1
|
Lin KH, Ranjan M, Lipstein N, Brose N, Neher E, Taschenberger H. Number and relative abundance of synaptic vesicles in functionally distinct priming states determine synaptic strength and short-term plasticity. J Physiol 2025. [PMID: 40120134 DOI: 10.1113/jp286282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Heterogeneity in synaptic strength and short-term plasticity (STP) was characterized in post-hearing rat calyx of Held synapses at near-physiological external [Ca2+] under control conditions and after experimentally induced synaptic potentiation. Kinetic modelling was combined with non-negative tensor factorization (NTF) to separate changes in synaptic vesicle (SV) priming kinetics from those in SV fusion probability (pfu sion). Heterogeneous synaptic strength and STP under control conditions can be fully accounted for by assuming a uniform pfusion among calyx synapses yet profound synapse-to-synapse variation in the resting equilibrium of SVs in functionally distinct priming states. Although synaptic potentiation induced by either elevated resting [Ca2+]i, elevated external [Ca2+] or stimulation of the diacylglycerol (DAG) signalling pathway leads to seemingly similar changes, that is, stronger synapses with less facilitation and more pronounced depression, the underlying mechanisms are different. Specifically, synaptic potentiation induced by the DAG mimetic and Munc13/PKC activator phorbol 12,13-dibutyrate (PDBu) only moderately enhances pfusion but strongly increases the abundance of fusion-competent maturely primed SVs, demonstrating that the dynamic equilibrium of differentially primed SVs critically determines synaptic strength and STP. Activation of the DAG pathway not only stimulates priming at resting [Ca2+]i but further promotes SV pool replenishment at elevated [Ca2+]i following pool-depleting stimulus trains. A two-step priming and fusion scheme which recapitulates the sequential build-up of the molecular SV fusion machinery is capable of reproducing experimentally induced changes in synaptic strength and STP in numerical simulations with a small number of plausible model parameter changes. KEY POINTS: A relatively simple two-step synaptic vesicle (SV) priming and fusion scheme is capable of reproducing experimentally induced changes in synaptic strength and short-term plasticity with a small number of plausible parameter changes. The combination of non-negative tensor factorization (NTF)-decomposition analysis and state modelling allows one to separate experimentally induced changes in SV priming kinetics from those in SV fusion probability. A relatively low sensitivity of the SV priming equilibrium to changes in resting [Ca2+]i suggests that the amplitude of the 'effective' action potential (AP)-induced Ca2+ transient is quite large, likely representing contributions of global and local Ca2+ signals. Enhanced synaptic strength and stronger depression after stimulation of the diacylglycerol (DAG) signalling pathway is primarily caused by enhanced SV priming, leading to increased abundance of maturely primed SVs at rest with comparably small changes in SV fusion probability. Application of DAG mimetics enhances the Ca2+-dependent acceleration of SV priming causing a faster recovery of synaptic strength after pool-depleting stimuli.
Collapse
Affiliation(s)
- Kun-Han Lin
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mrinalini Ranjan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Graduate School for Neurosciences, Biophysics, and Molecular Biosciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Erwin Neher
- Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
2
|
Fesce R. Old innovations and shifted paradigms in cellular neuroscience. Front Cell Neurosci 2024; 18:1460219. [PMID: 39234031 PMCID: PMC11371623 DOI: 10.3389/fncel.2024.1460219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Once upon a time the statistics of quantal release were fashionable: "n" available vesicles (fusion sites), each with probability "p" of releasing a quantum. The story was not so simple, a nice paradigm to be abandoned. Biophysicists, experimenting with "black films," explained the astonishing rapidity of spike-induced release: calcium can trigger the fusion of lipidic vesicles with a lipid bilayer, by masking the negative charges of the membranes. The idea passed away, buried by the discovery of NSF, SNAPs, SNARE proteins and synaptotagmin, Munc, RIM, complexin. Electrophysiology used to be a field for few adepts. Then came patch clamp, and multielectrode arrays and everybody became electrophysiologists. Now, optogenetics have blossomed, and the whole field has changed again. Nice surprise for me, when Alvarez de Toledo demonstrated that release of transmitters could occur through the transient opening of a pore between the vesicle and the plasma-membrane, no collapse of the vesicle in the membrane needed: my mentor Bruno Ceccarelli had cherished this idea ("kiss and run") and tried to prove it for 20 years. The most impressive developments have probably regarded IT, computers and all their applications; machine learning, AI, and the truly spectacular innovations in brain imaging, especially functional ones, have transformed cognitive neurosciences into a new extraordinarily prolific field, and certainly let us imagine that we may finally understand what is going on in our brains. Cellular neuroscience, on the other hand, though the large public has been much less aware of the incredible amount of information the scientific community has acquired on the cellular aspects of neuronal function, may indeed help us to eventually understand the mechanistic detail of how the brain work. But this is no more in the past, this is the future.
