3‐1‐1 Koyadai Tsukuba Ibaraki 305‐0074 Japan
| | - Shinji Nakaoka
- Laboratory of Mathematical Biology Faculty of Advanced Life Science Hokkaido University Kita‐10 Nishi‐8Kita‐ku Sapporo Hokkaido 060‐0819 Japan
- PRESTO Japan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
| | - Shinji Fukuda
- PRESTO Japan Science and Technology Agency 4‐1‐8 Honcho Kawaguchi Saitama 332‐0012 Japan
- Institute for Advanced Biosciences Keio University 246‐2 MizukamiKakuganji Tsuruoka Yamagata 997‐0052 Japan
- Intestinal Microbiota Project Kanagawa Institute of Industrial Science and Technology 3‐25‐13 TonomachiKawasaki‐ku Kawasaki Kanagawa 210‐0821 Japan
- Transborder Medical Research Center University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8575 Japan
| | - Hiroshi Masuya
- Integrated Bioresource Information Division BioResource Research Center RIKEN 3‐1‐1 Koyadai Tsukuba Ibaraki 305‐0074 Japan
| |
Collapse
|
42
|
Yamagata N, Ezaki T, Takahashi T, Wu H, Tanimoto H. Presynaptic inhibition of dopamine neurons controls optimistic bias. eLife 2021; 10:64907. [PMID: 34061730 PMCID: PMC8169112 DOI: 10.7554/elife.64907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/16/2021] [Indexed: 01/04/2023] Open
Abstract
Regulation of reward signaling in the brain is critical for appropriate judgement of the environment and self. In Drosophila, the protocerebral anterior medial (PAM) cluster dopamine neurons mediate reward signals. Here, we show that localized inhibitory input to the presynaptic terminals of the PAM neurons titrates olfactory reward memory and controls memory specificity. The inhibitory regulation was mediated by metabotropic gamma-aminobutyric acid (GABA) receptors clustered in presynaptic microdomain of the PAM boutons. Cell type-specific silencing the GABA receptors enhanced memory by augmenting internal reward signals. Strikingly, the disruption of GABA signaling reduced memory specificity to the rewarded odor by changing local odor representations in the presynaptic terminals of the PAM neurons. The inhibitory microcircuit of the dopamine neurons is thus crucial for both reward values and memory specificity. Maladaptive presynaptic regulation causes optimistic cognitive bias.
Collapse
Affiliation(s)
| | - Takahiro Ezaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | | | - Hongyang Wu
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
43
|
Kang J, Jeong S, Pae C, Park H. Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics. Hum Brain Mapp 2021; 42:3411-3428. [PMID: 33934421 PMCID: PMC8249903 DOI: 10.1002/hbm.25442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/24/2022] Open
Abstract
The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed‐effect group‐level analyses, using concatenated time series across individuals, due to the need for large samples in the parameter estimation of MEM. To mitigate the small sample problem in analyzing energy landscapes for individuals, we propose a Bayesian estimation of individual MEM using variational Bayes approximation (BMEM). We evaluated the performances of BMEM with respect to sample sizes and prior information using simulation. BMEM showed advantages over conventional maximum likelihood estimation in reliably estimating model parameters for individuals with small sample data, particularly utilizing the empirical priors derived from group data. We then analyzed individual rsfMRI of the Human Connectome Project to show the usefulness of MEM in differentiating individuals and in exploring neural correlates for human behavior. MEM and its energy landscape properties showed high subject specificity comparable to that of functional connectivity. Canonical correlation analysis identified canonical variables for MEM highly associated with cognitive scores. Inter‐individual variations of cognitive scores were also reflected in energy landscape properties such as energies, occupation times, and basin sizes at local minima. We conclude that BMEM provides an efficient method to characterize dynamic properties of individuals using energy landscape analysis of individual brain states.
