1
|
Azargoshasb H, Lee HJ, Sullivan DJ, Rimer JD, Vekilov PG. The Hematin-dihydroartemisinin Adduct Mobilizes a Potent Mechanism to Suppress β-hematin Crystallization. J Biol Chem 2025:110310. [PMID: 40449598 DOI: 10.1016/j.jbc.2025.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 05/21/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
Malaria remains a significant public health challenge in equatorial regions of the world largely owing to the parasite's emerging resistance to the recently introduced drugs of the artemisinin (ART) family. In the human body most ART-derivative drugs are metabolized to dihydroartemisinin (DHA), which, in the parasite, after activation by heme, can form a hematin-dihydroartemisinin adduct (H-DHA). Here we test whether and how H-DHA inhibits hematin crystallization, the main constituent of the heme detoxification pathway of malaria parasites. We find that H-DHA is a poor inhibitor of classical crystal growth- it weakly blocks the growth sites on crystal surfaces-and, counterproductively, a promotor of β-hematin nucleation, driven by a boost in the formation of precursors. We establish that at elevated hematin concentrations H-DHA activates two non-classical pathways that transform it into a potent β-hematin growth inhibitor. First, β-hematin crystallites, whose nucleation is promoted by H-DHA, incorporate into large β-hematin crystals and suppress their growth, likely by straining the crystal lattice. A second consequence of H-DHA is the generation of macrosteps on β-hematin crystal surfaces that hinder growth. Importantly, the induced growth suppression is irreversible and persists even in the absence of H-DHA. Our findings suggest that a partial resistance mechanism to artemisinin-class drugs in trophozoite-stage parasites may be due to the reduced concentrations of hematin and H-DHA, which deactivate the dual non-classical mode of action of the adduct in the delayed-clearance parasite strains.
Collapse
Affiliation(s)
- Hamidreza Azargoshasb
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX 77204-4004, USA; Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX 77204-4004, USA
| | - Huan-Jui Lee
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX 77204-4004, USA; Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX 77204-4004, USA
| | - David J Sullivan
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N. Wolfe Street, Baltimore, Maryland 21205-2103, USA
| | - Jeffrey D Rimer
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX 77204-4004, USA; Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX 77204-4004, USA; Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204-5003, USA
| | - Peter G Vekilov
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Blvd., Houston, TX 77204-4004, USA; Welch Center for Advanced Bioactive Materials Crystallization, University of Houston, 4226 M.L. King Blvd., Houston, TX 77204-4004, USA; Department of Chemistry, University of Houston, 3585 Cullen Blvd., Houston, TX 77204-5003, USA.
| |
Collapse
|
2
|
Khalid Z, Saleem A, Zafar S, Malik N, Gul A. Exploring Baralle-Macken Syndrome: A Novel COPB1 Mutation in Consanguineous Pakistani Siblings. Am J Med Genet A 2025:e64123. [PMID: 40396222 DOI: 10.1002/ajmg.a.64123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/08/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Monogenic neurological disorders significantly contribute to global morbidity and mortality, yet their genetic mechanisms remain poorly understood, especially in consanguineous Pakistani populations with over 83% consanguinity rates. The underrepresentation of these populations in global genomic databases complicates the interpretation of rare genetic variants crucial for diagnostics and healthcare outcomes. Baralle-Macken syndrome (BARMACS) is a rare autosomal recessive disorder caused by mutations in the COPB1 gene, essential for transporting proteins and lipids within cellular compartments, including neurons. While only two homozygous COPB1 mutations have been previously reported, we describe a third novel variant (Chr11(GRCh37): g.14480187C>A; NM_016451.4: c.2693G>T; p.Arg898Leu) identified in two male siblings from a consanguineous Pakistani family. This variant alters a highly conserved arginine residue, suggesting a pathogenic effect on protein function, potentially disrupting transport between the Golgi apparatus and the endoplasmic reticulum and impairing early brain development. Our study marks the first report of Baralle-Macken syndrome in a Pakistani population, highlighting a novel missense mutation in COPB1 associated with the disorder, and represents the first documented case involving affected males. These findings emphasize the necessity for further investigation into the functional consequences of COPB1 mutations and their impact on disease pathology.
Collapse
Affiliation(s)
- Zantasha Khalid
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Ayesha Saleem
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Seemi Zafar
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Nida Malik
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Asma Gul
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| |
Collapse
|
3
|
Dolui S, Maity A, Kundu S, Nanda B, Roy A, Mondal A, Adhikary A, Saha A, Pal U, Bhunia A, Maiti NC. Stabilization of α-Helical Folded Structures Retards Hydrophobic Zipping and Fibrillation of Bovine Insulin: A Key Signature from Raman Spectroscopic Analysis. J Phys Chem B 2025; 129:4320-4334. [PMID: 40289529 DOI: 10.1021/acs.jpcb.5c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Insulin is an α-helical-rich globular protein that is well-stabilized via several noncovalent forces including the inter-residue/intersubunit hydrophobic interactions. However, similar noncovalent forces, although of different degrees and orientations, effectuate many proteins to assemble and adapt thermodynamically stable β-sheet-rich fibrillar aggregates, causing a severe impact on their native structure and function. This fibrillation of proteins involves a key event, which is the zipping of hydrophobic amyloidogenic regions that are exposed intrinsically or become bared in the folded proteins under harsh conditions. This study has revealed that Coomassie Brilliant Blue G-250 (CBBG) can inhibit the essential zipping processes and stabilize the α-helical structure of bovine insulin (BI), resulting in a significant delay in the fibril formation. The interaction of CBBG with BI was found to be a thermodynamically favorable event, with it being an enthalpy-driven process (ΔH0 -88.04 kcal/mol), with the change in Gibb's free energy (ΔG0) observed to be ∼ -6.98 kcal/mol. Surface-enhanced Raman scattering measurements showed a characteristic α-helical signal of the protein at 1649 cm-1 in the presence of CBBG, suggesting the enhanced thermal stability of the hormone. Computational analysis further revealed that CBBG binds to both chains A and B of bovine insulin and boosts the folding stability in the monomeric state, causing a significant reduction in its structural fluctuation. The sulfonate moieties of CBBG showed significant intermolecular interactions with the B chain of N-terminal segments. Specifically, one sulfonate group formed multiple hydrogen bonds with both the backbone amide group and the terminal amine. Also, the N-terminal phenylalanine residue of BI (F1B) was found to have a significant contribution to the hydrophobic π-π stacking interactions with the CBBG aromatic phenyl ring.
Collapse
Affiliation(s)
- Sandip Dolui
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Anupam Maity
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Shubham Kundu
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Banadipa Nanda
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Anupam Roy
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Animesh Mondal
- Zoology, Govt. Gen. De. College, Mangalkote, Panchanantala, Khudrun, Purba Bardhaman, West Bengal 713132, India
| | - Ananya Adhikary
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Calcutta 700009, India
| | - Uttam Pal
- S. N. Bose National Centre for Basic Sciences, Technical Research Centre, Kolkata 700106, India
| | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Unified Academic Campus, Salt Lake, EN80, Kolkata 700091, India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division, Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 4, Raja S. C. Mallick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
4
|
Lecinski S, Howard JAL, MacDonald C, Leake MC. iPAR: a new reporter for eukaryotic cytoplasmic protein aggregation. BMC METHODS 2025; 2:5. [PMID: 40176779 PMCID: PMC11958454 DOI: 10.1186/s44330-025-00023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025]
Abstract
Background Cells employ myriad regulatory mechanisms to maintain protein homeostasis, termed proteostasis, to ensure correct cellular function. Dysregulation of proteostasis, which is often induced by physiological stress and ageing, often results in protein aggregation in cells. These aggregated structures can perturb normal physiological function, compromising cell integrity and viability, a prime example being early onset of several neurodegenerative diseases. Understanding aggregate dynamics in vivo is therefore of strong interest for biomedicine and pharmacology. However, factors involved in formation, distribution and clearance of intracellular aggregates are not fully understood. Methods Here, we report an improved methodology for production of fluorescent aggregates in model budding yeast which can be detected, tracked and quantified using fluorescence microscopy in live cells. This new openly-available technology, iPAR (inducible Protein Aggregation Reporter), involves monomeric fluorescent protein reporters fused to a ∆ssCPY* aggregation biomarker, with expression controlled under the copper-regulated CUP1 promoter. Results Monomeric tags overcome challenges associated with non-physiological reporter aggregation, whilst CUP1 provides more precise control of protein production. We show that iPAR and the associated bioimaging methodology enables quantitative study of cytoplasmic aggregate kinetics and inheritance features in vivo. We demonstrate that iPAR can be used with traditional epifluorescence and confocal microscopy as well as single-molecule precise Slimfield millisecond microscopy. Our results indicate that cytoplasmic aggregates are mobile and contain a broad range of number of iPAR molecules, from tens to several hundred per aggregate, whose mean value increases with extracellular hyperosmotic stress. Discussion Time lapse imaging shows that although larger iPAR aggregates associate with nuclear and vacuolar compartments, we show directly, for the first time, that these proteotoxic accumulations are not inherited by daughter cells, unlike nuclei and vacuoles. If suitably adapted, iPAR offers new potential for studying diseases relating to protein oligomerization processes in other model cellular systems. Supplementary Information The online version contains supplementary material available at 10.1186/s44330-025-00023-w.
Collapse
Affiliation(s)
- Sarah Lecinski
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD UK
| | - Jamieson A. L. Howard
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD UK
| | - Chris MacDonald
- Department of Biology, University of York, York, YO10 5DD UK
- York Biomedical Research Institute, University of York, York, YO10 5DD UK
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD UK
- Department of Biology, University of York, York, YO10 5DD UK
- York Biomedical Research Institute, University of York, York, YO10 5DD UK
| |
Collapse
|
5
|
Kushwaha P, Hatwar A, Prabhu NP. Stability and Fibrillation of Lysozyme in the Mixtures of Ionic Liquids with Varying Hydrophobicity. Chemphyschem 2025; 26:e202400743. [PMID: 39637317 DOI: 10.1002/cphc.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Combinatorial effects of small molecules provide newer avenues to improve protein stability. The combined effect of two different classes of ILs on the stability and fibrillation propensity of lysozyme (Lyz) was investigated. Imidazolium-ILs (an aromatic moiety) with varying alkyl chains, methyl (MIC), butyl (BMIC) and hexyl (HMIC), and pyrrolidinium-IL (alicyclic moiety) with butyl substitution (BPyroBr) were chosen. The fibrillation was delayed by the addition of any of the IL. While added as a mixture with varying molar ratios, the presence of HMIC with MIC or BMIC at the ratio of 2:1 increased the fibrillation time synergistically by increasing lag time and reducing elongation rate. The protein stability was significantly reduced in these conditions compared to lower molar ratios of HMIC with MIC or BMIC. Molecular dynamics simulation studies indicated that upon adding Im-ILs water molecules were reduced around Lyz, whereas BPyroBr slightly increased the water around Lyz. Preferential interaction studies suggest that the preferential binding of HMIC with the protein was the most favored and it synergistically facilitated the preferential binding of MIC. Though BMIC was preferentially binding to the protein, it disfavoured the interaction of MIC. BMIC and BPyroBr had a competitive binding on the surface of Lyz. The results suggested that the mixture of ILs containing the longer alkyl chain destabilizes the protein and delays the fibril formation to a larger extent than the shorter alkyl chain ILs. Further, the effect of aromatic ILs could be greater than alicyclic ILs having the same alkyl chain length.