Collapse
Affiliation(s)
- Riccardo Fesce
- Department of Biomedical Sciences, Humanitas University Medical School, Pieve Emanuele, Italy
| |
Collapse
|
3
|
Bukharaeva EA, Skorinkin AI, Samigullin DV, Petrov AM. Presynaptic Acetylcholine Receptors Modulate the Time Course of Action Potential-Evoked Acetylcholine Quanta Secretion at Neuromuscular Junctions. Biomedicines 2022; 10:biomedicines10081771. [PMID: 35892671 PMCID: PMC9332499 DOI: 10.3390/biomedicines10081771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
For effective transmission of excitation in neuromuscular junctions, the postsynaptic response amplitude must exceed a critical level of depolarization to trigger action potential spreading along the muscle-fiber membrane. At the presynaptic level, the end-plate potential amplitude depends not only on the acetylcholine quanta number released from the nerve terminals in response to the nerve impulse but also on a degree of synchronicity of quanta releases. The time course of stimulus-phasic synchronous quanta secretion is modulated by many extra- and intracellular factors. One of the pathways to regulate the neurosecretion kinetics of acetylcholine quanta is an activation of presynaptic autoreceptors. This review discusses the contribution of acetylcholine presynaptic receptors to the control of the kinetics of evoked acetylcholine release from nerve terminals at the neuromuscular junctions. The timing characteristics of neurotransmitter release is nowadays considered an essential factor determining the plasticity and efficacy of synaptic transmission.
Collapse
Affiliation(s)
- Ellya A. Bukharaeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Correspondence:
| | - Andrey I. Skorinkin
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
| | - Dmitry V. Samigullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University named after A.N. Tupolev, 420111 Kazan, Russia
| | - Alexey M. Petrov
- Kazan Institute of Biochemistry and Biophysics, Kazan Federal Scientific Centre “Kazan Scientific Centre of Russian Academy of Sciences”, 2/31 Lobatchevsky Street, 420111 Kazan, Russia; (A.I.S.); (D.V.S.); (A.M.P.)
- Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
| |
Collapse
|
4
|
Function of Drosophila Synaptotagmins in membrane trafficking at synapses. Cell Mol Life Sci 2021; 78:4335-4364. [PMID: 33619613 PMCID: PMC8164606 DOI: 10.1007/s00018-021-03788-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
The Synaptotagmin (SYT) family of proteins play key roles in regulating membrane trafficking at neuronal synapses. Using both Ca2+-dependent and Ca2+-independent interactions, several SYT isoforms participate in synchronous and asynchronous fusion of synaptic vesicles (SVs) while preventing spontaneous release that occurs in the absence of stimulation. Changes in the function or abundance of the SYT1 and SYT7 isoforms alter the number and route by which SVs fuse at nerve terminals. Several SYT family members also regulate trafficking of other subcellular organelles at synapses, including dense core vesicles (DCV), exosomes, and postsynaptic vesicles. Although SYTs are linked to trafficking of multiple classes of synaptic membrane compartments, how and when they interact with lipids, the SNARE machinery and other release effectors are still being elucidated. Given mutations in the SYT family cause disorders in both the central and peripheral nervous system in humans, ongoing efforts are defining how these proteins regulate vesicle trafficking within distinct neuronal compartments. Here, we review the Drosophila SYT family and examine their role in synaptic communication. Studies in this invertebrate model have revealed key similarities and several differences with the predicted activity of their mammalian counterparts. In addition, we highlight the remaining areas of uncertainty in the field and describe outstanding questions on how the SYT family regulates membrane trafficking at nerve terminals.
