1
|
Li J, Zhang S, Li C, Zhang X, Shan Y, Zhang Z, Bo H, Zhang Y. Endurance exercise-induced histone methylation modification involved in skeletal muscle fiber type transition and mitochondrial biogenesis. Sci Rep 2024; 14:21154. [PMID: 39256490 PMCID: PMC11387812 DOI: 10.1038/s41598-024-72088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
Skeletal muscle is a highly heterogeneous tissue, and its contractile proteins are composed of different isoforms, forming various types of muscle fiber, each of which has its own metabolic characteristics. It has been demonstrated that endurance exercise induces the transition of muscle fibers from fast-twitch to slow-twitch muscle fiber type. Herein, we discover a novel epigenetic mechanism for muscle contractile property tightly coupled to its metabolic capacity during muscle fiber type transition with exercise training. Our results show that an 8-week endurance exercise induces histone methylation remodeling of PGC-1α and myosin heavy chain (MHC) isoforms in the rat gastrocnemius muscle, accompanied by increased mitochondrial biogenesis and an elevated ratio of slow-twitch to fast-twitch fibers. Furthermore, to verify the roles of reactive oxygen species (ROS) and AMPK in exercise-regulated epigenetic modifications and muscle fiber type transitions, mouse C2C12 myotubes were used. It was shown that rotenone activates ROS/AMPK pathway and histone methylation enzymes, which then promote mitochondrial biogenesis and MHC slow isoform expression. Mitoquinone (MitoQ) partially blocking rotenone-treated model confirms the role of ROS in coupling mitochondrial biogenesis with muscle fiber type. In conclusion, endurance exercise couples mitochondrial biogenesis with MHC slow isoform by remodeling histone methylation, which in turn promotes the transition of fast-twitch to slow-twitch muscle fibers. The ROS/AMPK pathway may be involved in the regulation of histone methylation enzymes by endurance exercise.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Sheng Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
- Tianjin Hospital, Tianjin, 300299, China
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
- Department of sport science, Tianjin normal university, Tianjin, 300387, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yuhui Shan
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Ziyi Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| | - Hai Bo
- Department of Military Training Medicines, Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, China.
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
2
|
Leanza L, Perego C, Pesce L, Salvalaglio M, von Delius M, Pavan GM. Into the dynamics of rotaxanes at atomistic resolution. Chem Sci 2023; 14:6716-6729. [PMID: 37350834 PMCID: PMC10283497 DOI: 10.1039/d3sc01593a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/04/2023] [Indexed: 06/24/2023] Open
Abstract
Mechanically-interlocked molecules (MIMs) are at the basis of artificial molecular machines and are attracting increasing interest for various applications, from catalysis to drug delivery and nanoelectronics. MIMs are composed of mechanically-interconnected molecular sub-parts that can move with respect to each other, imparting these systems innately dynamical behaviors and interesting stimuli-responsive properties. The rational design of MIMs with desired functionalities requires studying their dynamics at sub-molecular resolution and on relevant timescales, which is challenging experimentally and computationally. Here, we combine molecular dynamics and metadynamics simulations to reconstruct the thermodynamics and kinetics of different types of MIMs at atomistic resolution under different conditions. As representative case studies, we use rotaxanes and molecular shuttles substantially differing in structure, architecture, and dynamical behavior. Our computational approach provides results in agreement with the available experimental evidence and a direct demonstration of the critical effect of the solvent on the dynamics of the MIMs. At the same time, our simulations unveil key factors controlling the dynamics of these systems, providing submolecular-level insights into the mechanisms and kinetics of shuttling. Reconstruction of the free-energy profiles from the simulations reveals details of the conformations of macrocycles on the binding site that are difficult to access via routine experiments and precious for understanding the MIMs' behavior, while their decomposition in enthalpic and entropic contributions unveils the mechanisms and key transitions ruling the intermolecular movements between metastable states within them. The computational framework presented herein is flexible and can be used, in principle, to study a variety of mechanically-interlocked systems.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi, 24 10129 Torino Italy
| | - Claudio Perego
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano Campus Est, Via la Santa 1 6962 Lugano-Viganello Switzerland
| | - Luca Pesce
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano Campus Est, Via la Santa 1 6962 Lugano-Viganello Switzerland
| | - Matteo Salvalaglio
- Department of Chemical Engineering, University College London London WC1E 7JE UK
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi, 24 10129 Torino Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano Campus Est, Via la Santa 1 6962 Lugano-Viganello Switzerland
| |
Collapse
|
3
|
Müller M, Eghbalian R, Boeckel JN, Frese KS, Haas J, Kayvanpour E, Sedaghat-Hamedani F, Lackner MK, Tugrul OF, Ruppert T, Tappu R, Martins Bordalo D, Kneuer JM, Piekarek A, Herch S, Schudy S, Keller A, Grammes N, Bischof C, Klinke A, Cardoso-Moreira M, Kaessmann H, Katus HA, Frey N, Steinmetz LM, Meder B. NIMA-related kinase 9 regulates the phosphorylation of the essential myosin light chain in the heart. Nat Commun 2022; 13:6209. [PMID: 36266340 PMCID: PMC9585074 DOI: 10.1038/s41467-022-33658-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
To adapt to changing hemodynamic demands, regulatory mechanisms modulate actin-myosin-kinetics by calcium-dependent and -independent mechanisms. We investigate the posttranslational modification of human essential myosin light chain (ELC) and identify NIMA-related kinase 9 (NEK9) to interact with ELC. NEK9 is highly expressed in the heart and the interaction with ELC is calcium-dependent. Silencing of NEK9 results in blunting of calcium-dependent ELC-phosphorylation. CRISPR/Cas9-mediated disruption of NEK9 leads to cardiomyopathy in zebrafish. Binding to ELC is mediated via the protein kinase domain of NEK9. A causal relationship between NEK9 activity and ELC-phosphorylation is demonstrated by genetic sensitizing in-vivo. Finally, we observe significantly upregulated ELC-phosphorylation in dilated cardiomyopathy patients and provide a unique map of human ELC-phosphorylation-sites. In summary, NEK9-mediated ELC-phosphorylation is a calcium-dependent regulatory system mediating cardiac contraction and inotropy.
Collapse
Affiliation(s)
- Marion Müller
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Rose Eghbalian
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
| | - Jes-Niels Boeckel
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Karen S Frese
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jan Haas
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Elham Kayvanpour
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Maximilian K Lackner
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Oguz F Tugrul
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at ZMBH, Heidelberg University, Heidelberg, Germany
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Rewati Tappu
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Diana Martins Bordalo
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Jasmin M Kneuer
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Annika Piekarek
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sabine Herch
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Sarah Schudy
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Nadja Grammes
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University Medical School, Stanford, CA, USA
| | - Cornelius Bischof
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/ Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Henrik Kaessmann
- ZMBH, Center for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Hugo A Katus
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Lars M Steinmetz
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA
| | - Benjamin Meder
- Kardiogenetikzentrum Heidelberg, University Hospital of Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Berlin, Germany.
- Stanford Genome Technology Center, Stanford University Medical School, Stanford, CA, USA.
| |
Collapse
|
4
|
Gunther LK, Rohde JA, Tang W, Cirilo JA, Marang CP, Scott BD, Thomas DD, Debold EP, Yengo CM. FRET and optical trapping reveal mechanisms of actin activation of the power stroke and phosphate release in myosin V. J Biol Chem 2021; 295:17383-17397. [PMID: 33453985 DOI: 10.1074/jbc.ra120.015632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
Myosins generate force and motion by precisely coordinating their mechanical and chemical cycles, but the nature and timing of this coordination remains controversial. We utilized a FRET approach to examine the kinetics of structural changes in the force-generating lever arm in myosin V. We directly compared the FRET results with single-molecule mechanical events examined by optical trapping. We introduced a mutation (S217A) in the conserved switch I region of the active site to examine how myosin couples structural changes in the actin- and nucleotide-binding regions with force generation. Specifically, S217A enhanced the maximum rate of lever arm priming (recovery stroke) while slowing ATP hydrolysis, demonstrating that it uncouples these two steps. We determined that the mutation dramatically slows both actin-induced rotation of the lever arm (power stroke) and phosphate release (≥10-fold), whereas our simulations suggest that the maximum rate of both steps is unchanged by the mutation. Time-resolved FRET revealed that the structure of the pre- and post-power stroke conformations and mole fractions of these conformations were not altered by the mutation. Optical trapping results demonstrated that S217A does not dramatically alter unitary displacements or slow the working stroke rate constant, consistent with the mutation disrupting an actin-induced conformational change prior to the power stroke. We propose that communication between the actin- and nucleotide-binding regions of myosin assures a proper actin-binding interface and active site have formed before producing a power stroke. Variability in this coupling is likely crucial for mediating motor-based functions such as muscle contraction and intracellular transport.