Collapse
Affiliation(s)
- Pratibha Kushwaha
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - Abhinav Hatwar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| | - N Prakash Prabhu
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India
| |
Collapse
|
6
|
Jain A, Lopus M, Kishore N. From Self-Assembly to Drug Delivery: Understanding and Exploring Protein Fibrils. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:473-495. [PMID: 39745783 DOI: 10.1021/acs.langmuir.4c03745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127). The effect of pluronics on protein aggregation and fibrillation has been studied mechanistically using a combination of calorimetric and spectroscopic techniques. TEM images and the ThT binding experiment were used to analyze the conformation of protein fibrils, and the results showed that pluronics accelerated the fibrillation process. When pluronics interact with protein at different stages of fibrillation, their pre- and postmicellar concentrations show a decrease in ΔHm° value as the time of incubation increases. This indicates the formation of amorphous aggregates due to which endothermic enthalpy is observed. As a consequence, it was investigated if these generated aggregates can also act as drug delivery vehicle; therefore, the work was carried out with 5-fluorouracil and cytarabine. The endothermic enthalpy of interaction suggests that hydrophobic interaction is more prevalent when cytarabine is employed with protein fibrils, whereas the electrostatic interaction is more prevalent when 5-fluorouracil is combined with it. The former drug, however, showed a greater adsorption than the latter on the surface of protein fibrils. It is therefore determined that 5-fluorouracil has relatively significant adsorption on fibril surfaces, whereas cytarabine has weak adsorption and is easily desorbed in cells. Consequently, the combination of LFF127 and 5-FU is lethal to malignant cells. The drug encapsulation and delivery aspect of protein fibrils/aggregates needs further exploration.
Collapse
Affiliation(s)
- Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Manu Lopus
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari, Mumbai 400098, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Bhat MY. Osmolytes as structure-function regulators of intrinsically disordered casein proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 211:17-38. [PMID: 39947749 DOI: 10.1016/bs.pmbts.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Intrinsically disordered proteins (IDPs), despite lacking a stable structure, play crucial role in majority of the cellular processes. Casein, a key milk protein, represents this category of proteins, due to its dynamic and flexible structure which contributes towards the nutritional and functional properties of milk. The present chapter summarizes the role of osmolytes (small molecular weight organic molecules generally accumulated by cells to protect against denaturing stresses) in regulating the structure-function integrity of intrinsically disordered casein proteins. Osmolyte - casein interplay is of particular interest as these osmolytes have been found to affect the conformational flexibility and functional properties of casein proteins and thus can affect their overall behavior in the cellular environment. The present chapter delves into this by discussing the unique structural and functional properties of casein IDPs and the influence of osmolytes on their structure, stability, and chaperone activity. Elucidation of the osmolyte effects on the structural-functional integrity of caseins should advance our understanding of the dynamics of protein structure and function in complex biological environments and also offer practical perceptions for their future applications.
Collapse
Affiliation(s)
- Mohd Younus Bhat
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India; Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
8
|
Pillai M, Jha SK. Conformational Enigma of TDP-43 Misfolding in Neurodegenerative Disorders. ACS OMEGA 2024; 9:40286-40297. [PMID: 39372031 PMCID: PMC11447851 DOI: 10.1021/acsomega.4c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/25/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024]
Abstract
Misfolding and aggregation of the protein remain some of the most common phenomena observed in neurodegeneration. While there exist multiple neurodegenerative disorders characterized by accumulation of distinct proteins, what remains particularly interesting is the ability of these proteins to undergo a conformational change to form aggregates. TDP-43 is one such nucleic acid binding protein whose misfolding is associated with many neurogenerative diseases including amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration (FTLD). TDP-43 protein assumes several different conformations and oligomeric states under the diseased condition. In this review, we explore the intrinsic relationship between the conformational variability of TDP-43 protein, with a particular focus on the RRM domains, and its propensity to undergo aggregation. We further emphasize the probable mechanism behind the formation of these conformations and suggest a potential diagnostic and therapeutic strategy in the context of these conformational states of the protein.
Collapse
Affiliation(s)
- Meenakshi Pillai
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Dilshad S, Shabnam, Ali A, Firdaus S, Ahmad M, Ahmad A. Suppression of human lysozyme aggregation by a novel copper-based complex of 3,4-dimethoxycinnamic acid. J Biomol Struct Dyn 2024; 42:8372-8384. [PMID: 37578054 DOI: 10.1080/07391102.2023.2246567] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
In this work, a new Cu(II)-based complex as a chemotherapeutic drug agent, formulated as[Cu(DCA)4(H2O)2]⋅4H2O⋅4MeOH, (DCA = 3,4-dimethoxycinnamic acid), namely 1 was successfully synthesized utilizing DCA as a ligand to arrest fibrillation in Human lysozyme. The 1 was thoroughly characterized by single crystal X-ray diffraction (SC-XRD), spectroscopic (UV-Vis and FTIR) techniques, PXRD, and TGA analysis. Its crystal structure reveals a paddle wheel network around central copper metal ions. The Cu(II) metal ions exhibit a distorted square pyramidal configuration. The fluorescence titration studies showed moderate binding interaction of 1 with HuL with Ka of 6.3x105 M-1 at pH-2, 25 °C due to its interaction withAsp53, Tyr63, Val110, and Ala111 as shown by docking and simulation studies. 1suppresses the HuL fibrillation in a concentration-dependent manner, as demonstrated by ThT assay. At 200 µM concentration, it leads to the formation of smaller species of the protein in comparison to the control sample, as suggested by Light Scattering studies. The species formed are less hydrophobic and retain their native α-helix structure compared to the control samples, which are hydrophobic and form β-sheet rich amyloids as shown by ANS hydrophobicity assay and CD spectroscopy, respectively. Furthermore, morphological analysis of the species by AFM has demonstrated that, unlike mature amyloid fibrils in the control sample, HuL forms small-size aggregates in the presence of 1 under similar fibrillation conditions. It can be concluded that 1 effectively suppresses HuL fibrillation due to moderate binding to the protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sumra Dilshad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Shabnam
- Biophysical Chemistry Lab, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Arif Ali
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Shama Firdaus
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Musheer Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Aiman Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
10
|
Malone MAV, Castillo DAA, Santos HT, Kaur A, Elrafei T, Steinberg L, Kumar A. A systematic review of the literature on localized gastrointestinal tract amyloidosis: Presentation, management and outcomes. Eur J Haematol 2024; 113:400-415. [PMID: 39030954 DOI: 10.1111/ejh.14269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
PURPOSE Localized gastrointestinal tract amyloidosis is uncommon and little is known regarding this entity. There is no current standard of care for the management of localized amyloidosis. The objective of this study was to evaluate the characteristics, available treatments, outcomes and surveillance of these patients. METHODS We conducted a systematic review of cases reported in the literature from 1962 to 2021. Patients with gastrointestinal amyloidosis reported in English literature were included in the analysis. We described and summarized the patient's characteristics, treatments, clinical presentations, outcomes and surveillance. RESULTS The systematic review of reported clinical cases included 62 patients. In these patients, the most common site of amyloid deposition was the stomach (42%). The median age of diagnosis is 64.4 years old; there is a 2:1 prevalence among males (63%) to females (37%); abdominal pain is the most common type of presentation (41%), although patients could also be asymptomatic. There is a high curative rate (100%) with resection alone. Among patients treated with a type of systemic therapy, 80% achieved a complete response. The minority of cases reported a type of surveillance post treatment, and among those 62% pursued serial clinical evaluations alone. CONCLUSION To our knowledge, this is the first and largest systematic review of the literature in gastrointestinal tract amyloidosis. This is more common among males and seems to have an excellent curative rate (100%) with surgery alone. Systemic therapy is an option for those with non-resectable amyloidomas. Serial clinical evaluations should be part of the standard surveillance care in these patients.
Collapse
Affiliation(s)
| | | | - Heitor Tavares Santos
- Department of Medicine, Division of Internal Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Anahat Kaur
- Department of Medicine, Division of Oncology and Hematology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tarek Elrafei
- Department of Medicine, Division of Oncology and Hematology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Lewis Steinberg
- Department of Medicine, Division of Oncology and Hematology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Abhishek Kumar
- Department of Medicine, Division of Oncology and Hematology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
11
|
Ünal AB, Pfeifer N, Akgün M. A privacy-preserving approach for cloud-based protein fold recognition. PATTERNS (NEW YORK, N.Y.) 2024; 5:101023. [PMID: 39568647 PMCID: PMC11573750 DOI: 10.1016/j.patter.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/17/2024] [Accepted: 06/13/2024] [Indexed: 11/22/2024]
Abstract
The complexity and cost of training machine learning models have made cloud-based machine learning as a service (MLaaS) attractive for businesses and researchers. MLaaS eliminates the need for in-house expertise by providing pre-built models and infrastructure. However, it raises data privacy and model security concerns, especially in medical fields like protein fold recognition. We propose a secure three-party computation-based MLaaS solution for privacy-preserving protein fold recognition, protecting both sequence and model privacy. Our efficient private building blocks enable complex operations privately, including addition, multiplication, multiplexer with a different methodology, most-significant bit, modulus conversion, and exact exponential operations. We demonstrate our privacy-preserving recurrent kernel network (RKN) solution, showing that it matches the performance of non-private models. Our scalability analysis indicates linear scalability with RKN parameters, making it viable for real-world deployment. This solution holds promise for converting other medical domain machine learning algorithms to privacy-preserving MLaaS using our building blocks.
Collapse
Affiliation(s)
- Ali Burak Ünal
- Medical Data Privacy and Privacy Preserving Machine Learning (MDPPML), Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Nico Pfeifer
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| | - Mete Akgün
- Medical Data Privacy and Privacy Preserving Machine Learning (MDPPML), Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
12
|
Ansari NK, Khan HS, Naeem A. Doxorubicin as a Drug Repurposing for Disruption of α-Chymotrypsinogen-A Aggregates. Protein J 2024; 43:842-857. [PMID: 39014260 DOI: 10.1007/s10930-024-10217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
Protein conformation is affected by interaction of several small molecules resulting either stabilization or disruption depending on the nature of the molecules. In our earlier communication, Hg2+ was known to disrupt the native structure of α-Cgn A leading to aggregation (Ansari, N.K., Rais, A. & Naeem, A. Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A. Protein J (2024). https://doi.org/10.1007/s10930-024-10187-z ). Accumulation of β-rich aggregates in the living system is found to be linked with copious number of disorders. Here, we have investigated the effect of varying concentration of doxorubicin (DOX) i.e. 0-100 µM on the preformed aggregates of α-Cgn A upon incubation with 120 µM Hg2+. The decrease in the intrinsic fluorescence and enzyme activity with respect to increase in the Hg2+ concentration substantiate the formation of aggregates. The DOX showed the dose dependent decrease in the ThT fluorescence, turbidity and RLS measurements endorsing the dissolution of aggregates which were consistent with red shift in ANS, confirming the breakdown of aggregates. The α-Cgn A has 30% α-helical content which decreases to 3% in presence of Hg2+. DOX increased the α-helicity to 28% confirming its anti-aggregatory potential. The SEM validates the formation of aggregates with Hg2+ and their dissolution upon incubation with the DOX. Hemolysis assay checked the cytotoxicity of α-Cgn A aggregates. Docking revealed that the DOX interacted Lys203, Cys201, Cys136, Ser159, Leu10, Trp207, Val137 and Thr134 of α-Cgn A through hydrophobic interactions and Gly133, Thr135 and Lys202 forms hydrogen bonds.