Collapse
|
5
|
Guan Z, Quiñones-Frías MC, Akbergenova Y, Littleton JT. Drosophila Synaptotagmin 7 negatively regulates synaptic vesicle release and replenishment in a dosage-dependent manner. eLife 2020; 9:e55443. [PMID: 32343229 PMCID: PMC7224696 DOI: 10.7554/elife.55443] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 01/03/2023] Open
Abstract
Synchronous neurotransmitter release is triggered by Ca2+ binding to the synaptic vesicle protein Synaptotagmin 1, while asynchronous fusion and short-term facilitation is hypothesized to be mediated by plasma membrane-localized Synaptotagmin 7 (SYT7). We generated mutations in Drosophila Syt7 to determine if it plays a conserved role as the Ca2+ sensor for these processes. Electrophysiology and quantal imaging revealed evoked release was elevated 2-fold. Syt7 mutants also had a larger pool of readily-releasable vesicles, faster recovery following stimulation, and intact facilitation. Syt1/Syt7 double mutants displayed more release than Syt1 mutants alone, indicating SYT7 does not mediate the residual asynchronous release remaining in the absence of SYT1. SYT7 localizes to an internal membrane tubular network within the peri-active zone, but does not enrich at active zones. These findings indicate the two Ca2+ sensor model of SYT1 and SYT7 mediating all phases of neurotransmitter release and facilitation is not applicable at Drosophila synapses.
Collapse
Affiliation(s)
- Zhuo Guan
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Monica C Quiñones-Frías
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yulia Akbergenova
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
6
|
Kovyazina IV, Tsentsevitsky AN, Nikolsky EE. Presynaptic nicotinic cholinoreceptors modulate velocity of the action potential propagation along the motor nerve endings at a high-frequency synaptic activity. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2016; 468:115-7. [PMID: 27411821 DOI: 10.1134/s0012496616030133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/23/2022]
Abstract
Experiments on frog neuromuscular junctions have demonstrated that asynchrony of the acetylcholine quantal release forming the multi-quantal evoked response at high-frequency synaptic activity is caused, in particular, by a decrease in velocity of the action potential propagation along the non-myelinated nerve endings, which is mediated by activation of the α7 and α4β4 nicotinic cholinoreceptors.
Collapse
Affiliation(s)
- I V Kovyazina
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Tatarstan, Russia. .,Kazan Federal University, Kazan, Tatarstan, Russia.
| | - A N Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Tatarstan, Russia.,Kazan Federal University, Kazan, Tatarstan, Russia
| | - E E Nikolsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Tatarstan, Russia.,Kazan Federal University, Kazan, Tatarstan, Russia.,Kazan State Medical University, Kazan, Tatarstan, Russia
| |
Collapse
|
7
|
Saveliev A, Khuzakhmetova V, Samigullin D, Skorinkin A, Kovyazina I, Nikolsky E, Bukharaeva E. Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction. J Comput Neurosci 2015; 39:119-29. [PMID: 26129670 DOI: 10.1007/s10827-015-0567-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 11/29/2022]
Abstract
The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.