Collapse
Affiliation(s)
- Laura K Gunther
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - John A Rohde
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Wanjian Tang
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Joseph A Cirilo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher P Marang
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Brent D Scott
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
5
|
Peretz-Soroka H, Tirosh R, Hipolito J, Huebner E, Alexander M, Fiege J, Lin F. A bioenergetic mechanism for amoeboid-like cell motility profiles tested in a microfluidic electrotaxis assay. Integr Biol (Camb) 2018; 9:844-856. [PMID: 28960219 DOI: 10.1039/c7ib00086c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The amoeboid-like cell motility is known to be driven by the acidic enzymatic hydrolysis of ATP in the actin-myosin system. However, the electro-mechano-chemical coupling, whereby the free energy of ATP hydrolysis is transformed into the power of electrically polarized cell movement, is poorly understood. Previous experimental studies showed that actin filaments motion, cytoplasmic streaming, and muscle contraction can be reconstituted under actin-activated ATP hydrolysis by soluble non-filamentous myosin fragments. Thus, biological motility was demonstrated in the absence of a continuous protein network. These results lead to an integrative conceptual model for cell motility, which advocates an active role played by intracellular proton currents and cytoplasmic streaming (iPC-CS). In this model, we propose that protons and fluid currents develop intracellular electric polarization and pressure gradients, which generate an electro-hydrodynamic mode of amoeboid motion. Such energetic proton currents and active streaming are considered to be mainly driven by stereospecific ATP hydrolysis through myosin heads along oriented actin filaments. Key predictions of this model are supported by microscopy visualization and in-depth sub-population analysis of purified human neutrophils using a microfluidic electrotaxis assay. Three distinct phases in cell motility profiles, morphology, and cytoplasmic streaming in response to physiological ranges of chemoattractant stimulation and electric field application are revealed. Our results support an intrinsic electric dipole formation linked to different patterns of cytoplasmic streaming, which can be explained by the iPC-CS model. Collectively, this alternative biophysical mechanism of cell motility provides new insights into bioenergetics with relevance to potential new biomedical applications.
Collapse
Affiliation(s)
- Hagit Peretz-Soroka
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | |
Collapse
|
6
|
Ranatunga KW. Temperature Effects on Force and Actin⁻Myosin Interaction in Muscle: A Look Back on Some Experimental Findings. Int J Mol Sci 2018; 19:E1538. [PMID: 29786656 PMCID: PMC5983754 DOI: 10.3390/ijms19051538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/23/2023] Open
Abstract
Observations made in temperature studies on mammalian muscle during force development, shortening, and lengthening, are re-examined. The isometric force in active muscle goes up substantially on warming from less than 10 °C to temperatures closer to physiological (>30 °C), and the sigmoidal temperature dependence of this force has a half-maximum at ~10 °C. During steady shortening, when force is decreased to a steady level, the sigmoidal curve is more pronounced and shifted to higher temperatures, whereas, in lengthening muscle, the curve is shifted to lower temperatures, and there is a less marked increase with temperature. Even with a small rapid temperature-jump (T-jump), force in active muscle rises in a definitive way. The rate of tension rise is slower with adenosine diphosphate (ADP) and faster with increased phosphate. Analysis showed that a T-jump enhances an early, pre-phosphate release step in the acto-myosin (crossbridge) ATPase cycle, thus inducing a force-rise. The sigmoidal dependence of steady force on temperature is due to this endothermic nature of crossbridge force generation. During shortening, the force-generating step and the ATPase cycle are accelerated, whereas during lengthening, they are inhibited. The endothermic force generation is seen in different muscle types (fast, slow, and cardiac). The underlying mechanism may involve a structural change in attached myosin heads and/or their attachments on heat absorption.
Collapse
Affiliation(s)
- K W Ranatunga
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK.
| |
Collapse
|
7
|
Cretoiu D, Pavelescu L, Duica F, Radu M, Suciu N, Cretoiu SM. Myofibers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:23-46. [PMID: 30390246 DOI: 10.1007/978-981-13-1435-3_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Muscle tissue is a highly specialized type of tissue, made up of cells that have as their fundamental properties excitability and contractility. The cellular elements that make up this type of tissue are called muscle fibers, or myofibers, because of the elongated shape they have. Contractility is due to the presence of myofibrils in the muscle fiber cytoplasm, as large cellular assemblies. Also, myofibers are responsible for the force that the muscle generates which represents a countless aspect of human life. Movements due to muscles are based on the ability of muscle fibers to use the chemical energy procured in metabolic processes, to shorten and then to return to the original dimensions. We describe in detail the levels of organization for the myofiber, and we correlate the structural aspects with the functional ones, beginning with neuromuscular transmission down to the biochemical reactions achieved in the sarcoplasmic reticulum by the release of Ca2+ and the cycling of crossbridges. Furthermore, we are reviewing the types of muscle contractions and the fiber-type classification.
Collapse
Affiliation(s)
- Dragos Cretoiu
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center Bucharest, Bucharest, Romania.,Division of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Luciana Pavelescu
- Division of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Florentina Duica
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center Bucharest, Bucharest, Romania
| | - Mihaela Radu
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center Bucharest, Bucharest, Romania
| | - Nicolae Suciu
- Alessandrescu-Rusescu National Institute of Mother and Child Health, Fetal Medicine Excellence Research Center Bucharest, Bucharest, Romania
| | - Sanda Maria Cretoiu
- Division of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
8
|
Ranatunga KW, Offer G. The force-generation process in active muscle is strain sensitive and endothermic: a temperature-perturbation study. ACTA ACUST UNITED AC 2017; 220:4733-4742. [PMID: 29084851 DOI: 10.1242/jeb.167197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/26/2017] [Indexed: 11/20/2022]
Abstract
In experiments on active muscle, we examined the tension decline and its temperature sensitivity at the onset of ramp shortening and at a range of velocities. A segment (∼1.5 mm long) of a skinned muscle fibre isolated from rabbit psoas muscle was held isometrically (sarcomere length ∼2.5 µm) at 8-9°C, maximally Ca2+-activated and a ramp shortening applied. The tension decline with a ramp shortening showed an early decrease of slope (the P1 transition) followed by a slower decrease in slope (the P2 transition) to the steady (isotonic) force. The tension level at the initial P1 transition and the time to that transition decreased as the velocity was increased; the length change to this transition increased with shortening velocity to a steady value of ∼8 nm half-sarcomere-1 A small, rapid, temperature jump (T-jump) (3-4°C, <0.2 ms) applied coincident with the onset of ramp shortening showed force enhancement by T-jump and changed the tension decline markedly. Analyses showed that the rate of T-jump-induced force rise increased linearly with increase of shortening velocity. These results provide crucial evidence that the strain-sensitive cross-bridge force generation, or a step closely coupled to it, is endothermic.
Collapse
Affiliation(s)
- K W Ranatunga
- Muscle Contraction Group, School of Physiology, Pharmacology & Neurosciences, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Gerald Offer
- Muscle Contraction Group, School of Physiology, Pharmacology & Neurosciences, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
Murtada SI, Humphrey JD, Holzapfel GA. Multiscale and Multiaxial Mechanics of Vascular Smooth Muscle. Biophys J 2017; 113:714-727. [PMID: 28793225 DOI: 10.1016/j.bpj.2017.06.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/19/2017] [Accepted: 06/08/2017] [Indexed: 11/16/2022] Open
Abstract
Mathematical models can facilitate an integrative understanding of the complexity underlying biological structure and function, but they must be informed and validated by empirical data. Uniaxial contraction of an arterial ring is a well-used in vitro approach for studying characteristics of smooth muscle contractility even though this experimental arrangement does not mimic the in vivo vascular geometry or loading. In contrast, biaxial contraction of an inflated and axially extended excised vessel provides broader information, both passive and active, under more realistic conditions. Few investigations have compared these two in vitro approaches directly, namely how their results overlap, how they differ, or if each provides unique complementary information. Toward this end, we present, to our knowledge, a new multiscale mathematical model of arterial contractility accounting for structural and functional constituents at molecular, cellular, and tissue levels. The artery is assumed to be a thick-walled incompressible cylinder described by an anisotropic model of the extracellular matrix and, to our knowledge, novel model of smooth muscle contractility. The latter includes a 3D structural sensitivity to deformation, including microscale muscle filament overlap and filament lattice spacing. The overall model captures uniaxial and biaxial experimental contraction data, which was not possible when accounting for filament overlap alone. The model also enables parameter sensitivity studies, which confirmed that uniaxial contraction tests are not as efficient as biaxial tests for identifying changes in vascular smooth muscle function.