Collapse
Affiliation(s)
- Neha Kausar Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Hamza Sahib Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| |
Collapse
|
13
|
Fang S, Zhang K, Liu D, Yang Y, Xi H, Xie W, Diao K, Rao Z, Wang D, Yang W. Polyphenol-based polymer nanoparticles for inhibiting amyloid protein aggregation: recent advances and perspectives. Front Nutr 2024; 11:1408620. [PMID: 39135555 PMCID: PMC11317421 DOI: 10.3389/fnut.2024.1408620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols are a group of naturally occurring compounds that possess a range of biological properties capable of potentially mitigating or preventing the progression of age-related cognitive decline and Alzheimer's disease (AD). AD is a chronic neurodegenerative disease known as one of the fast-growing diseases, especially in the elderly population. Moreover, as the primary etiology of dementia, it poses challenges for both familial and societal structures, while also imposing a significant economic strain. There is currently no pharmacological intervention that has demonstrated efficacy in treating AD. While polyphenols have exhibited potential in inhibiting the pathological hallmarks of AD, their limited bioavailability poses a significant challenge in their therapeutic application. Furthermore, in order to address the therapeutic constraints, several polymer nanoparticles are being explored as improved therapeutic delivery systems to optimize the pharmacokinetic characteristics of polyphenols. Polymer nanoparticles have demonstrated advantageous characteristics in facilitating the delivery of polyphenols across the blood-brain barrier, resulting in their efficient distribution within the brain. This review focuses on amyloid-related diseases and the role of polyphenols in them, in addition to discussing the anti-amyloid effects and applications of polyphenol-based polymer nanoparticles.
Collapse
Affiliation(s)
- Shuzhen Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea, Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Danqing Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Yulong Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Hu Xi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Wenting Xie
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Ke Diao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhihong Rao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
14
|
Das A, Jana G, Sing S, Basu A. Insights into the interaction and inhibitory action of palmatine on lysozyme fibrillogenesis: Spectroscopic and computational studies. Int J Biol Macromol 2024; 268:131703. [PMID: 38643915 DOI: 10.1016/j.ijbiomac.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Interaction under amyloidogenic condition between naturally occurring protoberberine alkaloid palmatine and hen egg white lysozyme was executed by adopting spectrofluorometric and theoretical molecular docking and dynamic simulation analysis. In spetrofluorometric method, different types of experiments were performed to explore the overall mode and mechanism of interaction. Intrinsic fluorescence quenching of lysozyme (Trp residues) by palmatine showed effective binding interaction and also yielded different binding parameters like binding constant, quenching constant and number of binding sites. Synchronous fluorescence quenching and 3D fluorescence map revealed that palmatine was able to change the microenvironment of the interacting site. Fluorescence life time measurements strongly suggested that this interaction was basically static in nature. Molecular docking result matched with fluorimetric experimental data. Efficient drug like interaction of palmatine with lysozyme at low pH and high salt concentration prompted us to analyze its antifibrillation potential. Different assays and microscopic techniques were employed for detailed analysis of lysozyme amyloidosis.Thioflavin T(ThT) assay, Congo Red (CR) assay, 8-anilino-1-naphthalenesulfonic acid (ANS) assay, Nile Red (NR) assay, anisotropy and intrinsic fluorescence measurements confirmed that palmatine successfully retarded and reduced lysozyme fibrillation. Dynamic light scattering (DLS) and atomic force microscopy (AFM) further reiterated the excellent antiamyloidogenic potency of palmatine.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Gouranga Jana
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
15
|
Tavili E, Aziziyan F, Dabirmanesh B. Pathways of amyloid fibril formation and protein aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:11-54. [PMID: 38811078 DOI: 10.1016/bs.pmbts.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The main cause of many neurodegenerative diseases and systemic amyloidoses is protein and peptide aggregation and the formation of amyloid fibrils. The study of aggregation mechanisms, the discovery and description of aggregate structures, and a comprehensive understanding of the molecular mechanisms of amyloid formation are of great importance for the diagnostic processes at the molecular level and for the development of therapeutic strategies to counter aggregation-associated disorders. Given that understanding protein misfolding phenomena is directly related to the protein folding process, we will briefly explain the protein folding mechanism and then discuss the important factors involved in protein aggregation. In the following, we review different mechanisms of amyloid formation and finally represent the current knowledge on how amyloid fibrils are formed based on kinetic and thermodynamic factors.
Collapse
Affiliation(s)
- Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Aziziyan
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Chang J, Yuan W, Gao C, Zhang B, Liu JL, Chen G, Tan YW. Single-Molecule Fluorescence Imaging Reveals Coassembly of CTPS and P5CS. J Phys Chem B 2024; 128:949-959. [PMID: 38236746 DOI: 10.1021/acs.jpcb.3c06498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The cellular compartmentation induced by self-assembly of natural proteins has recently attracted widespread attention due to its structural-functional significance. Among them, as a highly conserved metabolic enzyme and one of the potential targets for cancers and parasitic diseases in drug development, CTP synthase (CTPS) has also been reported to self-assemble into filamentous structures termed cytoophidia. To elucidate the dynamical mechanism of cytoophidium filamentation, we utilize single-molecule fluorescence imaging to observe the real-time self-assembly dynamics of CTPS and the coordinated assembly between CTPS and its interaction partner, Δ1-pyrroline-5-carboxylate synthase (P5CS). Significant differences exist in the direction of growth and extension when the two proteins self-assemble. The oligomer state distribution analysis of the CTPS minimum structural subunit under different conditions and the stoichiometry statistics of binding CTPS and P5CS by single-molecule fluorescence photobleach counting further confirm that the CTPS cytoophidia are mainly stacked with tetramers. CTPS can act as the nucleation core to induce the subsequent growth of the P5CS filaments. Our work not only provide evidence from the molecular level for the self-assembly and coordinated assembly (coassembly) of CTPS with its interaction partner P5CS in vitro but also offer new experimental perspectives for the dynamics research of coordinated regulation between other protein polymers.
Collapse
Affiliation(s)
- Jian Chang
- State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Department of Physics, Fudan University, Shanghai 200433, China
| | - Weijie Yuan
- State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Department of Physics, Fudan University, Shanghai 200433, China
| | - Chendi Gao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Bo Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yan-Wen Tan
- State Key Laboratory of Surface Physics, Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Medegan Fagla B, Buhimschi IA. Protein Misfolding in Pregnancy: Current Insights, Potential Mechanisms, and Implications for the Pathogenesis of Preeclampsia. Molecules 2024; 29:610. [PMID: 38338354 PMCID: PMC10856193 DOI: 10.3390/molecules29030610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Protein misfolding disorders are a group of diseases characterized by supra-physiologic accumulation and aggregation of pathogenic proteoforms resulting from improper protein folding and/or insufficiency in clearance mechanisms. Although these processes have been historically linked to neurodegenerative disorders, such as Alzheimer's disease, evidence linking protein misfolding to other pathologies continues to emerge. Indeed, the deposition of toxic protein aggregates in the form of oligomers or large amyloid fibrils has been linked to type 2 diabetes, various types of cancer, and, in more recent years, to preeclampsia, a life-threatening pregnancy-specific disorder. While extensive physiological mechanisms are in place to maintain proteostasis, processes, such as aging, genetic factors, or environmental stress in the form of hypoxia, nutrient deprivation or xenobiotic exposures can induce failure in these systems. As such, pregnancy, a natural physical state that already places the maternal body under significant physiological stress, creates an environment with a lower threshold for aberrant aggregation. In this review, we set out to discuss current evidence of protein misfolding in pregnancy and potential mechanisms supporting a key role for this process in preeclampsia pathogenesis. Improving our understanding of this emerging pathophysiological process in preeclampsia can lead to vital discoveries that can be harnessed to create better diagnoses and treatment modalities for the disorder.
Collapse
Affiliation(s)
| | - Irina Alexandra Buhimschi
- Department of Obstetrics and Gynecology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA;
| |
Collapse
|
18
|
Lucignano R, Spadaccini R, Merlino A, Ami D, Natalello A, Ferraro G, Picone D. Structural insights and aggregation propensity of a super-stable monellin mutant: A new potential building block for protein-based nanostructured materials. Int J Biol Macromol 2024; 254:127775. [PMID: 38287601 DOI: 10.1016/j.ijbiomac.2023.127775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Protein fibrillation is commonly associated with pathologic amyloidosis. However, under appropriate conditions several proteins form fibrillar structures in vitro that can be used for biotechnological applications. MNEI and its variants, firstly designed as single chain derivatives of the sweet protein monellin, are also useful models for protein fibrillary aggregation studies. In this work, we have drawn attention to a protein dubbed Mut9, already characterized as a "super stable" MNEI variant. Comparative analysis of the respective X-ray structures revealed how the substitutions present in Mut9 eliminate several unfavorable interactions and stabilize the global structure. Molecular dynamic predictions confirmed the presence of a hydrogen-bonds network in Mut9 which increases its stability, especially at neutral pH. Thioflavin-T (ThT) binding assays and Fourier transform infrared (FTIR) spectroscopy indicated that the aggregation process occurs both at acidic and neutral pH, with and without addition of NaCl, even if with a different kinetics. Accordingly, Transmission Electron Microscopy (TEM) showed a fibrillar organization of the aggregates in all the tested conditions, albeit with some differences in the quantity and in the morphology of the fibrils. Our data underline the great potential of Mut9, which combines great stability in solution with the versatile conversion into nanostructured biomaterials.
Collapse
Affiliation(s)
- Rosanna Lucignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy
| | - Roberta Spadaccini
- Department of Science and Technology, University of Sannio, Via de Sanctis, 82100 Benevento, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 20126 Milano, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy.