Collapse
Affiliation(s)
- Anatoly Saveliev
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia
| | - Venera Khuzakhmetova
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Dmitry Samigullin
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.,Kazan National Research Technical University named after A. N. Tupolev, K. Marx St. 10, Kazan, 420111, Russia
| | - Andrey Skorinkin
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Irina Kovyazina
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia
| | - Eugeny Nikolsky
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia.,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.,Kazan State Medical University, Butlerov St. 49, Kazan, 420012, Russia
| | - Ellya Bukharaeva
- Kazan Federal University, Kremlevskaya St. 18, Kazan, 420008, Russia. .,Laboratory of the Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan, 420111, Russia.
| |
Collapse
|
8
|
Tsentsevitsky A, Kovyazina I, Nikolsky E, Bukharaeva E, Giniatullin R. Redox-sensitive synchronizing action of adenosine on transmitter release at the neuromuscular junction. Neuroscience 2013; 248:699-707. [PMID: 23806718 DOI: 10.1016/j.neuroscience.2013.05.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/13/2013] [Accepted: 05/30/2013] [Indexed: 12/20/2022]
Abstract
The kinetics of neurotransmitter release was recognized recently as an important contributor to synaptic efficiency. Since adenosine is the ubiquitous modulator of presynaptic release in peripheral and central synapses, in the current project we studied the action of this purine on the timing of acetylcholine quantal release from motor nerve terminals in the skeletal muscle. Using extracellular recording from frog neuromuscular junction we tested the action of adenosine on the latencies of single quantal events in the pro-oxidant and antioxidant conditions. We found that adenosine, in addition to previously known inhibitory action on release probability, also synchronized release by removing quantal events with long latencies. This action of adenosine on release timing was abolished by oxidants whereas in the presence of the antioxidant the synchronizing action of adenosine was further enhanced. Interestingly, unlike the timing of release, the inhibitory action of adenosine on release probability was redox-independent. Modulation of release timing by adenosine was mediated by purinergic A1 receptors as it was eliminated by the specific A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by the specific A1 agonist N(6)-cyclopentyl-adenosine. Consistent with data obtained from dispersion of single quantal events, adenosine also reduced the rise-time of multiquantal synaptic currents. The latter effect was reproduced in the model based on synchronizing effect of adenosine on release timing. Thus, adenosine which is generated at the neuromuscular junction from the breakdown of the co-transmitter ATP induces the synchronization of quantal events. The effect of adenosine on release timing should preserve the fidelity of synaptic transmission via "cost-effective" use of less transmitter quanta. Our findings also revealed important crosstalk between purinergic and redox modulation of synaptic processes which could take place in the elderly or in neuromuscular diseases associated with oxidative stress like lateral amyotrophic sclerosis.
Collapse
Affiliation(s)
- A Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | | | | | | | | |
Collapse
|
9
|
Samigullin DV, Khuzakhmetova VF, Tsentsevitsky AN, Bukharaeva EA. Presynaptic receptors regulating the time course of neurotransmitter release from vertebrate nerve endings. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2012. [DOI: 10.1134/s1990747811060134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Bukharaeva EA, Nikolskii EE. Changes in the Kinetics of Evoked Secretion of Transmitter Quanta – an Effective Mechanism Modulating the Synaptic Transmission of Excitation. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11055-011-9548-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
11
|
Kovyazina IV, Tsentsevitsky AN, Nikolsky EE, Bukharaeva EA. Kinetics of acetylcholine quanta release at the neuromuscular junction during high-frequency nerve stimulation. Eur J Neurosci 2010; 32:1480-9. [DOI: 10.1111/j.1460-9568.2010.07430.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Scheuss V, Taschenberger H, Neher E. Kinetics of both synchronous and asynchronous quantal release during trains of action potential-evoked EPSCs at the rat calyx of Held. J Physiol 2007; 585:361-81. [PMID: 17916613 DOI: 10.1113/jphysiol.2007.140988] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We studied the kinetics of transmitter release during trains of action potential (AP)-evoked excitatory postsynaptic currents (EPSCs) at the calyx of Held synapse of juvenile rats. Using a new quantitative method based on a combination of ensemble fluctuation analysis and deconvolution, we were able to analyse mean quantal size (q) and release rate (xi) continuously in a time-resolved manner. Estimates derived this way agreed well with values of q and quantal content (M) calculated for each EPSC within the train from ensemble means of peak amplitudes and their variances. Separate analysis of synchronous and asynchronous quantal release during long stimulus trains (200 ms, 100 Hz) revealed that the latter component was highly variable among different synapses but it was unequivocally identified in 18 out of 37 synapses analysed. Peak rates of asynchronous release ranged from 0.2 to 15.2 vesicles ms(-1) (ves ms(-1)) with a mean of 2.3 +/- 0.6 ves ms(-1). On average, asynchronous release accounted for less than 14% of the total number of about 3670 +/- 350 vesicles released during 200 ms trains. Following such trains, asynchronous release decayed with several time constants, the fastest one being in the order of 15 ms. The short duration of asynchronous release at the calyx of Held synapse may aid in generating brief postsynaptic depolarizations, avoiding temporal summation and preserving action potential timing during high frequency bursts.