Collapse
Affiliation(s)
- Sae-Ii Murtada
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria; Faculty of Engineering Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
10
|
Single molecule fluorescence spectroscopy for quantitative biological applications. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0083-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Inoue Y, Ishijima A. Local heating of molecular motors using single carbon nanotubes. Biophys Rev 2016; 8:25-32. [PMID: 28510142 DOI: 10.1007/s12551-015-0185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/26/2015] [Indexed: 12/11/2022] Open
Abstract
Temperature globally affects all chemical processes and biomolecules in living cells. Elevating the temperature of an entire cell accelerates so many biomolecular reactions simultaneously that it is difficult to distinguish the various mechanisms involved. The ability to localize temperature changes to the nanometer range within a cell could provide a powerful new tool for regulating biomolecular activity at the level of individual molecules. The search for a nanoheater for biological research has prompted experiments with carbon nanotubes (CNTs), which have the highest conductivity of any known material. The adsorption of skeletal muscle myosin molecules along the length of single multi-walled CNTs (~10 μm) has allowed researchers to observe the ATP-driven sliding of fluorescently labeled actin filaments. In one study, red-laser irradiation focused on one end of a myosin-coated CNT was used to heat myosin motors locally without directly heating the surrounding water; this laser irradiation instantly accelerated the actin-filament sliding speeds from ~6 to ~12 μm/s in a reversible manner, indicating a local, real-time heating of myosin motors by approximately Δ12 K. Calculation of heat transfer using the finite element method, based on the estimated temperature along a single CNT with a diameter of 170 nm, indicated a high thermal conductivity of ~1540 Wm-1K-1 in solution, consistent with values measured in vacuum in earlier studies. Temperature distribution indicated by half-decrease distances was ~3660 nm along the length of the CNT and ~250 nm perpendicular to the length. These results suggest that single-CNT-based heating at the nanometer- or micrometer-range could be used to regulate various biomolecules in many areas of biological, physical, and chemical research.
Collapse
Affiliation(s)
- Yuichi Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Akihiko Ishijima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan. .,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
12
|
Abstract
Vascular smooth muscle (VSM; see Table 1 for a list of abbreviations) is a heterogeneous biomaterial comprised of cells and extracellular matrix. By surrounding tubes of endothelial cells, VSM forms a regulated network, the vasculature, through which oxygenated blood supplies specialized organs, permitting the development of large multicellular organisms. VSM cells, the engine of the vasculature, house a set of regulated nanomotors that permit rapid stress-development, sustained stress-maintenance and vessel constriction. Viscoelastic materials within, surrounding and attached to VSM cells, comprised largely of polymeric proteins with complex mechanical characteristics, assist the engine with countering loads imposed by the heart pump, and with control of relengthening after constriction. The complexity of this smart material can be reduced by classical mechanical studies combined with circuit modeling using spring and dashpot elements. Evaluation of the mechanical characteristics of VSM requires a more complete understanding of the mechanics and regulation of its biochemical parts, and ultimately, an understanding of how these parts work together to form the machinery of the vascular tree. Current molecular studies provide detailed mechanical data about single polymeric molecules, revealing viscoelasticity and plasticity at the protein domain level, the unique biological slip-catch bond, and a regulated two-step actomyosin power stroke. At the tissue level, new insight into acutely dynamic stress-strain behavior reveals smooth muscle to exhibit adaptive plasticity. At its core, physiology aims to describe the complex interactions of molecular systems, clarifying structure-function relationships and regulation of biological machines. The intent of this review is to provide a comprehensive presentation of one biomachine, VSM.
Collapse
Affiliation(s)
- Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
13
|
Inoue Y, Nagata M, Matsutaka H, Okada T, Sato MK, Ishijima A. Single carbon nanotube-based reversible regulation of biological motor activity. ACS NANO 2015; 9:3677-84. [PMID: 25767902 DOI: 10.1021/nn505607c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Because of their small size and high thermal conductivity, carbon nanotubes (CNTs) are excellent candidates for exploring heat transfer at the level of individual molecules in biological research. With a view toward examining the thermal regulation of single biomolecules, we here developed single CNTs as a new platform for observing the motile activity of myosin motors. On multiwall CNTs (diameter ∼170 nm; length ∼10 μm) coated with skeletal-muscle myosin, the ATP-driven sliding of single actin filaments was clearly observable. The normal sliding speed was ∼6 μm/s. Locally irradiating one end of the CNT with a red laser (642 nm), without directly irradiating the active myosin motors, accelerated the sliding speed to ∼12 μm/s, indicating the reversible activation of protein function on a single CNT in real time. The temperature along the CNT, which was estimated from the temperature-dependence of the sliding speed, decreased with the distance from the irradiated spot. Using these results with the finite element method, we calculated a first estimation of the thermal conductivity of multiwall CNTs in solution, as 1540 ± 260 (Wm(-1) K(-1)), which is consistent with the value estimated from the width dependency of multiwall CNTs and the length dependency of single-wall CNTs in a vacuum or air. The temporal regulation of local temperature through individual CNTs should be broadly applicable to the selective activation of various biomolecules in vitro and in vivo.
Collapse
Affiliation(s)
- Yuichi Inoue
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Mitsunori Nagata
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroshi Matsutaka
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Takeru Okada
- ‡Institute of Fluid Science, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Masaaki K Sato
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| | - Akihiko Ishijima
- †Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
14
|
Offer G, Ranatunga KW. The endothermic ATP hydrolysis and crossbridge attachment steps drive the increase of force with temperature in isometric and shortening muscle. J Physiol 2015; 593:1997-2016. [PMID: 25564737 DOI: 10.1113/jphysiol.2014.284992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/03/2015] [Indexed: 11/08/2022] Open
Abstract
The isometric tetanic tension of skeletal muscle increases with temperature because attached crossbridge states bearing a relatively low force convert to those bearing a higher force. It was previously proposed that the tension-generating step(s) in the crossbridge cycle was highly endothermic and was therefore itself directly targeted by changes in temperature. However, this did not explain why a rapid rise in temperature (a temperature jump) caused a much slower rate of rise of tension than a rapid length step. This led to suggestions that the step targeted by a temperature rise is not the tension-generating step but is an extra step in the attached pathway of the crossbridge cycle, perhaps located on a parallel pathway. This enigma has been a major obstacle to a full understanding of the operation of the crossbridge cycle. We have now used a previously developed mechano-kinetic model of the crossbridge cycle in frog muscle to simulate the temperature dependence of isometric tension and shortening velocity. We allowed all five steps in the cycle to be temperature-sensitive. Models with different starting combinations of enthalpy changes and activation enthalpies for the five steps were refined by downhill simplex runs and scored by their ability to fit experimental data on the temperature dependence of isometric tension and the relationship between force and shortening velocity in frog muscle. We conclude that the first tension-generating step may be weakly endothermic and that the rise of tension with temperature is largely driven by the preceding two strongly endothermic steps of ATP hydrolysis and attachment of M.ADP.Pi to actin. The refined model gave a reasonable fit to the available experimental data and after a temperature jump the overall rate of tension rise was much slower than after a length step as observed experimentally. The findings aid our understanding of the crossbridge cycle by showing that it may not be necessary to include an additional temperature-sensitive step.