Collapse
Affiliation(s)
- Jiyoung Kang
- Center for Systems and Translational Brain ScienceInstitute of Human Complexity and Systems Science, Yonsei UniversitySeoulSouth Korea
- Department of Nuclear Medicine, PsychiatryYonsei University College of MedicineSeoulSouth Korea
| | - Seok‐Oh Jeong
- Department of StatisticsHankuk University of Foreign StudiesYong‐In, SeoulSouth Korea
| | - Chongwon Pae
- Center for Systems and Translational Brain ScienceInstitute of Human Complexity and Systems Science, Yonsei UniversitySeoulSouth Korea
- Department of Nuclear Medicine, PsychiatryYonsei University College of MedicineSeoulSouth Korea
| | - Hae‐Jeong Park
- Center for Systems and Translational Brain ScienceInstitute of Human Complexity and Systems Science, Yonsei UniversitySeoulSouth Korea
- Department of Nuclear Medicine, PsychiatryYonsei University College of MedicineSeoulSouth Korea
- Graduate School of Medical Science, Brain Korea 21 ProjectYonsei University College of MedicineSeoulSouth Korea
| |
Collapse
|
44
|
Sase T, Kitajo K. The metastable brain associated with autistic-like traits of typically developing individuals. PLoS Comput Biol 2021; 17:e1008929. [PMID: 33861737 PMCID: PMC8081345 DOI: 10.1371/journal.pcbi.1008929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/28/2021] [Accepted: 03/31/2021] [Indexed: 12/03/2022] Open
Abstract
Metastability in the brain is thought to be a mechanism involved in the dynamic organization of cognitive and behavioral functions across multiple spatiotemporal scales. However, it is not clear how such organization is realized in underlying neural oscillations in a high-dimensional state space. It was shown that macroscopic oscillations often form phase-phase coupling (PPC) and phase-amplitude coupling (PAC), which result in synchronization and amplitude modulation, respectively, even without external stimuli. These oscillations can also make spontaneous transitions across synchronous states at rest. Using resting-state electroencephalographic signals and the autism-spectrum quotient scores acquired from healthy humans, we show experimental evidence that the PAC combined with PPC allows amplitude modulation to be transient, and that the metastable dynamics with this transient modulation is associated with autistic-like traits. In individuals with a longer attention span, such dynamics tended to show fewer transitions between states by forming delta-alpha PAC. We identified these states as two-dimensional metastable states that could share consistent patterns across individuals. Our findings suggest that the human brain dynamically organizes inter-individual differences in a hierarchy of macroscopic oscillations with multiple timescales by utilizing metastability. The human brain organizes cognitive and behavioral functions dynamically. For decades, the dynamic organization of underlying neural oscillations has been a fundamental topic in neuroscience research. Even without external stimuli, macroscopic oscillations often form phase-phase coupling and phase-amplitude coupling (PAC) that result in synchronization and amplitude modulation, respectively, and can make spontaneous transitions across synchronous states at rest. Using resting-state electroencephalography signals acquired from healthy humans, we show evidence that these two neural couplings enable amplitude modulation to be transient, and that this transient modulation can be viewed as the transition among oscillatory states with different PAC strengths. We also demonstrate that such transition dynamics are associated with the ability to maintain attention to detail and to switch attention, as measured by autism-spectrum quotient scores. These individual dynamics were visualized as a trajectory among states with attracting tendencies, and involved consistent brain states across individuals. Our findings have significant implications for unraveling the variability in the individual brains showing typical and atypical development.
Collapse
Affiliation(s)
- Takumi Sase
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (TS); (KK)
| | - Keiichi Kitajo
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- * E-mail: (TS); (KK)
| |
Collapse
|
45
|
Serra N, Di Carlo P, Rea T, Sergi CM. Diffusion modeling of COVID-19 under lockdown. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:041903. [PMID: 33897246 PMCID: PMC8060971 DOI: 10.1063/5.0044061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/16/2021] [Indexed: 05/26/2023]
Abstract
Viral immune evasion by sequence variation is a significant barrier to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine design and coronavirus disease-2019 diffusion under lockdown are unpredictable with subsequent waves. Our group has developed a computational model rooted in physics to address this challenge, aiming to predict the fitness landscape of SARS-CoV-2 diffusion using a variant of the bidimensional Ising model (2DIMV) connected seasonally. The 2DIMV works in a closed system composed of limited interaction subjects and conditioned by only temperature changes. Markov chain Monte Carlo method shows that an increase in temperature implicates reduced virus diffusion and increased mobility, leading to increased virus diffusion.