Collapse
Affiliation(s)
- V Scheuss
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
13
|
Awatramani GB, Boyd JD, Delaney KR, Murphy TH. Effective release rates at single rat Schaffer collateral-CA1 synapses during sustained theta-burst activity revealed by optical imaging. J Physiol 2007; 582:583-95. [PMID: 17463045 PMCID: PMC2075339 DOI: 10.1113/jphysiol.2007.130286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To understand how information is coded at single hippocampal synapses during high-frequency activity, we imaged NMDA receptor-mediated Ca(2+) responses in spines of CA1 neurons using two-photon microscopy. Although discrete quantal events were not readily apparent during continuous theta-burst stimulation (TBS), we found that the steady-state dendritic Ca(2+) response was spatially restricted (half-width < 1 microm), voltage dependent and sensitive to MK-801, indicating that that it was mediated by activation of NMDA receptors at single synapses. Partial antagonism of NMDA receptors caused a similar reduction of NMDA EPSCs (measured at the soma) and local dendritic Ca(2+) signals, suggesting that, like EPSCs, the steady-state Ca(2+) signal was made up of a linear addition of quantal events. Statistical analyses of the steady-response suggested that the quantal size did not change dramatically during TBS. Deconvolution of TBS-evoked Ca(2+) responses revealed a heterogeneous population of synapses differing in their capacity to signal high-frequency information, with an average effective steady-state release rate of approximately 2.6 vesicles synapse(-1)s(-1). To assess how the optically determined release rates compare with population measures we analysed the rate of decay of peak EPSCs during train stimulation. From these studies, we estimated a unitary vesicular replenishment rate of 0.02 s(-1), which corresponds to an average release rate of approximately 0.8-2 vesicles s(-1) at individual synapses. Additionally, extracellular recordings from single Schaffer collaterals revealed that spikes propagate reliably during TBS. Hence, during high-frequency activity, Schaffer collaterals conduct spikes with high fidelity, but release quanta with relatively lower efficiency, leaving NMDA receptor function largely intact and synapse specific. Heterogeneity in release rates between synapses suggests that similar patterns of presynaptic action potentials could trigger different forms of plasticity at individual synapses.