Collapse
Affiliation(s)
- Gerald Offer
- Muscle Contraction Group, School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, UK
| | | |
Collapse
|
15
|
Kodera N, Ando T. The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 2014; 6:237-260. [PMID: 25505494 PMCID: PMC4256461 DOI: 10.1007/s12551-014-0141-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/07/2014] [Indexed: 01/14/2023] Open
Abstract
The quest for understanding the mechanism of myosin-based motility started with studies on muscle contraction. From numerous studies, the basic frameworks for this mechanism were constructed and brilliant hypotheses were put forward. However, the argument about the most crucial issue of how the actin-myosin interaction generates contractile force and shortening has not been definitive. To increase the "directness of measurement", in vitro motility assays and single-molecule optical techniques were created and used. Consequently, detailed knowledge of the motility of muscle myosin evolved, which resulted in provoking more arguments to a higher level. In parallel with technical progress, advances in cell biology led to the discovery of many classes of myosins. Myosin V was discovered to be a processive motor, unlike myosin II. The processivity reduced experimental difficulties because it allowed continuous tracing of the motor action of single myosin V molecules. Extensive studies of myosin V were expected to resolve arguments and build a consensus but did not necessarily do so. The directness of measurement was further enhanced by the recent advent of high-speed atomic force microscopy capable of directly visualizing biological molecules in action at high spatiotemporal resolution. This microscopy clearly visualized myosin V molecules walking on actin filaments and at last provided irrefutable evidence for the swinging lever-arm motion propelling the molecules. However, a peculiar foot stomp behavior also appeared in the AFM movie, raising new questions of the chemo-mechanical coupling in this motor and myosin motors in general. This article reviews these changes in the research of myosin motility and proposes new ideas to resolve the newly raised questions.
Collapse
Affiliation(s)
- Noriyuki Kodera
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- PREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| | - Toshio Ando
- Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, 920-1192 Japan
- Department of Physics, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192 Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| |
Collapse
|
16
|
Nie QM, Togashi A, Sasaki TN, Takano M, Sasai M, Terada TP. Coupling of lever arm swing and biased Brownian motion in actomyosin. PLoS Comput Biol 2014; 10:e1003552. [PMID: 24762409 PMCID: PMC3998885 DOI: 10.1371/journal.pcbi.1003552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/20/2014] [Indexed: 11/18/2022] Open
Abstract
An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5–11 nm displacement due to the biased Brownian motion and the 3–5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family. Myosin II is a molecular motor that is fueled by ATP hydrolysis and generates mechanical force by interacting with actin filament. Comparison among various myosin structures obtained by X-ray and electron microscope analyses has led to the hypothesis that structural change of myosin in ATP hydrolysis cycle is the driving mechanism of force generation. However, single-molecule experiments have suggested an alternative mechanism in which myosin moves stochastically in a biased direction along actin filament. Computer simulation serves as a platform for assessing these hypotheses by revealing the prominent features of the dynamically changing landscape of actin-myosin interaction. The calculated results show that myosin binds to actin at different locations of actin filament in the weak- and strong-binding states and that the free energy has a global gradient from the weak-binding site to the strong-binding site. Myosin relaxing into the strong-binding state therefore necessarily shows the biased Brownian motion toward the strong-binding site. Lever-arm swing is induced during this relaxation process; therefore, lever-arm swing and the biased Brownian motion are coupled to contribute to the net displacement of myosin. This coupling should affect the dynamical behaviors of muscle and cardiac systems.
Collapse
Affiliation(s)
- Qing-Miao Nie
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
- Institute for Molecular Science, Okazaki, Japan
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Akio Togashi
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Takeshi N. Sasaki
- Department of Human Informatics, Aichi Shukutoku University, Aichi, Japan
| | - Mitsunori Takano
- Department of Physics, Waseda University, Ohkubo, Shinjuku-ku, Tokyo, Japan
| | - Masaki Sasai
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
- * E-mail:
| | - Tomoki P. Terada
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Chan V, Asada HH, Bashir R. Utilization and control of bioactuators across multiple length scales. LAB ON A CHIP 2014; 14:653-670. [PMID: 24345906 DOI: 10.1039/c3lc50989c] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this review, we summarize the recent developments in the emerging field of bioactuators across a multitude of length scales. First, we discuss the use and control of biomolecules as nanoscale actuators. Molecular motors, such as DNA, kinesin, myosin, and F1-ATPase, have been shown to exert forces in the range between 1 pN to 45 pN. Second, we discuss the use and control of single and small clusters of cells to power microscale devices. Microorganisms, such as flagellated bacteria, protozoa, and algae, can naturally swim at speeds between 20 μm s(-1) to 2 mm s(-1) and produce thrust forces between 0.3 pN to 200 pN. Individual and clustered mammalian cells, such as cardiac and skeletal cells, can produce even higher contractile forces between 80 nN to 3.5 μN. Finally, we discuss the use and control of 2D- and 3D-assembled muscle tissues and muscle tissue explants as bioactuators to power devices. Depending on the size, composition, and organization of these hierarchical tissue constructs, contractile forces have been demonstrated to produce between 25 μN to 1.18 mN.
Collapse
Affiliation(s)
- Vincent Chan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
18
|
Holland A, Ohlendieck K. Proteomic profiling of the contractile apparatus from skeletal muscle. Expert Rev Proteomics 2014; 10:239-57. [DOI: 10.1586/epr.13.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Nie QM, Sasai M, Terada TP. Conformational flexibility of loops of myosin enhances the global bias in the actin–myosin interaction landscape. Phys Chem Chem Phys 2014; 16:6441-7. [DOI: 10.1039/c3cp54464h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Schmitt S, Günther M, Rupp T, Bayer A, Häufle D. Theoretical Hill-type muscle and stability: numerical model and application. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:570878. [PMID: 24319495 PMCID: PMC3844250 DOI: 10.1155/2013/570878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/19/2013] [Indexed: 12/02/2022]
Abstract
The construction of artificial muscles is one of the most challenging developments in today's biomedical science. The application of artificial muscles is focused both on the construction of orthotics and prosthetics for rehabilitation and prevention purposes and on building humanoid walking machines for robotics research. Research in biomechanics tries to explain the functioning and design of real biological muscles and therefore lays the fundament for the development of functional artificial muscles. Recently, the hyperbolic Hill-type force-velocity relation was derived from simple mechanical components. In this contribution, this theoretical yet biomechanical model is transferred to a numerical model and applied for presenting a proof-of-concept of a functional artificial muscle. Additionally, this validated theoretical model is used to determine force-velocity relations of different animal species that are based on the literature data from biological experiments. Moreover, it is shown that an antagonistic muscle actuator can help in stabilising a single inverted pendulum model in favour of a control approach using a linear torque generator.
Collapse
Affiliation(s)
- S. Schmitt
- Department of Sports and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
| | - M. Günther
- Department of Sports and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
- Institute of Sports Science, Science of Motion, University of Jena, Seidelstraß 20, 07749 Jena, Germany
| | - T. Rupp
- Department of Sports and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
- Stuttgart Research Centre for Simulation Technology, University of Stuttgart, Pfaffenwaldring 5a, 70569 Stuttgart, Germany
| | - A. Bayer
- Department of Sports and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
| | - D. Häufle
- Department of Sports and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany
| |
Collapse
|
21
|
Offer G, Ranatunga K. A cross-bridge cycle with two tension-generating steps simulates skeletal muscle mechanics. Biophys J 2013; 105:928-40. [PMID: 23972845 PMCID: PMC3752108 DOI: 10.1016/j.bpj.2013.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022] Open
Abstract
We examined whether cross-bridge cycle models with one or two tension-generating steps can account for the force-velocity relation of and tension response to length steps of frog skeletal muscle. Transition-state theory defined the strain dependence of the rate constants. The filament stiffness was non-Hookean. Models were refined against experimental data by simulated annealing and downhill simplex runs. Models with one tension-generating step were rejected, as they had a low efficiency and fitted the experimental data relatively poorly. The best model with two tension-generating steps (stroke distances 5.6 and 4.6 nm) and a cross-bridge stiffness of 1.7 pN/nm gave a good account of the experimental data. The two tensing steps allow an efficiency of up to 38% during shortening. In an isometric contraction, 54.7% of the attached heads were in a pre-tension-generating state, 44.5% of the attached heads had undergone the first tension-generating step, and only 0.8% had undergone both tension-generating steps; they bore 34%, 64%, and 2%, respectively, of the isometric tension. During slow shortening, the second tensing step made a greater contribution. During lengthening, up to 93% of the attached heads were in a pre-tension-generating state yet bore elevated tension by being dragged to high strains before detaching.
Collapse
Affiliation(s)
- Gerald Offer
- Muscle Contraction Group, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| | - K.W. Ranatunga
- Muscle Contraction Group, School of Physiology and Pharmacology, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
22
|
Diederichs F. From cycling between coupled reactions to the cross-bridge cycle: mechanical power output as an integral part of energy metabolism. Metabolites 2012; 2:667-700. [PMID: 24957757 PMCID: PMC3901245 DOI: 10.3390/metabo2040667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/07/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022] Open
Abstract
ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill’s equation (velocity as a function of load) is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2−], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided.