Collapse
Affiliation(s)
- Nicola Serra
- Departments of Public Health, University Federico II of Naples, 80131 Naples, Italy
| | - Paola Di Carlo
- Department of Health Promotion, Maternal-Childhood, Internal Medicine of Excellence “G. D'Alessandro,” PROMISE, University of Palermo, Palermo 90127, Italy
| | - Teresa Rea
- Departments of Public Health, University Federico II of Naples, 80131 Naples, Italy
| | - Consolato M. Sergi
- Pathology Laboratories, Children's Hospital of Eastern Ontario, University of Ottawa, 401 Smyth Rd., Ottawa, Ontario K1H 8L1, Canada
| |
Collapse
|
46
|
Ashourvan A, Shah P, Pines A, Gu S, Lynn CW, Bassett DS, Davis KA, Litt B. Pairwise maximum entropy model explains the role of white matter structure in shaping emergent co-activation states. Commun Biol 2021; 4:210. [PMID: 33594239 PMCID: PMC7887247 DOI: 10.1038/s42003-021-01700-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
A major challenge in neuroscience is determining a quantitative relationship between the brain's white matter structural connectivity and emergent activity. We seek to uncover the intrinsic relationship among brain regions fundamental to their functional activity by constructing a pairwise maximum entropy model (MEM) of the inter-ictal activation patterns of five patients with medically refractory epilepsy over an average of ~14 hours of band-passed intracranial EEG (iEEG) recordings per patient. We find that the pairwise MEM accurately predicts iEEG electrodes' activation patterns' probability and their pairwise correlations. We demonstrate that the estimated pairwise MEM's interaction weights predict structural connectivity and its strength over several frequencies significantly beyond what is expected based solely on sampled regions' distance in most patients. Together, the pairwise MEM offers a framework for explaining iEEG functional connectivity and provides insight into how the brain's structural connectome gives rise to large-scale activation patterns by promoting co-activation between connected structures.
Collapse
Affiliation(s)
- Arian Ashourvan
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Preya Shah
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Pines
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Shi Gu
- Department of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Christopher W Lynn
- Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Saberi M, Khosrowabadi R, Khatibi A, Misic B, Jafari G. Topological impact of negative links on the stability of resting-state brain network. Sci Rep 2021; 11:2176. [PMID: 33500525 PMCID: PMC7838299 DOI: 10.1038/s41598-021-81767-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/12/2021] [Indexed: 11/08/2022] Open
Abstract
Stability is a physical attribute that stands opposite the change. However, it is still unclear how the arrangement of links called topology affects network stability. In this study, we tackled this issue in the resting-state brain network using structural balance. Structural balance theory employs the quality of triadic associations between signed links to determine the network stability. In this study, we showed that negative links of the resting-state network make hubs to reduce balance-energy and push the network into a more stable state compared to null-networks with trivial topologies. In this regard, we created a global measure entitled 'tendency to make hub' to assess the hubness of the network. Besides, we revealed nodal degrees of negative links have an exponential distribution that confirms the existence of negative hubs. Our findings indicate that the arrangement of negative links plays an important role in the balance (stability) of the resting-state brain network.
Collapse
Affiliation(s)
- Majid Saberi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran.
| | - Ali Khatibi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Gholamreza Jafari
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, G.C., Evin Sq., Tehran, 19839-63113, Iran
- Physics Department, Shahid Beheshti University, G.C., Tehran, 1983969411, Iran
| |
Collapse
|
48
|
Regonia PR, Takamura M, Nakano T, Ichikawa N, Fermin A, Okada G, Okamoto Y, Yamawaki S, Ikeda K, Yoshimoto J. Modeling Heterogeneous Brain Dynamics of Depression and Melancholia Using Energy Landscape Analysis. Front Psychiatry 2021; 12:780997. [PMID: 34899435 PMCID: PMC8656401 DOI: 10.3389/fpsyt.2021.780997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Our current understanding of melancholic depression is shaped by its position in the depression spectrum. The lack of consensus on how it should be treated-whether as a subtype of depression, or as a distinct disorder altogethe-interferes with the recovery of suffering patients. In this study, we analyzed brain state energy landscape models of melancholic depression, in contrast to healthy and non-melancholic energy landscapes. Our analyses showed significant group differences on basin energy, basin frequency, and transition dynamics in several functional brain networks such as basal ganglia, dorsal default mode, and left executive control networks. Furthermore, we found evidences suggesting the connection between energy landscape characteristics (basin characteristics) and depressive symptom scores (BDI-II and SHAPS). These results indicate that melancholic depression is distinguishable from its non-melancholic counterpart, not only in terms of depression severity, but also in brain dynamics.