Collapse
Affiliation(s)
- G B Awatramani
- University of British Columbia, 2255 Wesbrook Mall, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
14
|
Sargsyan A, Melkonyan A, Mkrtchian H, Papatheodoropoulos C, Kostopoulos G. A computer model of field potential responses for the study of short-term plasticity in hippocampus. J Neurosci Methods 2004; 135:175-91. [PMID: 15020102 DOI: 10.1016/j.jneumeth.2003.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 12/08/2003] [Accepted: 12/17/2003] [Indexed: 01/21/2023]
Abstract
Activity-dependent synaptic plasticity has important implications for network function. The previously developed model of the hippocampal CA1 area, which contained pyramidal cells (PC) and two types of interneurons involved in feed-forward and recurrent inhibition, respectively, and received synaptic inputs from CA3 neurons via the Schaffer collaterals, was enhanced by incorporating dynamic synaptic connections capable of changing their weights depending on presynaptic activation history. The model output was presented as field potentials, which were compared with those derived experimentally. The parameters of Schaffer collateral-PC excitatory model synapse were determined, with which the model successfully reproduced the complicated dynamics of train-stimulation sequential potentiation/depression observed in experimentally recorded field responses. It was found that the model better reproduces the time course of experimental field potentials if the inhibitory synapses on PC are also made dynamic, with expressed properties of frequency-dependent depression. This finding supports experimental evidence that these synapses are subject to activity-dependent depression. The model field potentials in response to various randomly generated and real (derived from recorded CA3 unit activity) long stimulating trains were calculated, illustrating that short-term plasticity with the observed characteristics could play specific roles in frequency processing in hippocampus and thus providing a new tool for the theoretical study of activity-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Armen Sargsyan
- Neuronal Systems Mathematical Modelling Laboratory, Orbeli Institute of Physiology, Yerevan, Armenia
| | | | | | | | | |
Collapse
|
15
|
Abstract
Dual intracellular recordings from pairs of synaptically connected neurones have demonstrated that the frequency-dependent pattern of transmitter release varies dramatically between different classes of connections. Somewhat surprisingly, these patterns are not determined by the class of neurone supplying the axon alone, but to a large degree by the class of postsynaptic neurone. A wide range of presynaptic mechanisms, some that depress the release of transmitter and others that enhance release have been identified. It is the selective expression of these different mechanisms that determines the unique frequency- and pattern-dependent properties of each class of connection. Although the molecular interactions underlying these several mechanisms have yet to be fully identified, the wealth and complexity of the protein-protein and protein-lipid interactions that have been shown to control the release of transmitter suggest many ways in which the properties of a synapse may be tuned to respond to particular patterns and frequencies.
Collapse
Affiliation(s)
- Alex M Thomson
- Department of Pharmacology, The School of Pharmacy, London University, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
16
|
Sargsyan AR, Melkonyan AA, Papatheodoropoulos C, Mkrtchian HH, Kostopoulos GK. A model synapse that incorporates the properties of short- and long-term synaptic plasticity. Neural Netw 2003; 16:1161-77. [PMID: 13678620 DOI: 10.1016/s0893-6080(03)00135-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We propose a general computer model of a synapse, which incorporates mechanisms responsible for the realization of both short- and long-term synaptic plasticity-the two forms of experimentally observed plasticity that seem to be very significant for the performance of neuronal networks. The model consists of a presynaptic part based on the earlier 'double barrier synapse' model, and a postsynaptic compartment which is connected to the presynaptic terminal via a feedback, the sign and magnitude of which depend on postsynaptic Ca(2+) concentration. The feedback increases or decreases the amount of neurotransmitter which is in a ready for release state. The model adequately reproduced the phenomena of short- and long-term plasticity observed experimentally in hippocampal slices for CA3-CA1 synapses. The proposed model may be used in the investigation of certain real synapses to estimate their physiological parameters, and in the construction of realistic neuronal networks.
Collapse
Affiliation(s)
- Armen R Sargsyan
- Neuronal Systems Mathematical Modelling Laboratory, Orbeli Institute of Physiology, Yerevan, Armenia
| | | | | | | | | |
Collapse
|
17
|
Sim ATR, Baldwin ML, Rostas JAP, Holst J, Ludowyke RI. The role of serine/threonine protein phosphatases in exocytosis. Biochem J 2003; 373:641-59. [PMID: 12749763 PMCID: PMC1223558 DOI: 10.1042/bj20030484] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/09/2003] [Accepted: 05/16/2003] [Indexed: 10/27/2022]
Abstract
Modulation of exocytosis is integral to the regulation of cellular signalling, and a variety of disorders (such as epilepsy, hypertension, diabetes and asthma) are closely associated with pathological modulation of exocytosis. Emerging evidence points to protein phosphatases as key regulators of exocytosis in many cells and, therefore, as potential targets for the design of novel therapies to treat these diseases. Diverse yet exquisite regulatory mechanisms have evolved to direct the specificity of these enzymes in controlling particular cell processes, and functionally driven studies have demonstrated differential regulation of exocytosis by individual protein phosphatases. This Review discusses the evidence for the regulation of exocytosis by protein phosphatases in three major secretory systems, (1) mast cells, in which the regulation of exocytosis of inflammatory mediators plays a major role in the respiratory response to antigens, (2) insulin-secreting cells in which regulation of exocytosis is essential for metabolic control, and (3) neurons, in which regulation of exocytosis is perhaps the most complex and is essential for effective neurotransmission.