Collapse
|
23
|
Schmitt S, Haeufle DFB, Blickhan R, Günther M. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle. BIOINSPIRATION & BIOMIMETICS 2012; 7:036022. [PMID: 22728876 DOI: 10.1088/1748-3182/7/3/036022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The biological muscle is a powerful, flexible and versatile actuator. Its intrinsic characteristics determine the way how movements are generated and controlled. Robotic and prosthetic applications expect to profit from relying on bio-inspired actuators which exhibit natural (muscle-like) characteristics. As of today, when constructing a technical actuator, it is not possible to copy the exact molecular structure of a biological muscle. Alternatively, the question may be put how its characteristics can be realized with known mechanical components. Recently, a mechanical construct for an artificial muscle was proposed, which exhibits hyperbolic force-velocity characteristics. In this paper, we promote the constructing concept which is made by substantiating the mechanical design of biological muscle by a simple model, proving the feasibility of its real-world implementation, and checking their output both for mutual consistency and agreement with biological measurements. In particular, the relations of force, enthalpy rate and mechanical efficiency versus contraction velocity of both the construct's technical implementation and its numerical model were determined in quick-release experiments. All model predictions for these relations and the hardware results are now in good agreement with the biological literature. We conclude that the construct represents a mechanical concept of natural actuation, which is suitable for laying down some useful suggestions when designing bio-inspired actuators.
Collapse
Affiliation(s)
- S Schmitt
- Department of Sports and Exercise Science, University of Stuttgart, Allmandring 28, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
24
|
Rosenfeld EV. The interrelation between mechanical characteristics of contracting muscle, cross-bridge internal structure, and the mechanism of chemomechanical energy transduction. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:733-53. [PMID: 22930317 DOI: 10.1007/s00249-012-0849-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 06/01/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022]
Abstract
The cross-bridge working stroke is regarded as a continuous (without jumps) change of myosin head internal state under the action of a force exerted within the nucleotide-binding site. Involvement of a concept of continuous cross-bridge conformation enables discussion of the nature of the force propelling muscle, and the Coulomb repulsion of like-charged adenosine triphosphate (ATP) fragments ADP(2-) and P (i) (2-) can quite naturally be considered as the source of this force. Two entirely different types of working stroke termination are considered. Along with the fluctuation mechanism, which controls the working stroke duration t (w) at isometric contraction, another interrupt mechanism is initially taken into account. It is triggered when the lever arm shift amounts to the maximal value S ≈ 11 nm, the back door opens, and P(i) crashes out. As a result, t (w) becomes inversely proportional to the velocity v of sliding filaments t (w) ≈ S/v for a wide range of values of v. Principal features of the experimentally observed dependences of force, efficiency, and rate of heat production on velocity and ATP concentration can then be reproduced by fitting a single parameter: the velocity-independent time span t (r) between the termination of the last and beginning of the next working stroke. v becomes the principal variable of the model, and the muscle force changes under external load are determined by variations in v rather than in the tension of filaments. The Boltzmann equation for an ensemble of cross-bridges is obtained, and some collective effects are discussed.
Collapse
Affiliation(s)
- E V Rosenfeld
- Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia.
| |
Collapse
|
25
|
Gerrits L, Overheul GJ, Derks RC, Wieringa B, Hendriks WJ, Wansink DG. Gene duplication and conversion events shaped three homologous, differentially expressed myosin regulatory light chain (MLC2) genes. Eur J Cell Biol 2012; 91:629-39. [DOI: 10.1016/j.ejcb.2012.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/30/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022] Open
|
26
|
Abstract
This review focuses on basic principles of motility in different cell types, formation of the specific cell structures that enable directed migration, and how external signals are transduced into cells and coupled to the motile machinery. Feedback mechanisms and their potential role in maintenance of internal chemotactic gradients and persistence of directed migration are highlighted.
Collapse
Affiliation(s)
- A V Vorotnikov
- Department of Biochemistry and Molecular Medicine, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
27
|
A three-dimensional chemo-mechanical continuum model for smooth muscle contraction. J Mech Behav Biomed Mater 2012; 13:215-29. [PMID: 22926184 DOI: 10.1016/j.jmbbm.2012.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 11/22/2022]
Abstract
Based on two fields, namely the placement and the calcium concentration, a chemo-mechanically coupled three-dimensional model, describing the contractile behaviour of smooth muscles, is presented by means of a strain energy function. The strain energy function (Schmitz and Böl, 2011) is additively decomposed into a passive part, relating to elastin and collagen, and an active calcium-driven part related to the chemical contraction of the smooth muscle cells. For the description of the calcium phase the four state cross-bridge model of Hai and Murphy (Hai and Murphy, 1988) has been implemented into the finite element method. Beside three-dimensional illustrative boundary-value problems demonstrating the features of the presented modelling concept, simulations on an idealised artery document the applicability of the model to more realistic geometries.
Collapse
|
28
|
Mitsui T, Ohshima H. Theory of muscle contraction mechanism with cooperative interaction among crossbridges. Biophysics (Nagoya-shi) 2012; 8:27-39. [PMID: 27857605 PMCID: PMC5070457 DOI: 10.2142/biophysics.8.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/27/2011] [Indexed: 12/01/2022] Open
Abstract
The power stroke model was criticized and a model was proposed for muscle contraction mechanism (Mitsui, 1999). The proposed model was further developed and calculations based on the model well reproduced major experimental data on the steady filament sliding (Mitsui and Ohshima, 2008) and on the transient phenomena (Mitsui, Takai and Ohshima, 2011). In this review more weight is put on explanation of the basic ideas of the model, especially logical necessity of the model, leaving mathematical details to the above-mentioned papers. A thermodynamic relationship that any models based upon the sliding filament theory should fulfill is derived. The model which fulfills the thermodynamic relationship is constructed on the assumption that a myosin head bound to an actin filament forms a complex with three actin molecules. In shortening muscles, the complex moves along the actin filament changing the partner actin molecules with steps of about 5.5 nm. This process is made possible through cooperative interaction among cross-bridges. The ATP hydrolysis energy is liberated by fraction at each step through chemical reactions between myosin and actin molecules. The cooperativity among crossbridges disappears in length-clamped muscles, in agreement with experimental observations that the cross-bridge produces force independently in the isometric tetanus state. The distance of the head movement per ATP hydrolysis cycle is expected to be about 5.5 nm or a few times of it under the condition of the in vitro single head experiments. Calculation results are surveyed illustrating that they are in good agreement with major experimental observations.
Collapse
Affiliation(s)
- Toshio Mitsui
- Nakasuji-yamate, 3-6-24, Takarazuka, Hyogo 665-0875, Japan
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
29
|
Nishikawa KC, Monroy JA, Uyeno TE, Yeo SH, Pai DK, Lindstedt SL. Is titin a 'winding filament'? A new twist on muscle contraction. Proc Biol Sci 2011; 279:981-90. [PMID: 21900329 DOI: 10.1098/rspb.2011.1304] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.
Collapse
Affiliation(s)
- Kiisa C Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Williams CD, Regnier M, Daniel TL. Axial and radial forces of cross-bridges depend on lattice spacing. PLoS Comput Biol 2010; 6:e1001018. [PMID: 21152002 PMCID: PMC2996315 DOI: 10.1371/journal.pcbi.1001018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
Nearly all mechanochemical models of the cross-bridge treat myosin as a simple linear spring arranged parallel to the contractile filaments. These single-spring models cannot account for the radial force that muscle generates (orthogonal to the long axis of the myofilaments) or the effects of changes in filament lattice spacing. We describe a more complex myosin cross-bridge model that uses multiple springs to replicate myosin's force-generating power stroke and account for the effects of lattice spacing and radial force. The four springs which comprise this model (the 4sXB) correspond to the mechanically relevant portions of myosin's structure. As occurs in vivo, the 4sXB's state-transition kinetics and force-production dynamics vary with lattice spacing. Additionally, we describe a simpler two-spring cross-bridge (2sXB) model which produces results similar to those of the 4sXB model. Unlike the 4sXB model, the 2sXB model requires no iterative techniques, making it more computationally efficient. The rate at which both multi-spring cross-bridges bind and generate force decreases as lattice spacing grows. The axial force generated by each cross-bridge as it undergoes a power stroke increases as lattice spacing grows. The radial force that a cross-bridge produces as it undergoes a power stroke varies from expansive to compressive as lattice spacing increases. Importantly, these results mirror those for intact, contracting muscle force production.