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, 80126 Naples, Italy.
| |
Collapse
|
19
|
Siddiqui GA, Naeem A. Bioflavonoids ameliorate crowding induced hemoglobin aggregation: a spectroscopic and molecular docking approach. J Biomol Struct Dyn 2023; 41:10315-10325. [PMID: 36519442 DOI: 10.1080/07391102.2022.2154270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
The cellular environment is densely crowded, confining biomacromolecules including proteins to less available space. This macromolecular confinement may affect the physiological conformation of proteins in long-term processes like ageing. Changes in physiological protein structure can lead to protein conformational disorders including neurodegeneration. An intervention approach using food and plant derived bioflavonoids offered a way to find a treatment for these enervating pathological conditions as there is no remedy available. The bioflavonoids NAR (naringenin), 7HD (7 hydroxyflavanone) and CHR (chrysin) were tested for their ability to protect Hb (hemoglobin) against crowding-induced aggregation. Morphological and secondary structural transitions were studied using microscopic and circular dichroism experiments, respectively. The kinetic study was carried out using the relative thioflavin T assay. Molecular docking, AmylPred2, admetSAR and FRET were applied to understand the binding parameters of bioflavonoids with Hb and their drug likeliness. Isolated human lymphocytes were used as a cellular system to study the toxic effects of Hb aggregates. Redox perturbation and cytotoxicity were evaluated by DCFH-DA and MTT assays, respectively. This study suggests that bioflavonoids bind to Hb in the vicinity of aggregation prone amino acid sequences. Binding of the bioflavonoids stabilizes the Hb against crowding-induced structural alterations. Therefore, this study signifies the potential of bioflavonoids for future treatment of many proteopathies including neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gufran Ahmed Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
20
|
Kim HC, Lee HJ, Kim YT, Jang BC. Risk of Neurodegenerative Diseases in Elderly Koreans with an Initial Diagnosis of Type 2 Diabetes: A Nationwide Retrospective Cohort Study. J Diabetes Res 2023; 2023:7887792. [PMID: 38020200 PMCID: PMC10651337 DOI: 10.1155/2023/7887792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/30/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Type 2 diabetes (T2D) and neurodegenerative diseases (NDs) are common among elderly individuals. Growing evidence has indicated a strong link between T2D and NDs, such as Alzheimer's disease. However, previous studies have limitations in exploring the epidemiological relationship among these diseases as a group of NDs rather than as a specific type of ND. We aimed to investigate the risk of NDs in elderly Koreans who were first diagnosed with T2D and determine the association between T2D and NDs. We conducted a retrospective longitudinal cohort study of patients with who were initially diagnosed with T2D using the Korean National Health Information Database. The study participants were categorized into a T2D group (n = 155,459) and a control group (n = 155,459), aged 60-84 years, that were matched for age, sex, and comorbidities. We followed the participants for 10 years to investigate the incidence of NDs. The Cox proportional hazards regression model was used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for NDs. The numbers of patients diagnosed with ND at the end of follow-up were as follows: 51,096/155,459 (32.9%) in the T2D group and 44,673/155,459 (28.7%) in the control group (χ2 = 622.53, p < 0.001). The incidences of NDs in the T2D and control groups were 44.68 (95% CI: 44.29, 45.07) and 36.89 (95% CI: 36.55, 37.24) cases per 1,000 person-years at risk, respectively. The overall incidence of NDs was higher in the T2D group than that in the control group (HR: 1.23, 95% CI: 1.22, 1.25, p < 0.001). This study revealed a higher incidence of NDs in elderly Koreans who were initially diagnosed with T2D. This suggests that T2D is a risk factor for NDs in elderly Koreans.
Collapse
Affiliation(s)
- Hee-Cheol Kim
- Department of Psychiatry, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
- Brain Research Institute, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Ho-Jun Lee
- Department of Psychiatry, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Yang-Tae Kim
- Department of Psychiatry, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
21
|
Turina P, Fariselli P, Capriotti E. K-Pro: Kinetics Data on Proteins and Mutants. J Mol Biol 2023; 435:168245. [PMID: 37625584 DOI: 10.1016/j.jmb.2023.168245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
The study of protein folding plays a crucial role in improving our understanding of protein function and of the relationship between genetics and phenotypes. In particular, understanding the thermodynamics and kinetics of the folding process is important for uncovering the mechanisms behind human disorders caused by protein misfolding. To address this issue, it is essential to collect and curate experimental kinetic and thermodynamic data on protein folding. K-Pro is a new database designed for collecting and storing experimental kinetic data on monomeric proteins, with a two-state folding mechanism. With 1,529 records from 62 proteins corresponding to 65 structures, K-Pro contains various kinetic parameters such as the logarithm of the folding and unfolding rates, Tanford's β and the ϕ values. When available, the database also includes thermodynamic parameters associated with the kinetic data. K-Pro features a user-friendly interface that allows browsing and downloading kinetic data of interest. The graphical interface provides a visual representation of the protein and mutants, and it is cross-linked to key databases such as PDB, UniProt, and PubMed. K-Pro is open and freely accessible through https://folding.biofold.org/k-pro and supports the latest versions of popular browsers.
Collapse
Affiliation(s)
- Paola Turina
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Torino, Via Santena 19, 10126 Torino, Italy
| | - Emidio Capriotti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy.
| |
Collapse
|
22
|
Poudyal M, Patel K, Gadhe L, Sawner AS, Kadu P, Datta D, Mukherjee S, Ray S, Navalkar A, Maiti S, Chatterjee D, Devi J, Bera R, Gahlot N, Joseph J, Padinhateeri R, Maji SK. Intermolecular interactions underlie protein/peptide phase separation irrespective of sequence and structure at crowded milieu. Nat Commun 2023; 14:6199. [PMID: 37794023 PMCID: PMC10550955 DOI: 10.1038/s41467-023-41864-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a crucial biological phenomenon underlying the sequestration of macromolecules (such as proteins and nucleic acids) into membraneless organelles in cells. Unstructured and intrinsically disordered domains are known to facilitate multivalent interactions driving protein LLPS. We hypothesized that LLPS could be an intrinsic property of proteins/polypeptides but with distinct phase regimes irrespective of their sequence and structure. To examine this, we studied many (a total of 23) proteins/polypeptides with different structures and sequences for LLPS study in the presence and absence of molecular crowder, polyethylene glycol (PEG-8000). We showed that all proteins and even highly charged polypeptides (under study) can undergo liquid condensate formation, however with different phase regimes and intermolecular interactions. We further demonstrated that electrostatic, hydrophobic, and H-bonding or a combination of such intermolecular interactions plays a crucial role in individual protein/peptide LLPS.
Collapse
Affiliation(s)
- Manisha Poudyal
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai, 400076, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Soumik Ray
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Siddhartha Maiti
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
- Department of Bioengineering, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh, 466114, India
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Jyoti Devi
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Jennifer Joseph
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, IIT Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
23
|
Sengupta S, Singh N, Paul A, Datta D, Chatterjee D, Mukherjee S, Gadhe L, Devi J, Mahesh Y, Jolly MK, Maji SK. p53 amyloid pathology is correlated with higher cancer grade irrespective of the mutant or wild-type form. J Cell Sci 2023; 136:jcs261017. [PMID: 37622400 PMCID: PMC7615089 DOI: 10.1242/jcs.261017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
p53 (also known as TP53) mutation and amyloid formation are long associated with cancer pathogenesis; however, the direct demonstration of the link between p53 amyloid load and cancer progression is lacking. Using multi-disciplinary techniques and 59 tissues (53 oral and stomach cancer tumor tissue samples from Indian individuals with cancer and six non-cancer oral and stomach tissue samples), we showed that p53 amyloid load and cancer grades are highly correlated. Furthermore, next-generation sequencing (NGS) data suggest that not only mutant p53 (e.g. single-nucleotide variants, deletions, and insertions) but wild-type p53 also formed amyloids either in the nucleus (50%) and/or in the cytoplasm in most cancer tissues. Interestingly, in all these cancer tissues, p53 displays a loss of DNA-binding and transcriptional activities, suggesting that the level of amyloid load correlates with the degree of loss and an increase in cancer grades. The p53 amyloids also sequester higher amounts of the related p63 and p73 (also known as TP63 and TP73, respectively) protein in higher-grade tumor tissues. The data suggest p53 misfolding and/or aggregation, and subsequent amyloid formation, lead to loss of the tumor-suppressive function and the gain of oncogenic function, aggravation of which might determine the cancer grade.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Noida, Uttar Pradesh, 201303, India
| | - Namrata Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ajoy Paul
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debalina Datta
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debdeep Chatterjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Laxmikant Gadhe
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jyoti Devi
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Yeshwanth Mahesh
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bengaluru, Bengaluru, Karnataka 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science Bengaluru, Bengaluru, Karnataka 560012, India
| | - Samir K. Maji
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
24
|
Kumar M, Teakel SL, Swarbrick C, Chowdhury IS, Thorn DC, Sunde M, Carver JA, Forwood JK. Amyloid fibril formation, structure and domain swapping of acyl-coenzyme A thioesterase-7. FEBS J 2023; 290:4057-4073. [PMID: 37042241 DOI: 10.1111/febs.16795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 04/11/2023] [Indexed: 04/13/2023]
Abstract
Acyl-coenzyme A thioesterase (Acot) enzymes are involved in a broad range of essential intracellular roles including cell signalling, lipid metabolism, inflammation and the opening of ion channels. Dysregulation in lipid metabolism has been linked to neuroinflammatory and neurological disorders such as Alzheimer's and Parkinson's diseases. Structurally, Acot enzymes adopt a circularised trimeric arrangement with each monomer containing an N- and a C-terminal hotdog domain. Acot7 spontaneously forms amyloid fibrils in vitro under physiological conditions. The resultant amyloid fibrillar structures were characterised by dye-binding fluorescence assays, far-UV circular dichroism spectroscopy, transmission electron microscopy and X-ray fibre diffraction. Acot7 has an unusual mechanism of aggregation with no lag phase. The initial phase (~ 18 h) of aggregation involves conformational rearrangement within the oligomers to form species of enhanced β-sheet character. The subsequent loss of α-helical structure is accompanied by large-scale amyloid fibril formation. The crystal structure of Acot7 revealed an unexpected arrangement of the two domains within the circularised trimeric structure, which is the basis for a proposed mechanism of amyloid fibril formation involving domain swapping during the initial phase of aggregation. Acot7 formed fibrils in the presence of its substrate arachidonoyl-CoA and its inhibitors and maintained its enzyme activity during fibril assembly. It is proposed that the Acot7 fibrillar form acts as functional amyloid.