Collapse
Affiliation(s)
- Alistair T R Sim
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, and Clinical Neuroscience Program, Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
18
|
Bukharaeva EA, Samigullin D, Nikolsky E, Vyskocil F. Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate. J Physiol 2002; 538:837-48. [PMID: 11826168 PMCID: PMC2290098 DOI: 10.1113/jphysiol.2001.012752] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2001] [Accepted: 10/15/2001] [Indexed: 11/08/2022] Open
Abstract
Uniquantal endplate currents (EPCs) were recorded simultaneously at the proximal, central and distal parts of the frog neuromuscular synapse, and their minimal synaptic latencies, latency dispersions and sensitivity to noradrenaline, cAMP and protein kinase A inhibition were measured. The latency dispersion was highest in the proximal part (P90 = 1.25 ms); it decreased to P90 = 0.95 ms in the central part and to P90 = 0.75 ms (60 % of the proximal part) in the distal part. In the proximal parts of the long neuromuscular synapse, stimulation-evoked EPCs with long release latencies were eliminated when the intracellular cAMP was increased by beta1 activation by noradrenaline, by the permeable analogue db-cAMP, by activation of adenylyl cyclase or by inhibition of cAMP hydrolysis. This makes the evoked release more compact, and the amplitude of the reconstructed multiquantal currents increases. Protein kinase A is a target of this regulation, since a specific inhibitor, Rp-cAMP, prevents the action of cAMP in the proximal parts and increases the occurrence of long-latency events in the distal parts of the synapse. Our results show that protein kinase A is involved in the timing of quantal release and can be regulated by presynaptic adrenergic receptors.
Collapse
Affiliation(s)
- Ella A Bukharaeva
- State Medical University, Butlerov st. 49, Kazan, Russian Federation and Institute of Biochemistry and Biophysics, Russian Academy of Sciences, PO Box 30, Kazan, Russian Federation
| | | | | | | |
Collapse
|
19
|
Abstract
The "kiss-and-run" model of exocytosis and endocytosis predicts that synaptic vesicles can undergo fast and efficient recycling, after fusion with the plasmalemma, without intermixing of membranes. Evidence is mounting from several new experimental approaches that kiss-and-run occurs at synapses. Distinct vesicle pools, which initially were identified in morphological terms, are now being characterized in biochemical and functional terms. In addition, at least two functional recycling pathways, operating on different time scales (from milliseconds to tens of seconds), have been shown to coexist in the same synaptic system, and the two pathways appear to be differentially regulated. Taken together, these data suggest that kiss-and-run operates in parallel with the classical, coated-vesicle recycling. Here, we review recent evidence for kiss-and-run recycling and discuss whether it is a distinct process, dependent on the molecular organization of the fusing vesicle. We propose that vesicles undergo a process of "competence maturation". According to this view, the specific molecular make-up of the vesicles, their location and their interactions with nerve terminal proteins might determine not only the differential availability of the vesicles for fusion and neurotransmitter release but also the recycling path that they will follow.