Collapse
Affiliation(s)
- C. David Williams
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Michael Regnier
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Thomas L. Daniel
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
31
|
Abstract
The general structural features of the motor region of myosin superfamily members are now well established, as is a subset of the structural and kinetic transitions of the actin-myosin catalytic cycle. Not yet visualized are the structural rearrangements triggered by actin binding that are coupled to force generation and product release. In this review we describe the recent progress in understanding these missing components of the mechanism of chemomechanical transduction by myosin motors. These insights come from a combination of kinetic and single-molecule studies on multiple classes of myosins, with additional insights from contracting muscle fibers. These recent studies have explored the effects of intermediate and high loads on the kinetics of the actin-bound myosin state transitions. We also describe studies that delineate how some classes of myosin motors are adapted for processive movement on actin.
Collapse
Affiliation(s)
- H Lee Sweeney
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6085, USA.
| | | |
Collapse
|
32
|
Günther M, Schmitt S. A macroscopic ansatz to deduce the Hill relation. J Theor Biol 2010; 263:407-18. [PMID: 20045704 DOI: 10.1016/j.jtbi.2009.12.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 12/23/2009] [Accepted: 12/24/2009] [Indexed: 11/26/2022]
Abstract
In this study, we derive the hyperbolic force-velocity relation of concentric muscular contraction, first formulated empirically by A.V. Hill in 1938, from three essential model assumptions: (1) the structural assembly of three well-known elements - i.e. active, parallel damping, and serial - fulfilling a force equilibrium, (2) the parallel damping coefficient explicitly depending on muscle force output and three parameters, and (3) the kinematic gearing ratio between active and serial element being assigned to a parameter. The energy source within the muscle represented by the force of the active element is an additional fifth parameter. As a result we find the Hill "constants" A and B as functions of our five model parameters. Using A and B values from literature on experimental data, we predict heat power release of our model. By calculating enthalpy rate and mechanical efficiency, we compare the model heat power to predictions from another Hill-type model, to Hill's original findings, and to findings from modern muscle heat measurements. We reconsider why the biggest share of heat rate during isometric contractions (maintenance heat) and the velocity-dependent heat rate during concentric contractions in addition to maintenance heat rate (shortening heat rate) may be traced back to the same mechanism represented by the kinematic gearing ratio. Namely, we suggest that the serial element transfers attachment-detachment fluctuations of actin-myosin crossbridges within one sarcomere to others in the same sarcomere and to those in parallel and in series. Numerically, in case of negligible passive muscular damping, we find the ratio between A and isometric force (relative A) to depend exclusively on the kinematic gearing ratio, whereas the maintenance heat rate scales with the square of relative A. Moreover, this mechanical coupling internal to the muscle fibres may also be behind the macroscopic force dependency of the overall parallel damping coefficient.
Collapse
Affiliation(s)
- Michael Günther
- Eberhard-Karls-Universität, Institut für Sportwissenschaft, Arbeitsbereich III, Wilhelmstrasse 124, D-72074 Tübingen, Deutschland, Germany
| | | |
Collapse
|
33
|
Koubassova NA, Bershitsky SY, Tsaturyan AK. A mathematical model of mechanical responses of contracting muscle fibers to temperature jumps. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
34
|
Mechanistic role of movement and strain sensitivity in muscle contraction. Proc Natl Acad Sci U S A 2009; 106:6140-5. [PMID: 19325123 DOI: 10.1073/pnas.0812487106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tension generation can be studied by applying step perturbations to contracting muscle fibers and subdividing the mechanical response into exponential phases. The de novo tension-generating isomerization is associated with one of these phases. Earlier work has shown that a temperature jump perturbs the equilibrium constant directly to increase tension. Here, we show that a length jump functions quite differently. A step release (relative movement of thick and thin filaments) appears to release a steric constraint on an ensemble of noncompetent postphosphate release actomyosin cross-bridges, enabling them to generate tension, a concentration jump in effect. Structural studies [Taylor KA, et al. (1999) Tomographic 3D reconstruction of quick-frozen, Ca(2+)-activated contracting insect flight muscle. Cell 99:421-431] that map to these kinetics indicate that both catalytic and lever arm domains of noncompetent myosin heads change angle on actin, whereas lever arm movement alone mediates the power stroke. Together, these kinetic and structural observations show a 13-nm overall interaction distance of myosin with actin, including a final 4- to 6-nm power stroke when the catalytic domain is fixed on actin. Raising fiber temperature with both perturbation techniques accelerates the forward, but slows the reverse rate constant of tension generation, kinetics akin to the unfolding/folding of small proteins. Decreasing strain, however, causes both forward and reverse rate constants to increase. Despite these changes in rate, the equilibrium constant is strain-insensitive. Activation enthalpy and entropy data show this invariance to be the result of enthalpy-entropy compensation. Reaction amplitudes confirm a strain-invariant equilibrium constant and thus a strain-insensitive ratio of pretension- to tension-generating states as work is done.
Collapse
|
35
|
Chandran PL, Wolf CB, Mofrad MRK. Band-like Stress Fiber Propagation in a Continuum and Implications for Myosin Contractile Stresses. Cell Mol Bioeng 2009. [DOI: 10.1007/s12195-009-0044-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
36
|
Hooper SL, Hobbs KH, Thuma JB. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 2008; 86:72-127. [PMID: 18616971 PMCID: PMC2650078 DOI: 10.1016/j.pneurobio.2008.06.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/26/2022]
Abstract
This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.
Collapse
Affiliation(s)
- Scott L. Hooper
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Kevin H. Hobbs
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| | - Jeffrey B. Thuma
- Neuroscience Program Department of Biological Sciences Ohio University Athens, OH 45701 614 593-0679 (voice) 614 593-0687 (FAX)
| |
Collapse
|
37
|
Friedrich O, Weber C, von Wegner F, Chamberlain JS, Fink RHA. Unloaded speed of shortening in voltage-clamped intact skeletal muscle fibers from wt, mdx, and transgenic minidystrophin mice using a novel high-speed acquisition system. Biophys J 2008; 94:4751-65. [PMID: 18424498 PMCID: PMC2397370 DOI: 10.1529/biophysj.107.126557] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 02/08/2008] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle unloaded shortening has been indirectly determined in the past. Here, we present a novel high-speed optical tracking technique that allows recording of unloaded shortening in single intact, voltage-clamped mammalian skeletal muscle fibers with 2-ms time resolution. L-type Ca(2+) currents were simultaneously recorded. The time course of shortening was biexponential: a fast initial phase, tau(1), and a slower successive phase, tau(2,) with activation energies of 59 kJ/mol and 47 kJ/mol. Maximum unloaded shortening speed, v(u,max), was faster than that derived using other techniques, e.g., approximately 14.0 L(0) s(-1) at 30 degrees C. Our technique also allowed direct determination of shortening acceleration. We applied our technique to single fibers from C57 wild-type, dystrophic mdx, and minidystrophin-expressing mice to test whether unloaded shortening was affected in the pathophysiological mechanism of Duchenne muscular dystrophy. v(u,max) and a(u,max) values were not significantly different in the three strains, whereas tau(1) and tau(2) were increased in mdx fibers. The results were complemented by myosin heavy and light chain (MLC) determinations that showed the same myosin heavy chain IIA profiles in the interossei muscles from the different strains. In mdx muscle, MLC-1f was significantly increased and MLC-2f and MLC-3f somewhat reduced. Fast initial active shortening seems almost unaffected in mdx muscle.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dystrophin/genetics
- Dystrophin/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred mdx
- Mice, Transgenic
- Microscopy, Video/instrumentation
- Microscopy, Video/methods
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/physiology
- Muscle, Skeletal/cytology
- Muscle, Skeletal/physiology
- Patch-Clamp Techniques
- Signal Processing, Computer-Assisted/instrumentation
Collapse
Affiliation(s)
- O Friedrich
- Medical Biophysics, Department of Systems Physiology, Institute of Physiology and Pathophysiology, Ruprecht-Karls-University, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
38
|
Mitsui T, Ohshima H. Remarks on muscle contraction mechanism. Int J Mol Sci 2008; 9:872-904. [PMID: 19325791 PMCID: PMC2635709 DOI: 10.3390/ijms9050872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 05/19/2008] [Accepted: 05/19/2008] [Indexed: 11/17/2022] Open
Abstract
Muscle contraction mechanism is discussed by reforming the model described in an article by Mitsui (Adv. Biophys. 1999, 36, 107-158). A simple thermodynamic relationship is presented, which indicates that there is an inconsistency in the power stroke model or the swinging lever model. To avoid this difficulty, a new model is proposed. It is assumed that a myosin head forms a polaron-like complex with about three actin molecules when it attaches to an actin filament and the complex translates along the actin filament producing force. Various experimental data on the muscle contraction are well explained based upon the model.