Collapse
Affiliation(s)
- Manjeet Kumar
- Research School of Chemistry, The Australian National University, Acton, Australia
| | - Sarah L Teakel
- School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, Australia
| | - Crystall Swarbrick
- School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, Australia
| | - Intifar S Chowdhury
- Research School of Chemistry, The Australian National University, Acton, Australia
| | - David C Thorn
- Research School of Chemistry, The Australian National University, Acton, Australia
| | - Margaret Sunde
- School of Medical Sciences, The University of Sydney, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
25
|
Okada S, Matsumoto Y, Takahashi R, Arai K, Kanemura S, Okumura M, Muraoka T. Semi-enzymatic acceleration of oxidative protein folding by N-methylated heteroaromatic thiols. Chem Sci 2023; 14:7630-7636. [PMID: 37476727 PMCID: PMC10355094 DOI: 10.1039/d3sc01540h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
We report the first example of a synthetic thiol-based compound that promotes oxidative protein folding upon 1-equivalent loading to the disulfide bonds in the client protein to afford the native form in over 70% yield. N-Methylation is a central post-translational processing of proteins in vivo for regulating functions including chaperone activities. Despite the universally observed biochemical reactions in nature, N-methylation has hardly been utilized in the design, functionalization, and switching of synthetic bioregulatory agents, particularly folding promotors. As a biomimetic approach, we developed pyridinylmethanethiols to investigate the effects of N-methylation on the promotion of oxidative protein folding. For a comprehensive study on the geometrical effects, constitutional isomers of pyridinylmethanethiols with ortho-, meta-, and para-substitutions have been synthesized. Among the constitutional isomers, para-substituted pyridinylmethanethiol showed the fastest disulfide-bond formation of the client proteins to afford the native forms most efficiently. N-Methylation drastically increased the acidity and enhanced the oxidizability of the thiol groups in the pyridinylmethanethiols to enhance the folding promotion efficiencies. Among the isomers, para-substituted N-methylated pyridinylmethanethiol accelerated the oxidative protein folding reactions with the highest efficiency, allowing for protein folding promotion by 1-equivalent loading as a semi-enzymatic activity. This study will offer a novel bioinspired molecular design of synthetic biofunctional agents that are semi-enzymatically effective for the promotion of oxidative protein folding including biopharmaceuticals such as insulin in vitro by minimum loading.
Collapse
Affiliation(s)
- Shunsuke Okada
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Yosuke Matsumoto
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
| | - Rikana Takahashi
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
- Institute of Advanced Biosciences, Tokai University Kitakaname Hiratsuka-shi Kanagawa 259-1292 Japan
| | - Shingo Kanemura
- School of Science, Kwansei Gakuin University 1 Gakuen Uegahara Sanda Hyogo 669-1330 Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University 6-3 Aramaki-Aza-Aoba, Aoba-ku Sendai 980-8578 Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology 2-24-16 Naka-cho Koganei Tokyo 184-8588 Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology 3-8-1 Harumi-cho Fuchu Tokyo 183-8538 Japan
- Kanagawa Institute of Industrial Science and Technology 3-2-1 Sakato, Takatsu-ku Kawasaki Kanagawa 213-0012 Japan
| |
Collapse
|
26
|
Yuan N, Ye L, Sun Y, Wu H, Xiao Z, Fu W, Chen Z, Pei Y, Min Y, Wang D. Molecular Integrative Analysis of the Inhibitory Effects of Dipeptides on Amyloid β Peptide 1-42 Polymerization. Int J Mol Sci 2023; 24:7673. [PMID: 37108834 PMCID: PMC10141046 DOI: 10.3390/ijms24087673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The major pathological feature of Alzheimer's disease (AD) is the aggregation of amyloid β peptide (Aβ) in the brain. Inhibition of Aβ42 aggregation may prevent the advancement of AD. This study employed molecular dynamics, molecular docking, electron microscopy, circular dichroism, staining of aggregated Aβ with ThT, cell viability, and flow cytometry for the detection of reactive oxygen species (ROS) and apoptosis. Aβ42 polymerizes into fibrils due to hydrophobic interactions to minimize free energy, adopting a β-strand structure and forming three hydrophobic areas. Eight dipeptides were screened by molecular docking from a structural database of 20 L-α-amino acids, and the docking was validated by molecular dynamics (MD) analysis of binding stability and interaction potential energy. Among the dipeptides, arginine dipeptide (RR) inhibited Aβ42 aggregation the most. The ThT assay and EM revealed that RR reduced Aβ42 aggregation, whereas the circular dichroism spectroscopy analysis showed a 62.8% decrease in β-sheet conformation and a 39.3% increase in random coiling of Aβ42 in the presence of RR. RR also significantly reduced the toxicity of Aβ42 secreted by SH-SY5Y cells, including cell death, ROS production, and apoptosis. The formation of three hydrophobic regions and polymerization of Aβ42 reduced the Gibbs free energy, and RR was the most effective dipeptide at interfering with polymerization.
Collapse
Affiliation(s)
- Nan Yuan
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Lianmeng Ye
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yan Sun
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Hao Wu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Wanmeng Fu
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Zuqian Chen
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Yechun Pei
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Department of Biosciences, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Yi Min
- Department of Biosciences, School of Life Sciences, Hainan University, Haikou 570228, China
| | - Dayong Wang
- Laboratory of Biopharmaceuticals and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- One Health Cooperative Innovation Center, Hainan University, Haikou 570228, China
- Key Laboratory of Tropical Biological Resources of the Ministry of China, Hainan University, Haikou 570228, China
| |
Collapse
|
27
|
Wu GH, Smith-Geater C, Galaz-Montoya JG, Gu Y, Gupte SR, Aviner R, Mitchell PG, Hsu J, Miramontes R, Wang KQ, Geller NR, Hou C, Danita C, Joubert LM, Schmid MF, Yeung S, Frydman J, Mobley W, Wu C, Thompson LM, Chiu W. CryoET reveals organelle phenotypes in huntington disease patient iPSC-derived and mouse primary neurons. Nat Commun 2023; 14:692. [PMID: 36754966 PMCID: PMC9908936 DOI: 10.1038/s41467-023-36096-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin gene, yielding a Huntingtin protein with an expanded polyglutamine tract. While experiments with patient-derived induced pluripotent stem cells (iPSCs) can help understand disease, defining pathological biomarkers remains challenging. Here, we used cryogenic electron tomography to visualize neurites in HD patient iPSC-derived neurons with varying CAG repeats, and primary cortical neurons from BACHD, deltaN17-BACHD, and wild-type mice. In HD models, we discovered sheet aggregates in double membrane-bound organelles, and mitochondria with distorted cristae and enlarged granules, likely mitochondrial RNA granules. We used artificial intelligence to quantify mitochondrial granules, and proteomics experiments reveal differential protein content in isolated HD mitochondria. Knockdown of Protein Inhibitor of Activated STAT1 ameliorated aberrant phenotypes in iPSC- and BACHD neurons. We show that integrated ultrastructural and proteomic approaches may uncover early HD phenotypes to accelerate diagnostics and the development of targeted therapeutics for HD.
Collapse
Affiliation(s)
- Gong-Her Wu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Charlene Smith-Geater
- Department of Psychiatry & Human Behavior University of California Irvine, Irvine, CA, 92697, USA
| | - Jesús G Galaz-Montoya
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Yingli Gu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037-0662, USA
| | - Sanket R Gupte
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Ranen Aviner
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Patrick G Mitchell
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Joy Hsu
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Ricardo Miramontes
- Department of Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA
| | - Keona Q Wang
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 96267, USA
| | - Nicolette R Geller
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 96267, USA
| | - Cathy Hou
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Cristina Danita
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
| | - Lydia-Marie Joubert
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Serena Yeung
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - William Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037-0662, USA
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92037-0662, USA
| | - Leslie M Thompson
- Department of Psychiatry & Human Behavior University of California Irvine, Irvine, CA, 92697, USA.
- Department of Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 96267, USA.
- Sue & Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, 96267, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92617, USA.
| | - Wah Chiu
- Department of Bioengineering, James H. Clark Center, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
28
|
Structural ensembles of disordered proteins from hierarchical chain growth and simulation. Curr Opin Struct Biol 2023; 78:102501. [PMID: 36463772 DOI: 10.1016/j.sbi.2022.102501] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Disordered proteins and nucleic acids play key roles in cellular function and disease. Here, we review recent advances in the computational exploration of the conformational dynamics of flexible biomolecules. While atomistic molecular dynamics (MD) simulation has seen a lot of improvement in recent years, large-scale computing resources and careful validation are required to simulate full-length disordered biopolymers in solution. As a computationally efficient alternative, hierarchical chain growth (HCG) combines pre-sampled chain fragments in a statistically reproducible manner into ensembles of full-length atomically detailed biomolecular structures. Experimental data can be integrated during and after chain assembly. Applications to the neurodegeneration-linked proteins α-synuclein, tau, and TDP-43, including as condensate, illustrate the use of HCG. We conclude by highlighting the emerging connections to AI-based structural modeling including AlphaFold2.
Collapse
|
29
|
Meena P, Kishore N. Potential of tetradecyltrimethylammonium bromide in preventing fibrillation/aggregation of lysozyme: biophysical studies. J Biomol Struct Dyn 2022; 40:13378-13391. [PMID: 34662249 DOI: 10.1080/07391102.2021.1987989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A key step in the prevention of neurodegenerative disorders is to inhibit protein aggregation or fibrillation process. Functionality recognition is an essential strategy in developing effective therapeutics in addressing the treatment of amyloidosis. Here, we have focused on an approach based on structure-property energetics correlation associated with tetradecyltrimethylammonium bromide (TTAB), a cationic surfactant that acts as an inhibitor targeting different stages of hen egg-white lysozyme fibrillation. Characterization of amyloid fibrils and the inhibitory capability of 16 mM TTAB surfactant on fibrillation were investigated with the calorimetric, spectroscopic and microscopic techniques. ThT binding fluorescence studies inferred that micellar TTAB exerts its maximum inhibitory effect against amyloid fibrillation than monomer TTAB. The TEM measurements also confirmed complete absence of amyloid fibrils at micellar TTAB. At the same time, the transformation of β-sheet to α-helix under the action of TTAB was confirmed by the Far-UV CD spectroscopy. Although there have been some reports suggesting that cationic surfactants can induce aggregation in proteins, this work suggests that polar interactions between head groups of TTAB and amyloid fibrils are the predominant factors that cause retardation in fibrillation by interrupting/disturbing the intermolecular hydrogen bond of β-sheets. The present finding has explored the knowledge-based details in developing efficient potent inhibitors and provides a platform to treat diseases associated with protein misfolding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pooja Meena
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
30
|
Samuel AZ, Sugiyama K, Ando M, Takeyama H. Direct imaging of intracellular RNA, DNA, and liquid-liquid phase separated membraneless organelles with Raman microspectroscopy. Commun Biol 2022; 5:1383. [PMID: 36528668 PMCID: PMC9759543 DOI: 10.1038/s42003-022-04342-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Methodologies for direct intracellular imaging of RNA and DNA are necessary for the advancement of bioimaging. Here we show direct label-free imaging of RNA and DNA in single cells by isolating their accurate Raman spectra. Raman images of DNA from interphase cells show intact nucleus, while those from mitotic cells reveal condensed chromosome. The condensed chromosome images are accurate enough to assign the stage of mitotic cell division (e.g., metaphase). Raman spectral features indicate B-DNA double helical conformational form in all the cell lines investigated here. The Raman images of RNAs, on the other hand, reveal liquid-liquid phase separated (LLPS) membraneless organelles in interphase cells, which disappears during mitosis. Further, the Raman spectrum of proteins from the intracellular LLPS organelles indicates slight enrichment of amyloid-like secondary structural features. Vibrational imaging of intracellular DNA and RNA simultaneously would open myriad of opportunities for examining functional biochemical aspects of cells and organelles.
