1
|
Mahmoud DM, El-Ela FIA, Fouad AG, Belal A, Ali MAM, Ghoneim MM, Almeheyawi RN, Attia ME, Mahmoud TM. Improving the bioavailability and therapeutic efficacy of felodipine for the control of diabetes-associated atherosclerosis: In vitro and in vivo characterization. Int J Pharm 2024; 661:124395. [PMID: 38945465 DOI: 10.1016/j.ijpharm.2024.124395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Felodipine has proven to be effective as an atherosclerosis therapy because it increases blood flow to the vessel wall. However, the poor solubility, low bioavailability, and hepatic first-pass metabolism of oral felodipine compromise its therapeutic effectiveness. The study's goal is to create a nasal pH-sensitive hydrogel of felodipine-loaded invasomes (IPHFI) that will improve felodipine's release, permeation, bioavailability, and efficacy as a potential diabetes-associated atherosclerosis therapy. According to the pre-formulation study, the felodipine-loaded invasomes formulation composed of phospholipid (3%w/v), cholesterol (0.16%w/v), ethanol (3%v/v) and cineole (1%v/v) was chosen as the optimum formulation. The optimum formulation was characterized in vitro and then mixed with a mixture of chitosan and glyceryl monooleate to make the IPHFI formulation. The IPHFI formulation enhanced the release and permeation of felodipine by 2.99 and 3-fold, respectively. To assess the efficacy and bioavailability of the IPHFI formulation, it was studied in vivo using an experimental atherosclerosis rat model. Compared to oral free felodipine, the nasal administration of the IPHFI formulation increased the bioavailability by 3.37-fold and decreased the serum cholesterol, triglycerides, LDL, and calcification score by 1.56, 1.53, 1.80, and 1.18 ratios, respectively. Thus, nasal IPHFI formulation may represent a promising diabetes-associated atherosclerosis therapy.
Collapse
Affiliation(s)
- Dina M Mahmoud
- Department of Pharmaceutics, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Amr Gamal Fouad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia; Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia 11566, Cairo, Egypt.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Riyadh 13713, Saudi Arabia.
| | - Rania N Almeheyawi
- Department of Physical therapy, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.
| | - Mary Eskander Attia
- Pharmacology department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
| | - Tamer M Mahmoud
- Department of Pharmaceutics and Drug Manufacturing, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
2
|
Cui L, Liu X, Li Y, Jing T, Liu D, Ren C, Yin T, Wang Y, Zhao Z, Wang J, Han X, Wang L. Chinese patent medicine combined with calcium channel blockers in the treatment of essential hypertension:a Bayes network meta-analysis and systematic review. Front Pharmacol 2024; 15:1321405. [PMID: 38560355 PMCID: PMC10978809 DOI: 10.3389/fphar.2024.1321405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Backgroud: The co-administration of Chinese patent medicine with calcium channel blockers (CCBs) is a prevalent practice in China for treating essential hypertension (EH). However, robust evidence supporting the efficacy and safety of tailored combinations of different Chinese patent medicines with CCBs, according to individual patient conditions, is still limited. This study sought to elucidate the efficacy and safety of these combinations using a systematic review and network meta-analysis. Materials and methods: Relevant studies were sourced from established databases, incorporating randomized controlled trials published up to 1 February 2023. The ROB2 tool from the Cochrane Collaborative Network was employed to independently assess and cross-verify the quality of the included literature. A network meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2020 and PRISMA-Network Meta-Analyses (PRISMA-NMA) guidelines. A Bayesian network meta-analysis was utilized to gauge the efficacy and safety of distinct integrations of Chinese patent medicine and CCBs. Primary outcomes were interpreted using a paired fixed-effect meta-analysis. Publication bias was appraised through Egger's test and represented with funnel plots. All statistical analyses were executed within the R statistical framework. Results: Following rigorous selection, data extraction, and bias evaluation, 36 articles were incorporated. Tianma Gouteng Granule, when combined with CCBs, displayed superior efficacy in reducing systolic blood pressure (SBP). In terms of diastolic blood pressure (DBP) reduction, Songling Xuemaikang Capsule combined with CCBs emerged as the most effective. Regarding enhancement of antihypertensive effective rates, Qinggan Jiangya Capsule paired with CCBs demonstrated optimal results. For diminishing Traditional Chinese Medicine syndrome scores, the Qiangli Dingxuan Tablet and CCBs combination proved most beneficial. When aiming to reduce total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels, Tianma Gouteng Granule and CCBs showcased superior results. In contrast, the combination of Songling Xuemaikang Capsule and CCBs was more effective in reducing LDL-C, tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Conclusion: This study underscores variability in outcomes from combining Chinese patent medicine and CCBs for hypertension, emphasizing the importance of personalized medicinal combinations, especially Tianma Gouteng Granule and Songling Xuemaikang Capsule. The results offer robust evidence to inform clinical guidelines for essential hypertention and significantly aid clinician in seleting appropriate Chinese patent medicines for treatment.