Collapse
Affiliation(s)
| | - Hiroyuki Ohshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan; E-Mail:
| |
Collapse
|
39
|
Dorfmann AL, Woods WA, Trimmer BA. Muscle performance in a soft-bodied terrestrial crawler: constitutive modelling of strain-rate dependency. J R Soc Interface 2008; 5:349-62. [PMID: 17609178 PMCID: PMC2607395 DOI: 10.1098/rsif.2007.1076] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental data on the passive mechanical properties of the ventral interior lateral muscle of the tobacco hornworm caterpillar, Manduca sexta, are reported. The stress-deformation response of the Manduca muscle is shown to be nonlinear pseudo-elastic, capable of large deformations and subject to stress softening during initial loading cycles. The muscle passive mechanical properties also depend on multiple time-dependent processes. In particular, we show new experimental data from cyclic loading tests of an unstimulated muscle with constant maximum stretch and different, constant engineering strain rates. Then, on the basis of these data a constitutive model is derived to reproduce the main characteristics of this behaviour. In formulating the constitutive model, we consider the muscle as a complex macromolecular structure with fibrous components at numerous size scales. The model uses a phenomenological approach to account for different mechanisms by which passive force changes during applied deformation and how the muscle properties recover after unloading.
Collapse
Affiliation(s)
- A Luis Dorfmann
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
40
|
Dorfmann A, Trimmer BA, Woods WA. A constitutive model for muscle properties in a soft-bodied arthropod. J R Soc Interface 2007; 4:257-69. [PMID: 17251157 PMCID: PMC2359834 DOI: 10.1098/rsif.2006.0163] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, we examine the mechanical properties of muscles in a soft-bodied arthropod under both passive and stimulated conditions. In particular, we examine the ventral interior lateral muscle of the tobacco hornworm caterpillar, Manduca sexta, and show that its response is qualitatively similar to the behaviour of particle-reinforced rubber. Both materials are capable of large nonlinear elastic deformations, show a hysteretic behaviour and display stress softening during the first few cycles of repeated loading. The Manduca muscle can therefore be considered as different elastic materials during loading and unloading and is best described using the theory of pseudo-elasticity. We summarize the basic equations for transversely isotropic pseudo-elastic materials, first for general deformations and then for the appropriate uniaxial specialization. The constitutive relation proposed is in good agreement with the experimental data for both the passive and the stimulated conditions.
Collapse
Affiliation(s)
- A Dorfmann
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|
41
|
Abstract
The symmetry-breaking event during polarization of C. elegansembryos is an asymmetric rearrangement of the acto-myosin network, which dictates cell polarity through the differential recruitment of PAR proteins. The sperm-supplied centrosomes are required to initiate this cortical reorganization. Several questions about this event remain unanswered: how is the acto-myosin network regulated during polarization and how does acto-myosin reorganization lead to asymmetric PAR protein distribution? As we discuss,recent studies show that C. elegans embryos use two GTPases, RHO-1 and CDC-42, to regulate these two steps in polarity establishment. Although RHO-1 and CDC-42 control distinct aspects of polarization, they function interdependently to regulate polarity establishment in C. elegansembryos.
Collapse
Affiliation(s)
- Carrie R Cowan
- Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria.
| | | |
Collapse
|
42
|
Crowley JD, Steele IM, Bosnich B. Protonmotive force: development of electrostatic drivers for synthetic molecular motors. Chemistry 2007; 12:8935-51. [PMID: 16823783 DOI: 10.1002/chem.200500519] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ferrocene has been investigated as a platform for developing protonmotive electrostatic drivers for molecular motors. When two 3-pyridine groups are substituted to the (rapidly rotating) cyclopentadienyl (Cp) rings of ferrocene, one on each Cp, it is shown that the (Cp) eclipsed, pi-stacked rotameric conformation is preferred both in solution and in the solid state. Upon quaternization of both of the pyridines substituents, either by protonation or by alkylation, it is shown that the preferred rotameric conformation is one where the pyridinium groups are rotated away from the fully pi-stacked conformation. Electrostatic calculations indicate that the rotation is caused by the electrostatic repulsion between the charges. Consistently, when the pi-stacking energy is increased pi-stacked population increases, and conversely when the electrostatic repulsion is increased pi-stacked population is decreased. This work serves to provide an approximate estimate of the amount of torque that the electrostatically driven ferrocene platform can generate when incorporated into a molecular motor. The overall conclusion is that the electrostatic interaction energy between dicationic ferrocene dipyridyl systems is similar to the pi-stacking interaction energy and, consequently, at least tricationic systems are required to fully uncouple the pi-stacked pyridine substituents.
Collapse
Affiliation(s)
- James D Crowley
- Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | | | | |
Collapse
|
43
|
Serebryanaya DV, Shcherbakova OV, Dudnakova TV, Shirinsky VP, Vorotnikov AV. Telokin/KRP differentially modulates myosin II filament assembly and regulatory light chain phosphorylation in fibroblasts. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906050162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Andruchova O, Stephenson GMM, Andruchov O, Stephenson DG, Galler S. Myosin heavy chain isoform composition and stretch activation kinetics in single fibres of Xenopus laevis iliofibularis muscle. J Physiol 2006; 574:307-317. [PMID: 16644798 PMCID: PMC1817808 DOI: 10.1113/jphysiol.2006.109926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 04/24/2006] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle is composed of specialized fibre types that enable it to fulfil complex and variable functional needs. Muscle fibres of Xenopus laevis, a frog formerly classified as a toad, were the first to be typed based on a combination of physiological, morphological, histochemical and biochemical characteristics. Currently the most widely accepted criterion for muscle fibre typing is the myosin heavy chain (MHC) isoform composition because it is assumed that variations of this protein are the most important contributors to functional diversity. Yet this criterion has not been used for classification of Xenopus fibres due to the lack of an effective protocol for MHC isoform analysis. In the present study we aimed to resolve and visualize electrophoretically the MHC isoforms expressed in the iliofibularis muscle of Xenopus laevis, to define their functional identity and to classify the fibres based on their MHC isoform composition. Using a SDS-PAGE protocol that proved successful with mammalian muscle MHC isoforms, we were able to detect five MHC isoforms in Xenopus iliofibularis muscle. The kinetics of stretch-induced force transients (stretch activation) produced by a fibre was strongly correlated with its MHC isoform content indicating that the five MHC isoforms confer different kinetics characteristics. Hybrid fibre types containing two MHC isoforms exhibited stretch activation kinetics parameters that were intermediate between those of the corresponding pure fibre types. These results clearly show that the MHC isoforms expressed in Xenopus muscle are functionally different thereby validating the idea that MHC isoform composition is the most reliable criterion for vertebrate skeletal muscle fibre type classification. Thus, our results lay the foundation for the unequivocal classification of the muscle fibres in the Xenopus iliofibularis muscle and for gaining further insights into skeletal muscle fibre diversity.
Collapse
Affiliation(s)
- Olena Andruchova
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | | | |
Collapse
|
45
|
Machackova J, Barta J, Dhalla NS. Molecular defects in cardiac myofibrillar proteins due to thyroid hormone imbalance and diabetesThis paper is a part of a series in the Journal's "Made in Canada" section. The paper has undergone peer review. Can J Physiol Pharmacol 2005; 83:1071-91. [PMID: 16462907 DOI: 10.1139/y05-121] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heart very often becomes a victim of endocrine abnormalities such as thyroid hormone imbalance and insulin deficiency, which are manifested in a broad spectrum of cardiac dysfunction from mildly compromised function to severe heart failure. These functional changes in the heart are largely independent of alterations in the coronary arteries and instead reside at the level of cardiomyocytes. The status of cardiac function reflects the net of underlying subcellular modifications induced by an increase or decrease in thyroid hormone and insulin plasma levels. Changes in the contractile and regulatory proteins constitute molecular and structural alterations in myofibrillar assembly, called myofibrillar remodeling. These alterations may be adaptive or maladaptive with respect to the functional and metabolic demands on the heart as a consequence of the altered endocrine status in the body. There is a substantial body of information to indicate alterations in myofibrillar proteins including actin, myosin, tropomyosin, troponin, titin, desmin, and myosin-binding protein C in conditions such as hyperthyroidism, hypothyroidism, and diabetes. The present article is focussed on discussion how myofibrillar proteins are altered in response to thyroid hormone imbalance and lack of insulin or its responsiveness, and how their structural and functional changes explain the contractile defects in the heart.