Collapse
Affiliation(s)
- Paul Rossener Regonia
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.,Department of Computer Science, College of Engineering, University of the Philippines Diliman, Quezon City, Philippines
| | - Masahiro Takamura
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan.,Department of Neurology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Takashi Nakano
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.,School of Medicine, Fujita Health University, Toyoake, Japan
| | - Naho Ichikawa
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan
| | - Alan Fermin
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan
| | - Go Okada
- Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Yasumasa Okamoto
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan.,Department of Psychiatry and Neurosciences, Hiroshima University, Hiroshima, Japan
| | - Shigeto Yamawaki
- Center for Brain, Mind and KANSEI Research Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazushi Ikeda
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Junichiro Yoshimoto
- Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
49
|
Zheng X, Luo J, Deng L, Li B, Li L, Huang DF, Song R. Detection of functional connectivity in the brain during visuo-guided grip force tracking tasks: A functional near-infrared spectroscopy study. J Neurosci Res 2020; 99:1108-1119. [PMID: 33368535 DOI: 10.1002/jnr.24769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022]
Abstract
The functional connectivity (FC) between multiple brain regions during tasks is currently gradually being explored with functional near-infrared spectroscopy (fNIRS). However, the FC present during grip force tracking tasks performed under visual feedback remains unclear. In the present study, we used fNIRS to measure brain activity during resting states and grip force tracking tasks at 25%, 50%, and 75% of maximum voluntary contraction (MVC) in 11 healthy subjects, and the activity was measured from four target brain regions: the left prefrontal cortex (lPFC), right prefrontal cortex (rPFC), left sensorimotor cortex (lSMC), and right sensorimotor cortex (rSMC). We determined the FC between these regions utilizing three different methods: Pearson's correlation method, partial correlation method, and a pairwise maximum entropy model (MEM). The results showed that the FC of lSMC-rSMC and lPFC-rPFC (interhemispheric homologous pairs) were significantly stronger than those of other brain region pairs. Moreover, FC of lPFC-rPFC was strengthened during the 75% MVC task compared to the other task states and the resting states. The FC of lSMC-lPFC and rSMC-rPFC (intrahemispheric region pairs) strengthened with a higher task load. The results provided new insights into the FC between brain regions during visuo-guided grip force tracking tasks.
Collapse
Affiliation(s)
- Xinyi Zheng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jie Luo
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Lingyun Deng
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Bing Li
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dong Feng Huang
- Guangdong Engineering Technology Research Center for Rehabilitation Medicine and Clinical Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Xinhua College, Sun Yat-sen University, Guangzhou, China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
50
|
Fortel I, Korthauer LE, Morrissey Z, Zhan L, Ajilore O, Wolfson O, Driscoll I, Schonfeld D, Leow A. Connectome Signatures of Hyperexcitation in Cognitively Intact Middle-Aged Female APOE-ε4 Carriers. Cereb Cortex 2020; 30:6350-6362. [PMID: 32662517 PMCID: PMC7609923 DOI: 10.1093/cercor/bhaa190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022] Open
Abstract
Synaptic dysfunction is hypothesized to be one of the earliest brain changes in Alzheimer's disease, leading to "hyperexcitability" in neuronal circuits. In this study, we evaluated a novel hyperexcitation indicator (HI) for each brain region using a hybrid resting-state structural connectome to probe connectome-level excitation-inhibition balance in cognitively intact middle-aged apolipoprotein E (APOE) ε4 carriers with noncarriers (16 male/22 female in each group). Regression with three-way interactions (sex, age, and APOE-ε4 carrier status) to assess the effect of APOE-ε4 on excitation-inhibition balance within each sex and across an age range of 40-60 years yielded a significant shift toward higher HI in female carriers compared with noncarriers (beginning at 50 years). Hyperexcitation was insignificant in the male group. Further, in female carriers the degree of hyperexcitation exhibited significant positive correlation with working memory performance (evaluated via a virtual Morris Water task) in three regions: the left pars triangularis, left hippocampus, and left isthmus of cingulate gyrus. Increased excitation of memory-related circuits may be evidence of compensatory recruitment of neuronal resources for memory-focused activities. In sum, our results are consistent with known Alzheimer's disease sex differences; in that female APOE-ε4 carriers have globally disrupted excitation-inhibition balance that may confer greater vulnerability to disease neuropathology.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Laura E Korthauer
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Zachery Morrissey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ouri Wolfson
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Dan Schonfeld
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 USA
| | - Alex Leow
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|