Collapse
Affiliation(s)
- Liangyu Cui
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xingfang Liu
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Yukun Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianyue Jing
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dasheng Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cong Ren
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Yin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwei Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaheng Wang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuejie Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liying Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Akbaş N, Süleyman B, Mammadov R, Gülaboğlu M, Akbaş EM, Süleyman H. Effect of felodipine on indomethacin-induced gastric ulcers in rats. Exp Anim 2023; 72:505-512. [PMID: 37316263 PMCID: PMC10658091 DOI: 10.1538/expanim.23-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
Felodipine is a calcium channel blocker with antioxidant and anti-inflammatory properties. Researchers have stated that oxidative stress and inflammation also play a role in the pathophysiology of gastric ulcers caused by nonsteroidal anti-inflammatory drugs. The aim of this study was to investigate the antiulcer effect of felodipine on indomethacin-induced gastric ulcers in Wistar rats and compare it with that of famotidine. The antiulcer activities of felodipine (5 mg/kg) and famotidine were investigated biochemically and macroscopically in animals treated with felodipine (5 mg/kg) and famotidine in combination with indomethacin. The results were compared with those of the healthy control group and the group administered indomethacin alone. It was observed that felodipine suppressed the indomethacin-induced malondialdehyde increase (P<0.001); reduced the decrease in total glutathione amount (P<0.001), reduced the decrease superoxide dismutase (P<0.001), and catalase activities (P<0.001); and significantly inhibited ulcers (P<0.001) at the tested dose compared with indomethacin alone. Felodipine at a dose of 5 mg/kg reduced the indomethacin-induced decrease in cyclooxygenase-1 activity (P<0.001) but did not cause a significant reduction in the decrease in cyclooxygenase-2 activity. The antiulcer efficacy of felodipine was demonstrated in this experimental model. These data suggest that felodipine may be useful in the treatment of nonsteroidal anti-inflammatory drug-induced gastric injury.
Collapse
Affiliation(s)
- Nergis Akbaş
- Department of Medical Biochemistry, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Bahadır Süleyman
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Renad Mammadov
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Mine Gülaboğlu
- Department of Biochemistry, School of Pharmacy, Atatürk University, 25400, #Erzurum, Türkiye
| | - Emin Murat Akbaş
- Department of Internal Medicine, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| | - Halis Süleyman
- Department of Pharmacology, School of Medicine, Erzincan Binali Yıldırım University, 24030, #Erzincan, Türkiye
| |
Collapse
|
4
|
Alluri R, Kilari EK, Pasala PK, Kopalli SR, Koppula S. Repurposing Diltiazem for Its Neuroprotective Anti-Dementia Role against Intra-Cerebroventricular Streptozotocin-Induced Sporadic Alzheimer's Disease-Type Rat Model. Life (Basel) 2023; 13:1688. [PMID: 37629545 PMCID: PMC10455909 DOI: 10.3390/life13081688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related neuropsychiatric disorder and a common cause of progressive dementia. Diltiazem (DTZ), the non-dihydropyridine benzothiazepine class of calcium channel blocker (CCB), used clinically in angina and other cardiovascular disorders, has proven neurological benefits. In the present study, the neuroprotective anti-dementia effects of DTZ against intra-cerebroventricular-streptozotocin (ICV-STZ)-induced sporadic AD (SAD)-type rat model was investigated. ICV-STZ-induced cognitive impairments were measured via passive avoidance and Morris water maze tasks. Anti-oxidative enzyme status, pro-inflammatory markers, and amyloid-beta (Aβ) protein expression in rat brain tissues were measured using ELISA kits, Western blotting, and immunostaining techniques. The data revealed that ICV-STZ injection in rats significantly induced cognitive deficits and altered the levels of oxidative and pro-inflammatory markers (p < 0.05~p < 0.001). Treatment with DTZ (10 mg/kg, 20 mg/kg, and 40 mg/kg, p.o.) daily for twenty-one days, 1 h before a single ICV-STZ (3 mg/kg) injection, significantly improved cognitive impairments and ameliorated the ICV-STZ-induced altered nitrite, pro-inflammatory cytokines (TNF-α, and IL-1β) and anti-oxidative enzyme levels (superoxide dismutase, lipid peroxidation, and glutathione). Further, DTZ restored the increased Aβ protein expression in ICV-STZ-induced brain tissue. Considering the results obtained, DTZ might have a potential therapeutic role in treating and managing AD and related dementia pathologies due to its anti-dementia activity in SAD-type conditions in rats induced by ICV-STZ.