Collapse
Affiliation(s)
- Jarmila Machackova
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | | | | |
Collapse
|
46
|
Linari M, Brunello E, Reconditi M, Sun YB, Panine P, Narayanan T, Piazzesi G, Lombardi V, Irving M. The structural basis of the increase in isometric force production with temperature in frog skeletal muscle. J Physiol 2005; 567:459-69. [PMID: 15961426 PMCID: PMC1474186 DOI: 10.1113/jphysiol.2005.089672] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
X-ray diffraction patterns were recorded from isolated single fibres of frog skeletal muscle during isometric contraction at temperatures between 0 and 17 degrees C. Isometric force was 43 +/- 2% (mean +/- S.E.M., n = 10) higher at 17 degrees C than 0 degrees C. The intensity of the first actin layer line increased by 57 +/- 18% (n = 5), and the ratio of the intensities of the equatorial 1,1 and 1,0 reflections by 20 +/- 7% (n = 10), signalling radial or azimuthal motions of the myosin head domains. The M3 X-ray reflection from the axial repeat of the heads along the filaments was 27 +/- 4% more intense at 17 degrees C, suggesting that the heads became more perpendicular to the filaments. The ratio of the intensities of the higher and lower angle peaks of the M3 reflection (R(M3)) was 0.93 +/- 0.02 (n = 5) at 0 degrees C and 0.77 +/- 0.02 at 17 degrees C. These peaks are due to interference between the two halves of each myosin filament, and the R(M3) decrease shows that heads move towards the midpoint of the myosin filament at the higher temperature. Calculations based on a crystallographic model of the heads indicated that the observed R(M3) change corresponds to tilting of their light-chain domains by 9 deg, producing an axial displacement of 1.4 nm, which is equal to that required to strain the actin and myosin filaments under the increased force. We conclude that the higher force generated by skeletal muscle at higher temperature can be accounted for by axial tilting of the myosin heads.
Collapse
MESH Headings
- Actins/chemistry
- Actins/physiology
- Actins/ultrastructure
- Animals
- Cells, Cultured
- Isometric Contraction/physiology
- Models, Biological
- Models, Chemical
- Models, Molecular
- Molecular Motor Proteins/chemistry
- Molecular Motor Proteins/physiology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/physiology
- Muscle, Skeletal/ultrastructure
- Myosins/chemistry
- Myosins/physiology
- Myosins/ultrastructure
- Rana temporaria
- Sarcomeres/chemistry
- Sarcomeres/physiology
- Sarcomeres/ultrastructure
- Stress, Mechanical
- Structure-Activity Relationship
- Temperature
Collapse
Affiliation(s)
- M Linari
- Laboratorio di Fisiologia, DBAG, Università di Firenze, Sesto Fiorentino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ferenczi MA, Bershitsky SY, Koubassova N, Siththanandan V, Helsby WI, Panine P, Roessle M, Narayanan T, Tsaturyan AK. The “Roll and Lock” Mechanism of Force Generation in Muscle. Structure 2005; 13:131-41. [PMID: 15642268 DOI: 10.1016/j.str.2004.11.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2004] [Revised: 11/05/2004] [Accepted: 11/05/2004] [Indexed: 11/23/2022]
Abstract
Muscle force results from the interaction of the globular heads of myosin-II with actin filaments. We studied the structure-function relationship in the myosin motor in contracting muscle fibers by using temperature jumps or length steps combined with time-resolved, low-angle X-ray diffraction. Both perturbations induced simultaneous changes in the active muscle force and in the extent of labeling of the actin helix by stereo-specifically bound myosin heads at a constant total number of attached heads. The generally accepted hypothesis assumes that muscle force is generated solely by tilting of the lever arm, or the light chain domain of the myosin head, about its catalytic domain firmly bound to actin. Data obtained suggest an additional force-generating step: the "roll and lock" transition of catalytic domains of non-stereo-specifically attached heads to a stereo-specifically bound state. A model based on this scheme is described to quantitatively explain the data.
Collapse
|
48
|
Andruchov O, Andruchova O, Wang Y, Galler S. Kinetic properties of myosin heavy chain isoforms in mouse skeletal muscle: comparison with rat, rabbit, and human and correlation with amino acid sequence. Am J Physiol Cell Physiol 2004; 287:C1725-C1732. [PMID: 15306546 DOI: 10.1152/ajpcell.00255.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stretch activation kinetics were investigated in skinned mouse skeletal muscle fibers of known myosin heavy chain (MHC) isoform content to assess kinetic properties of different myosin heads while generating force. The time to peak of stretch-induced delayed force increase (t(3)) was strongly correlated with MHC isoforms [t(3) given in ms for fiber types containing specified isoforms; means +/- SD with n in parentheses: MHCI 680 +/- 108 (13), MHCIIa 110.5 +/- 10.7 (23), MHCIIx(d) 46.2 +/- 5.2 (20), MHCIIb 23.5 +/- 3.3 (76)]. This strong correlation suggests different kinetics of force generation of different MHC isoforms in the following order:MHCIIb > MHCIIx(d) > MHCIIa >> MHCI. For rat, rabbit, and human skeletal muscles the same type of correlation was found previously. The kinetics decreases slightly with increasing body mass. Available amino acid sequences were aligned to quantify the structural variability of MHC isoforms of different animal species. The variation in t(3) showed a correlation with the structural variability of specific actin-binding loops (so-called loop 2 and loop 3) of myosin heads (r = 0.74). This suggests that alterations of amino acids in these loops contribute to the different kinetics of myosin heads of various MHC isoforms.
Collapse
Affiliation(s)
- Oleg Andruchov
- Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | |
Collapse
|
49
|
Tchaicheeyan O. Is peptide bond cis/trans isomerization a key stage in the chemo-mechanical cycle of motor proteins? FASEB J 2004; 18:783-9. [PMID: 15117883 DOI: 10.1096/fj.03-1027hyp] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Motor proteins such as myosin and kinesin are responsible for actively directed movement in vivo. The physicochemical mechanism underlying their function is still obscure. A novel and unifying model concerning the motors driving mechanism is suggested here. This model resides within the framework of the well-studied "swinging lever-arm" hypothesis, stating that cis/trans peptide bond isomerization (CTI) is a key stage in the chemo-mechanical coupling within actomyosin--the complex of the motor (myosin) and its specific track (actin). CTI is suggested to propel myosin's lever-arm swing. The model addresses on the submolecular level a broad spectrum of actomyosin's functional characteristics, such as kinetics, energetics, force exertion, stepping, and directionality. The model may be tested first with relative ease in kinesin--a smaller motor that could be specifically modified with unnatural amino acids using bacterial expression. Suggested modifications may be used for labeling and functional decoupling.
Collapse
Affiliation(s)
- Oren Tchaicheeyan
- Biomedical Engineering Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
50
|
Peterman EJG, Sosa H, Moerner WE. Single-molecule fluorescence spectroscopy and microscopy of biomolecular motors. Annu Rev Phys Chem 2004; 55:79-96. [PMID: 15117248 DOI: 10.1146/annurev.physchem.55.091602.094340] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The methods of single-molecule fluorescence spectroscopy and microscopy have been recently utilized to explore the mechanism of action of several members of the kinesin and myosin biomolecular motor protein families. Whereas ensemble averaging is removed in single-molecule studies, heterogeneity in the behavior of individual motors can be directly observed, without synchronization. Observation of translocation by individual copies of motor proteins allows analysis of step size, rate, pausing, and other statistical properties of the process. Polarization microscopy as a function of nucleotide state has been particularly useful in revealing new and highly rotationally mobile forms of particular motors. These experiments complement X-ray and biochemical studies and provide a detailed view into the local dynamical behavior of motor proteins.
Collapse
Affiliation(s)
- Erwin J G Peterman
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, Netherlands.
| | | | | |
Collapse
|