Collapse
Affiliation(s)
- Ashok Zachariah Samuel
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
| | - Kaori Sugiyama
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahiro Ando
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovations, Waseda University, 513, Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041, Japan.
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan.
- Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, Japan, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
31
|
Rahman A, Saikia B, Gogoi CR, Baruah A. Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:31-48. [PMID: 36044970 DOI: 10.1016/j.pbiomolbio.2022.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Aberrant protein folding known as protein misfolding is counted as one of the striking factors of neurodegenerative diseases. The extensive range of pathologies caused by protein misfolding, aggregation and subsequent accumulation are mainly classified into either gain of function diseases or loss of function diseases. In order to seek for novel strategies for treatment and diagnosis of neurodegenerative diseases, insights into the mechanism of misfolding and aggregation is essential. A comprehensive knowledge on the factors influencing misfolding and aggregation is required as well. An extensive experimental study on protein aggregation is somewhat challenging due to the insoluble and noncrystalline nature of amyloid fibrils. Thus there has been a growing use of computational approaches including Monte Carlo simulation, docking simulation, molecular dynamics simulation in the study of protein misfolding and aggregation. The review presents a discussion on molecular dynamics simulation alone as to how it has emerged as a promising tool in the understanding of protein misfolding and aggregation in general, detailing upon three different aspects considering four misfold prone proteins in particular. It is noticeable that all four proteins considered in this review i.e prion, superoxide dismutase1, huntingtin and amyloid β are linked to chronic neurodegenerative diseases with debilitating effects. Initially the review elaborates on the factors influencing the misfolding and aggregation. Next, it addresses our current understanding of the amyloid structures and the associated aggregation mechanisms, finally, summarizing the contribution of this computational tool in the search for therapeutic strategies against the respective protein-deposition diseases.
Collapse
Affiliation(s)
- Aziza Rahman
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Bondeepa Saikia
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Chimi Rekha Gogoi
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Anupaul Baruah
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| |
Collapse
|
32
|
Gemler BT, Mukherjee C, Howland CA, Huk D, Shank Z, Harbo LJ, Tabbaa OP, Bartling CM. Function-based classification of hazardous biological sequences: Demonstration of a new paradigm for biohazard assessments. Front Bioeng Biotechnol 2022; 10:979497. [PMID: 36277394 PMCID: PMC9585941 DOI: 10.3389/fbioe.2022.979497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
Bioengineering applies analytical and engineering principles to identify functional biological building blocks for biotechnology applications. While these building blocks are leveraged to improve the human condition, the lack of simplistic, machine-readable definition of biohazards at the function level is creating a gap for biosafety practices. More specifically, traditional safety practices focus on the biohazards of known pathogens at the organism-level and may not accurately consider novel biodesigns with engineered functionalities at the genetic component-level. This gap is motivating the need for a paradigm shift from organism-centric procedures to function-centric biohazard identification and classification practices. To address this challenge, we present a novel methodology for classifying biohazards at the individual sequence level, which we then compiled to distinguish the biohazardous property of pathogenicity at the whole genome level. Our methodology is rooted in compilation of hazardous functions, defined as a set of sequences and associated metadata that describe coarse-level functions associated with pathogens (e.g., adherence, immune subversion). We demonstrate that the resulting database can be used to develop hazardous “fingerprints” based on the functional metadata categories. We verified that these hazardous functions are found at higher levels in pathogens compared to non-pathogens, and hierarchical clustering of the fingerprints can distinguish between these two groups. The methodology presented here defines the hazardous functions associated with bioengineering functional building blocks at the sequence level, which provide a foundational framework for classifying biological hazards at the organism level, thus leading to the improvement and standardization of current biosecurity and biosafety practices.
Collapse
|
33
|
Wang J, Liu J, Dong Q, An Y, Su J, Xie H, Sun B, Liu J. The Influence of Heparan Sulfate on Breast Amyloidosis and the Toxicity of the Pre-fibrils Formed by β-casein. Protein J 2022; 41:543-549. [PMID: 35962883 DOI: 10.1007/s10930-022-10071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 11/27/2022]
Abstract
Heparan sulfate (HS) as a mediator is usually involved in both inflammation and fibrosis. Besides, pre-fibrils are the intermediates of amyloid fibrils that usually cause cell death and tissue damage, like the amyloid-β in Alzheimer's disease, α-synuclein in Parkinson disease and islet amyloid polypeptide in type II diabetes mellitus. However, the related study was involved rarely in breast. Therefore, the combing technologies including hematoxylin-eosin staining and thioflavin S staining were used to investigate the influence of HS on breast amyloidosis. To further study the toxicity of the pre-fibrils formed by β-casein on the HC11 cells and the breast mammary gland, the combing technologies including pentamer formyl thiophene acetic acid fluorescence analysis, MTT assay, Annexin V/PI staining and hematoxylin-eosin staining were performed. The results demonstrated that HS, acted as an endogenous molecule, induced the inflammation and amyloid fibril formation at the same time, and there was a close relationship between inflammation and fibrosis of breast. In addition, the pre-fibrils formed by β-casein were toxic because they induced the death and apoptosis of HC11 cells, as well as the inflammation of mammary gland of rats. Therefore, the early examination and identify of the pre-fibrils in the breast were worth considering to prevent the disease development, and it was interesting to explore the HS mimetics to impair the breast amyloidosis and attenuate the inflammatory response in the future.
Collapse
Affiliation(s)
- Jia Wang
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Jiayin Liu
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Qinghai Dong
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Yang An
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Jun Su
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Hongliu Xie
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Bo Sun
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China
| | - Jihua Liu
- Department of Natural Product Chemistry, Pharmacy College, Jilin University, 1266 Fujin Street, 130021, Changchun, PR China.
| |
Collapse
|
34
|
Abstract
Primary nucleation is the fundamental event that initiates the conversion of proteins from their normal physiological forms into pathological amyloid aggregates associated with the onset and development of disorders including systemic amyloidosis, as well as the neurodegenerative conditions Alzheimer's and Parkinson's diseases. It has become apparent that the presence of surfaces can dramatically modulate nucleation. However, the underlying physicochemical parameters governing this process have been challenging to elucidate, with interfaces in some cases having been found to accelerate aggregation, while in others they can inhibit the kinetics of this process. Here we show through kinetic analysis that for three different fibril-forming proteins, interfaces affect the aggregation reaction mainly through modulating the primary nucleation step. Moreover, we show through direct measurements of the Gibbs free energy of adsorption, combined with theory and coarse-grained computer simulations, that overall nucleation rates are suppressed at high and at low surface interaction strengths but significantly enhanced at intermediate strengths, and we verify these regimes experimentally. Taken together, these results provide a quantitative description of the fundamental process which triggers amyloid formation and shed light on the key factors that control this process.
Collapse
|
35
|
Cirsiliol mitigates Aβ fibrillation and underlying membrane-leakage associated neurotoxicity: A possible implication in the treatment of neurodegenerative disease. Int J Biol Macromol 2022; 213:915-922. [PMID: 35688279 DOI: 10.1016/j.ijbiomac.2022.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 12/06/2022]
Abstract
Protein aggregating is known as a leading pathogenic characteristic of a wide range of neurodegenerative diseases (NDs). Preventing amyloid-β (Aβ) aggregation and uncovering the associated mechanism through the application of small bioactive compounds can be considered as a useful strategy in hampering the onset of ND. In this study, we analyzed the inhibitory effects of cirsiliol, a trihydroxy-dimethoxyflavone, against human Αβ42 fibrillization. Also, we explored the probable neurotoxicity of Αβ42 oligomers grown with cirsiliol at different molar ratios on PC-12 cells after 24 h. The results showed that significant changes in ThT and ANS fluorescence intensities, Congo red absorbance, and ellipticity changes were modulated by co-incubation of cirsiliol with Αβ42, in a concentration-dependent manner. The spectroscopy outcomes were also supported by imaging analysis, where a few Αβ42 fibrillar conformations were detected with cirsiliol. In addition, cellular assays demonstrated that co-incubated Αβ42 samples with cirsiliol regulated the cell mortality, LDH release, and caspase-3 activation relative to the PC-12 exposed to Aβ42 oligomers alone. In conclusion, it can suggest that cirsiliol can be used as a potential candidate in the development of small molecules-based drugs for the advancement of therapeutic platforms against ND.
Collapse
|
36
|
TMAO to the rescue of pathogenic protein variants. Biochim Biophys Acta Gen Subj 2022; 1866:130214. [PMID: 35902028 DOI: 10.1016/j.bbagen.2022.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) is a chemical chaperone found in various organisms including humans. Various studies unveiled that it is an excellent protein-stabilizing agent, and induces folding of unstructured proteins. It is also well established that it can counteract the deleterious effects of urea, salt, and hydrostatic pressure on macromolecular integrity. There is also existence of large body of data regarding its ability to restore functional deficiency of various mutant proteins or pathogenic variants by correcting misfolding defects and inhibiting the formation of high-order toxic protein oligomers. Since an important class of human disease called "protein conformational disorders" is due to protein misfolding and/or formation of high-order oligomers, TMAO stands as a promising molecule for the therapeutic intervention of such diseases. The present review has been designed to gather a comprehensive knowledge of the TMAO's effect on the functional restoration of various mutants, identify its shortcomings and explore its potentiality as a lead molecule. Future prospects have also been suitably incorporated.
Collapse
|
37
|
Mavrina E, Kimble L, Waury K, Gogishvili D, Gómez de San José N, Das S, Coppens S, Fernandes Gomes B, Mravinacová S, Wojdała AL, Bolsewig K, Bayoumy S, Burtscher F, Mohaupt P, Willemse E, Teunissen C, the MIRIADE consortium. Multi-Omics Interdisciplinary Research Integration to Accelerate Dementia Biomarker Development (MIRIADE). Front Neurol 2022; 13:890638. [PMID: 35903119 PMCID: PMC9315267 DOI: 10.3389/fneur.2022.890638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Proteomics studies have shown differential expression of numerous proteins in dementias but have rarely led to novel biomarker tests for clinical use. The Marie Curie MIRIADE project is designed to experimentally evaluate development strategies to accelerate the validation and ultimate implementation of novel biomarkers in clinical practice, using proteomics-based biomarker development for main dementias as experimental case studies. We address several knowledge gaps that have been identified in the field. First, there is the technology-translation gap of different technologies for the discovery (e.g., mass spectrometry) and the large-scale validation (e.g., immunoassays) of biomarkers. In addition, there is a limited understanding of conformational states of biomarker proteins in different matrices, which affect the selection of reagents for assay development. In this review, we aim to understand the decisions taken in the initial steps of biomarker development, which is done via an interim narrative update of the work of each ESR subproject. The results describe the decision process to shortlist biomarkers from a proteomics to develop immunoassays or mass spectrometry assays for Alzheimer's disease, Lewy body dementia, and frontotemporal dementia. In addition, we explain the approach to prepare the market implementation of novel biomarkers and assays. Moreover, we describe the development of computational protein state and interaction prediction models to support biomarker development, such as the prediction of epitopes. Lastly, we reflect upon activities involved in the biomarker development process to deduce a best-practice roadmap for biomarker development.