Collapse
Affiliation(s)
- F Valtorta
- Dept of Neuroscience and Vita-Salute University, San Raffaele Scientific Institute, via Olgettina 58, 20132 Milan, Italy
| | | | | |
Collapse
|
20
|
Hagler DJ, Goda Y. Properties of synchronous and asynchronous release during pulse train depression in cultured hippocampal neurons. J Neurophysiol 2001; 85:2324-34. [PMID: 11387379 DOI: 10.1152/jn.2001.85.6.2324] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurotransmitter release displays at least two kinetically distinct components in response to a single action potential. The majority of release occurs synchronously with action-potential-triggered Ca(2+) influx; however, delayed release--also called asynchronous release--persists for tens of milliseconds following the peak Ca(2+) transient. In response to trains of action potentials, synchronous release eventually declines, whereas asynchronous release often progressively increases, an effect that is primarily attributed to the buildup of intracellular Ca(2+) during repetitive stimulation. The precise relationship between synchronous and asynchronous release remains unclear at central synapses. To gain better insight into the mechanisms that regulate neurotransmitter release, we systematically characterized the two components of release during repetitive stimulation at excitatory autaptic hippocampal synapses formed in culture. Manipulations that increase the Ca(2+) influx triggered by an action potential--elevation of extracellular Ca(2+) or bath application of tetraethylammonium (TEA)--accelerated the progressive decrease in synchronous release (peak excitatory postsynaptic current amplitude) and concomitantly increased asynchronous release. When intracellular Ca(2+) was buffered by extracellular application of EGTA-AM, initial depression of synchronous release was equal to or greater than control; however, it quickly reached a plateau without further depression. In contrast, asynchronous release was largely abolished in EGTA-AM. The total charge transfer following each pulse--accounting for both synchronous and asynchronous release--reached a steady-state level that was similar between control and EGTA-AM. A portion of the decreased synchronous release in control conditions therefore was matched by a higher level of asynchronous release. We also examined the relative changes in synchronous and asynchronous release during repetitive stimulation under conditions that highly favor asynchronous release by substituting extracellular Ca(2+) with Sr(2+). Initially, asynchronous release was twofold greater in Sr(2+). By the end of the train, the difference was approximately 50%; consequently, the total release per pulse during the plateau phase was slightly larger in Sr(2+) compared with Ca(2+). We thus conclude that while asynchronous release--like synchronous release--is limited by vesicle availability, it may be able to access a slightly larger subset of the readily releasable pool. Our results are consistent with the view that during repetitive stimulation, the elevation of asynchronous release depletes the vesicles immediately available for release, resulting in depression of synchronous release. This implies that both forms of release share a small pool of immediately releasable vesicles, which is being constantly depleted and refilled during repetitive stimulation.
Collapse
Affiliation(s)
- D J Hagler
- Division of Biology, University of California, San Diego, La Jolla, California 92093-0366, USA
| | | |
Collapse
|
21
|
Abstract
During the 1950s to 70s most of the mechanisms that control transmitter release from presynaptic nerve terminals were described at the neuromuscular junction. It was not, however, until the 1990s that the multiplicity of protein-protein interactions that govern this process began to be identified. The sheer numbers of proteins and the complexity of their interactions at first appears excessive, even redundant. However, studies of identified central synapses indicate that this molecular diversity may underlie a important functional diversity. The task of the neuromuscular junction is to relay faithfully the rate and pattern code generated by the motoneurone. To demonstrate phenomena such as facilitation and augmentation that are apparent only when the probability of release is low, experimental manipulation is required. In the cortex, however, low probability synapses displaying facilitation can be recorded in parallel with high probability synapses displaying depression. The mechanisms are largely the same as those displayed by the neuromuscular junction, but some are differentially expressed and controlled. Central synapses demonstrate exquisitely fine tuned information transfer, each of the many types displaying its own repertoire of pattern- and frequency-dependent properties. These appear tuned to match both the discharge pattern in the presynaptic neurone and the integrative requirements of the postsynaptic cell. The molecular identification of these differentially expressed frequency filters is now just coming into sight. This review attempts to correlate these two aspects of synaptic physiology and to identify the components of the release process that are responsible for the diversity of function.
Collapse
Affiliation(s)
- A M Thomson
- Department of Physiology, Royal Free and University College Medical School, UCL, Rowland Hill Street, NW3 2PF, London, UK.
| |
Collapse
|