Collapse
Affiliation(s)
- Ekaterina Mavrina
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Leighann Kimble
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katharina Waury
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Centre for Integrative Bioinformatics VU (IBIVU) – Center for Integrative Bioinformatics, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dea Gogishvili
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Centre for Integrative Bioinformatics VU (IBIVU) – Center for Integrative Bioinformatics, Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nerea Gómez de San José
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Department of Neurology, University of Ulm, Ulm, Germany
| | - Shreyasee Das
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,ADx NeuroSciences, Gent, Belgium
| | - Salomé Coppens
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, United Kingdom
| | - Bárbara Fernandes Gomes
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Sára Mravinacová
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Division of Affinity Proteomics, Department of Protein Science, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Anna Lidia Wojdała
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Katharina Bolsewig
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sherif Bayoumy
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Felicia Burtscher
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Pablo Mohaupt
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Institute for Regenerative Medicine and Biotherapy - Plateforme de Protéomique Clinique (IRMB-PPC), Institute for Neurosciences of Montpellier (INM), Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Eline Willemse
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Charlotte Teunissen
- MIRIADE Consortium: Multiomics Interdisciplinary Research Integration to Address DEmentia Diagnosis,Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands,*Correspondence: Charlotte Teunissen
| | | |
Collapse
|
38
|
Meisl G, Knowles TPJ, Klenerman D. Mechanistic Models of Protein Aggregation Across Length-Scales and Time-Scales: From the Test Tube to Neurodegenerative Disease. Front Neurosci 2022; 16:909861. [PMID: 35844223 PMCID: PMC9281552 DOI: 10.3389/fnins.2022.909861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Through advances in the past decades, the central role of aberrant protein aggregation has been established in many neurodegenerative diseases. Crucially, however, the molecular mechanisms that underlie aggregate proliferation in the brains of affected individuals are still only poorly understood. Under controlled in vitro conditions, significant progress has been made in elucidating the molecular mechanisms that take place during the assembly of purified protein molecules, through advances in both experimental methods and the theories used to analyse the resulting data. The determination of the aggregation mechanism for a variety of proteins revealed the importance of intermediate oligomeric species and of the interactions with promotors and inhibitors. Such mechanistic insights, if they can be achieved in a disease-relevant system, provide invaluable information to guide the design of potential cures to these devastating disorders. However, as experimental systems approach the situation present in real disease, their complexity increases substantially. Timescales increase from hours an aggregation reaction takes in vitro, to decades over which the process takes place in disease, and length-scales increase to the dimension of a human brain. Thus, molecular level mechanistic studies, like those that successfully determined mechanisms in vitro, have only been applied in a handful of living systems to date. If their application can be extended to further systems, including patient data, they promise powerful new insights. Here we present a review of the existing strategies to gain mechanistic insights into the molecular steps driving protein aggregation and discuss the obstacles and potential paths to achieving their application in disease. First, we review the experimental approaches and analysis techniques that are used to establish the aggregation mechanisms in vitro and the insights that have been gained from them. We then discuss how these approaches must be modified and adapted to be applicable in vivo and review the existing works that have successfully applied mechanistic analysis of protein aggregation in living systems. Finally, we present a broad mechanistic classification of in vivo systems and discuss what will be required to further our understanding of aggregate formation in living systems.
Collapse
Affiliation(s)
- Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Zhu Z, Bian Y, Zhang X, Zeng R, Yang B. Evaluation of formation and proportion of secondary structure in γ-polyglutamic acid by terahertz time-domain spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120940. [PMID: 35093819 DOI: 10.1016/j.saa.2022.120940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
The study of secondary structure is essential for understanding peptides and proteins. Here, we measured the terahertz (THz) spectra of γ-polyglutamic acid (γ-PGA) dominated by α-helix and random coil (RC) respectively. The α-helix has two absorption peaks in the THz region, but no absorption peak is observed in the RC conformation. We believe this is because the hydrogen bonding effect leads to a higher orientation in the helix-dominated γ-PGA. At lower pH, the absorption intensity of γ-PGA increases with the induction time. Similar changes were obtained in the Fourier infrared spectroscopy (FTIR). Through the correlation analysis of THz and IR spectroscopy, it is found that the characteristic peak at 1.2 THz can be used as a sensitive indicator of the intermediate conformation of the α-helical structure. In addition, the transformation of α-helix-RC conformation is related to the peak intensity at 1.99 THz (R2 = 0.991), which preliminarily indicates that terahertz time-domain spectroscopy (THz-TDS) has the potential to become a new effective method for characterizing and evaluating secondary structure.
Collapse
Affiliation(s)
- Zhenqi Zhu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Yujing Bian
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xun Zhang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Ruonan Zeng
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Bin Yang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
40
|
Ren L, Hu L, Zhang Y, Liu J, Xu W, Wu W, Xu J, Chen X, Yao K, Yu Y. Cataract-Causing S93R Mutant Destabilized Structural Conformation of βB1 Crystallin Linking With Aggregates Formation and Cellular Viability. Front Mol Biosci 2022; 9:844719. [PMID: 35359596 PMCID: PMC8964140 DOI: 10.3389/fmolb.2022.844719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
Cataract, opacity of the eye lens, is the leading cause of visual impairment worldwide. The crucial pathogenic factors that cause cataract are misfolding and aggregation of crystallin protein. βB1-crystallin, which is the most abundant water-soluble protein in mammalian lens, is essential for lens transparency. A previous study identified the missense mutation βB1-S93R being responsible for congenital cataract. However, the exact pathogenic mechanism causing cataract remains unclear. The S93 residue, which is located at the first Greek-key motif of βB1-crystallin, is highly conserved, and its substitution to Arginine severely impaired hydrogen bonds and structural conformation, which were evaluated via Molecular Dynamic Simulation. The βB1-S93R was also found to be prone to aggregation in both human cell lines and Escherichia coli. Then, we isolated the βB1-S93R variant from inclusion bodies by protein renaturation. The βB1-S93R mutation exposed more hydrophobic residues, and the looser structural mutation was prone to aggregation. Furthermore, the S93R mutation reduced the structural stability of βB1-crystallin when incubated at physiological temperature and made it more sensitive to environmental stress, such as UV irradiation or oxidative stress. We also constructed a βB1-S93R cellular model and discovered that βB1-S93R was more sensitive to environmental stress, causing not only aggregate formation but also cellular apoptosis and impaired cellular viability. All of the results indicated that lower solubility and structural stability, sensitivity to environmental stress, vulnerability to aggregation, and impaired cellular viability of βB1-S93R might be involved in cataract development.
Collapse
Affiliation(s)
- Ling Ren
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidan Hu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Liu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Eye Center of Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wanyue Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjie Xu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Yao
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
Carreón YJP, Gómez-López ML, Díaz-Hernández O, Vazquez-Vergara P, Moctezuma RE, Saniger JM, González-Gutiérrez J. Patterns in Dried Droplets to Detect Unfolded BSA. SENSORS (BASEL, SWITZERLAND) 2022; 22:1156. [PMID: 35161907 PMCID: PMC8839909 DOI: 10.3390/s22031156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/12/2022]
Abstract
The morphological analysis of patterns in dried droplets has allowed the generation of efficient techniques for the detection of molecules of medical interest. However, the effectiveness of this method to reveal the coexistence of macromolecules of the same species, but different conformational states, is still unknown. To address this problem, we present an experimental study on pattern formation in dried droplets of bovine serum albumin (BSA), in folded and unfolded conformational states, in saline solution (NaCl). Folded proteins produce a well-defined coffee ring and crystal patterns all over the dry droplet. Depending on the NaCl concentration, the crystals can be small, large, elongated, entangled, or dense. Optical microscopy reveals that the relative concentration of unfolded proteins determines the morphological characteristics of deposits. At a low relative concentration of unfolded proteins (above 2%), small amorphous aggregates emerge in the deposits, while at high concentrations (above 16%), the "eye-like pattern", a large aggregate surrounded by a uniform coating, is produced. The radial intensity profile, the mean pixel intensity, and the entropy make it possible to characterize the patterns in dried droplets. We prove that it is possible to achieve 100% accuracy in identifying 4% of unfolded BSA contained in a protein solution.
Collapse
Affiliation(s)
- Yojana J. P. Carreón
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacan, Mexico City 04510, Mexico;
| | - Mary Luz Gómez-López
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez 29050, Mexico; (M.L.G.-L.); (O.D.-H.)
| | - Orlando Díaz-Hernández
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez 29050, Mexico; (M.L.G.-L.); (O.D.-H.)
| | - Pamela Vazquez-Vergara
- Departament de Física de la Materia Condensada, Universitat de Barcelona, Av. Diagonal 645, E08028 Barcelona, Spain;
| | | | - José M. Saniger
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacan, Mexico City 04510, Mexico;
| | - Jorge González-Gutiérrez
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez 29050, Mexico; (M.L.G.-L.); (O.D.-H.)
| |
Collapse
|
42
|
van Gils JHM, Gogishvili D, van Eck J, Bouwmeester R, van Dijk E, Abeln S. How sticky are our proteins? Quantifying hydrophobicity of the human proteome. BIOINFORMATICS ADVANCES 2022; 2:vbac002. [PMID: 36699344 PMCID: PMC9710682 DOI: 10.1093/bioadv/vbac002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 01/28/2023]
Abstract
Summary Proteins tend to bury hydrophobic residues inside their core during the folding process to provide stability to the protein structure and to prevent aggregation. Nevertheless, proteins do expose some 'sticky' hydrophobic residues to the solvent. These residues can play an important functional role, e.g. in protein-protein and membrane interactions. Here, we first investigate how hydrophobic protein surfaces are by providing three measures for surface hydrophobicity: the total hydrophobic surface area, the relative hydrophobic surface area and-using our MolPatch method-the largest hydrophobic patch. Secondly, we analyze how difficult it is to predict these measures from sequence: by adapting solvent accessibility predictions from NetSurfP2.0, we obtain well-performing prediction methods for the THSA and RHSA, while predicting LHP is more challenging. Finally, we analyze implications of exposed hydrophobic surfaces: we show that hydrophobic proteins typically have low expression, suggesting cells avoid an overabundance of sticky proteins. Availability and implementation The data underlying this article are available in GitHub at https://github.com/ibivu/hydrophobic_patches. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Juami Hermine Mariama van Gils
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands,To whom correspondence should be addressed. or
| | - Dea Gogishvili
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands
| | - Jan van Eck
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands
| | - Robbin Bouwmeester
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands
| | - Erik van Dijk
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands
| | - Sanne Abeln
- Computer Science Department, Center for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, 1081 HV Noord-Holland, The Netherlands,To whom correspondence should be addressed. or
| |
Collapse
|
43
|
Nishino H, Kitamura M, Okada S, Miyake R, Okumura M, Muraoka T. Cysteine-based protein folding modulators for trapping intermediates and misfolded forms. RSC Adv 2022; 12:26658-26664. [PMID: 36275147 PMCID: PMC9490518 DOI: 10.1039/d2ra04044a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Folding is a key process to form functional conformations of proteins. Folding via on-pathway intermediates leads to the formation of native structures, while folding through off-pathways affords non-native and disease-causing forms. Trapping folding intermediates and misfolded forms is important for investigating folding mechanisms and disease-related biological properties of the misfolded proteins. We developed cysteine-containing dipeptides conjugated with amino acids possessing mono- and diamino-groups. In oxidative protein folding involving disulfide-bond formation, the addition of cysteine and oxidized glutathione readily promoted the folding to afford native forms. In contrast, despite the acceleration of disulfide-bond formation, non-native isomers formed in significantly increased yields upon the addition of the dipeptides. This study provides a molecular design of cysteine-based protein-folding modulators that afford proteins adopting non-native conformations through intermolecular disulfide-bond formation. Because of the intrinsic reversibility of the disulfide bonds upon redox reactions, the disulfide bond-based approach demonstrated here is expected to lead to the development of reversible methodologies for trapping transient and misfolded forms by intermolecular disulfide bond formation and restarting the folding processes of the trapped forms by subsequent cleavage of the intermolecular disulfide bonds. In this study, cysteine-containing dipeptides conjugated with amino acids possessing mono- and diamino-groups were developed as protein-folding modulators affording non-native forms through intermolecular disulfide-bond formation.![]()
Collapse
Affiliation(s)
- Hayato Nishino
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mai Kitamura
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Shunsuke Okada
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ryosuke Miyake
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Masaki Okumura
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, 243-0435, Japan
| |
Collapse
|
44
|
A correlation of thermodynamic parameters with size of copper-chelated albumin aggregates. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Mule SN, Rosa-Fernandes L, Coutinho JVP, Gomes VDM, Macedo-da-Silva J, Santiago VF, Quina D, de Oliveira GS, Thaysen-Andersen M, Larsen MR, Labriola L, Palmisano G. Systems-wide analysis of glycoprotein conformational changes by limited deglycosylation assay. J Proteomics 2021; 248:104355. [PMID: 34450331 DOI: 10.1016/j.jprot.2021.104355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/08/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A new method to probe the conformational changes of glycoproteins on a systems-wide scale, termed limited deglycosylation assay (LDA), is described. The method measures the differential rate of deglycosylation of N-glycans on natively folded proteins by the common peptide:N-glycosidase F (PNGase F) enzyme which in turn informs on their spatial presentation and solvent exposure on the protein surface hence ultimately the glycoprotein conformation. LDA involves 1) protein-level N-deglycosylation under native conditions, 2) trypsin digestion, 3) glycopeptide enrichment, 4) peptide-level N-deglycosylation and 5) quantitative MS-based analysis of formerly N-glycosylated peptides (FNGPs). LDA was initially developed and the experimental conditions optimized using bovine RNase B and fetuin. The method was then applied to glycoprotein extracts from LLC-MK2 epithelial cells upon treatment with dithiothreitol to induce endoplasmic reticulum stress and promote protein misfolding. Data from the LDA and 3D structure analysis showed that glycoproteins predominantly undergo structural changes in loops/turns upon ER stress as exemplified with detailed analysis of ephrin-A5, GALNT10, PVR and BCAM. These results show that LDA accurately reports on systems-wide conformational changes of glycoproteins induced under controlled treatment regimes. Thus, LDA opens avenues to study glycoprotein structural changes in a range of other physiological and pathophysiological conditions relevant to acute and chronic diseases. SIGNIFICANCE: We describe a novel method termed limited deglycosylation assay (LDA), to probe conformational changes of glycoproteins on a systems-wide scale. This method improves the current toolbox of structural proteomics by combining site and conformational-specific PNGase F enzymatic activity with large scale quantitative proteomics. X-ray crystallography, nuclear magnetic resonance spectroscopy and cryoEM techniques are the major techniques applied to elucidate macromolecule structures. However, the size and heterogeneity of the oligosaccharide chains poses several challenges to the applications of these techniques to glycoproteins. The LDA method presented here, can be applied to a range of pathophysiological conditions and expanded to investigate PTMs-mediated structural changes in complex proteomes.
Collapse
Affiliation(s)
- Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - João V P Coutinho
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vinícius De Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Verônica Feijoli Santiago
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel Quina
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gilberto Santos de Oliveira
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK, Denmark
| | - Letícia Labriola
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
46
|
Houben B, Rousseau F, Schymkowitz J. Protein structure and aggregation: a marriage of necessity ruled by aggregation gatekeepers. Trends Biochem Sci 2021; 47:194-205. [PMID: 34561149 DOI: 10.1016/j.tibs.2021.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/27/2022]
Abstract
Protein aggregation propensity is a pervasive and seemingly inescapable property of proteomes. Strikingly, a significant fraction of the proteome is supersaturated, meaning that, for these proteins, their native conformation is less stable than the aggregated state. Maintaining the integrity of a proteome under such conditions is precarious and requires energy-consuming proteostatic regulation. Why then is aggregation propensity maintained at such high levels over long evolutionary timescales? Here, we argue that the conformational stability of the native and aggregated states are correlated thermodynamically and that codon usage strengthens this correlation. As a result, the folding of stable proteins requires kinetic control to avoid aggregation, provided by aggregation gatekeepers. These unique residues are evolutionarily selected to kinetically favor native folding, either on their own or by coopting chaperones.
Collapse
Affiliation(s)
- Bert Houben
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joost Schymkowitz
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
47
|
Katyal N, Sharma S, Deep S. Delving into controversial dichotomy of direct and indirect mechanisms of Trehalose: In search of unanimous consensus. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
48
|
Cryo-electron tomography provides topological insights into mutant huntingtin exon 1 and polyQ aggregates. Commun Biol 2021; 4:849. [PMID: 34239038 PMCID: PMC8266869 DOI: 10.1038/s42003-021-02360-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/15/2021] [Indexed: 01/27/2023] Open
Abstract
Huntington disease (HD) is a neurodegenerative trinucleotide repeat disorder caused by an expanded poly-glutamine (polyQ) tract in the mutant huntingtin (mHTT) protein. The formation and topology of filamentous mHTT inclusions in the brain (hallmarks of HD implicated in neurotoxicity) remain elusive. Using cryo-electron tomography and subtomogram averaging, here we show that mHTT exon 1 and polyQ-only aggregates in vitro are structurally heterogenous and filamentous, similar to prior observations with other methods. Yet, we find filaments in both types of aggregates under ~2 nm in width, thinner than previously reported, and regions forming large sheets. In addition, our data show a prevalent subpopulation of filaments exhibiting a lumpy slab morphology in both aggregates, supportive of the polyQ core model. This provides a basis for future cryoET studies of various aggregated mHTT and polyQ constructs to improve their structure-based modeling as well as their identification in cells without fusion tags.
Collapse
|
49
|
Rawat P, Prabakaran R, Kumar S, Gromiha MM. Exploring the sequence features determining amyloidosis in human antibody light chains. Sci Rep 2021; 11:13785. [PMID: 34215782 PMCID: PMC8253744 DOI: 10.1038/s41598-021-93019-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
The light chain (AL) amyloidosis is caused by the aggregation of light chain of antibodies into amyloid fibrils. There are plenty of computational resources available for the prediction of short aggregation-prone regions within proteins. However, it is still a challenging task to predict the amyloidogenic nature of the whole protein using sequence/structure information. In the case of antibody light chains, common architecture and known binding sites can provide vital information for the prediction of amyloidogenicity at physiological conditions. Here, in this work, we have compared classical sequence-based, aggregation-related features (such as hydrophobicity, presence of gatekeeper residues, disorderness, β-propensity, etc.) calculated for the CDR, FR or VL regions of amyloidogenic and non-amyloidogenic antibody light chains and implemented the insights gained in a machine learning-based webserver called "VLAmY-Pred" ( https://web.iitm.ac.in/bioinfo2/vlamy-pred/ ). The model shows prediction accuracy of 79.7% (sensitivity: 78.7% and specificity: 79.9%) with a ROC value of 0.88 on a dataset of 1828 variable region sequences of the antibody light chains. This model will be helpful towards improved prognosis for patients that may likely suffer from diseases caused by light chain amyloidosis, understanding origins of aggregation in antibody-based biotherapeutics, large-scale in-silico analysis of antibody sequences generated by next generation sequencing, and finally towards rational engineering of aggregation resistant antibodies.
Collapse
Affiliation(s)
- Puneet Rawat
- grid.417969.40000 0001 2315 1926Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu India
| | - R. Prabakaran
- grid.417969.40000 0001 2315 1926Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu India
| | - Sandeep Kumar
- grid.418412.a0000 0001 1312 9717Biotherapeutics Discovery, Boehringer-Ingelheim Inc., 5571 R & D Building, 175 Briar Ridge Road, Ridgefield, CT 06877 USA
| | - M. Michael Gromiha
- grid.417969.40000 0001 2315 1926Protein Bioinformatics Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu India ,grid.32197.3e0000 0001 2179 2105Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501 Japan
| |
Collapse
|
50
|
Korang-Yeboah M, Ketcham S, Shih M, Ako-Adounvo AM, Zhang J, Bandaranayake BM, Abbey-Berko Y, Faustino P, Ashraf M. Effect of formulation and peptide folding on the fibrillar aggregation, gelation, and oxidation of a therapeutic peptide. Int J Pharm 2021; 604:120677. [PMID: 33961953 DOI: 10.1016/j.ijpharm.2021.120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/28/2022]
Abstract
The physical and chemical stability of therapeutic peptides presents challenges in developing robust formulations. The stability of the formulation affects product safety, efficacy and quality. Therefore, an understanding of the effects of formulation variables on the peptide's conformational structure and on its possible physical and chemical degradation is vital. To this end, computational and experimental analysis were employed to investigate the impact of formulation, peptide folding and product handling on oxidation, fibrillar aggregation and gelation of teriparatide. Teriparatide was used as a model drug due to the correlation of its conformation in solution with its pharmacological activity. Fibrillar aggregation and gelation were monitored using four orthogonal techniques. An innovative, automated platform coupled with ion mobility mass spectrometry was used for profiling chemical degradants. Increases in teriparatide concentration, pH, and ionic strength were found to increase the rate of fibrillar aggregation and gelation. Conversely, an increase in peptide folding and stabilization of the folded structures was found to decrease the rate of fibrillar aggregation and gelation. Moreover, the rate of oxidation was found to be inversely related to its solution concentration and extent of peptide folding. The present study provides an insight into formulation strategies designed to reduce the potential risk of physical and chemical degradation of peptides with a defined conformation.
Collapse
Affiliation(s)
- Maxwell Korang-Yeboah
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Stephanie Ketcham
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Mack Shih
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Ann-Marie Ako-Adounvo
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Jinhui Zhang
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Bandaranayake M Bandaranayake
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| | - Yvonne Abbey-Berko
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Patrick Faustino
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA.
| | - Muhammad Ashraf
- Division of Product Quality Research, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, MD, USA
| |
Collapse
|