Collapse
Affiliation(s)
- Ramesh Alluri
- Cognitive Science Research Initiative Lab., Department of Pharmacology, Vishnu Institute of Pharmaceutical Education and Research, Medak Dist., Narsapur 502313, India
| | - Eswar Kumar Kilari
- Department of Pharmacology, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, India
| | - Praveen Kumar Pasala
- Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research, Jawaharlal Nehru Technological University Anantapur—JNTUA, Anantapur 515721, India
| | - Spandana Rajendra Kopalli
- Department of Integrated Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Science, Konkuk University, Chungju-si 380-701, Republic of Korea
| |
Collapse
|
5
|
Ahmad T, Khan T, Kirabo A, Shah AJ. Antioxidant Flavonoid Diosmetin Is Cardioprotective in a Rat Model of Myocardial Infarction Induced by Beta 1-Adrenergic Receptors Activation. Curr Issues Mol Biol 2023; 45:4675-4686. [PMID: 37367046 PMCID: PMC10297416 DOI: 10.3390/cimb45060297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Myocardial infarction (MI) is a common and life-threatening manifestation of ischemic heart diseases (IHD). The most important risk factor for MI is hypertension. Natural products from medicinal plants have gained considerable attention globally due to their preventive and therapeutic effects. Flavonoids have been found to be efficacious in ischemic heart diseases (IHD) by alleviating oxidative stress and beta-1 adrenergic activation, but the mechanistic link is not clear. We hypothesized that antioxidant flavonoid diosmetin is cardioprotective in a rat model of MI induced by beta 1-adrenergic receptor activation. To test this hypothesis, we evaluated the cardioprotective potential of diosmetin on isoproterenol-induced MI in rats by performing lead II electrocardiography (ECG), cardiac biomarkers including troponin I (cTnI) and creatinine phosphokinase (CPK), CK-myocardial band, (CK-MB), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotranferase (AST) by using biolyzer 100, as well as histopathological analysis. We found that diosmetin (1 and 3 mg/kg) attenuated isoproterenol-induced elevation in the T-wave and deep Q-wave on the ECG, as well as heart-to-body weight ratio and infarction size. In addition, pretreatment with diosmetin attenuated the isoproterenol-induced increase in serum troponin I. These results demonstrate that flavonoid diosmetin may provide therapeutic benefit in myocardial infarction.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacy, Abbottabad Campus, COMSATS University Islamabad, University Road, Abbottabad 22060, Pakistan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taous Khan
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Abdul Jabbar Shah
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Pakistan
| |
Collapse
|
6
|
Zhao H, Wang X, Tang Y, Zhao Q, Huang C. Inhibition of intermittent calcium-activated potassium channel (SK4) attenuates Ang II-induced hypertrophy of human-induced stem cell-derived cardiomyocytes via targeting Ras-Raf-MEK1/2-ERK1/2 and CN-NFAT signaling pathways. Cell Biol Int 2023; 47:480-491. [PMID: 36273427 DOI: 10.1002/cbin.11948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 01/17/2023]
Abstract
Cardiac hypertrophy caused by angiotensin II (Ang II) is essential for the pathological process of heart failure. The intermediate calcium-activated potassium channel (SK4) has been shown to be involved in the process of the inflammatory response, cell proliferation, and apoptosis. However, the role of SK4 in cardiac hypertrophy has not been elucidated. Cardiac hypertrophy in human-induced pluripotent stem cells-derived cardiomyocytes (HiPSC-CMs) was induced by Ang II. Cells were transfected with SK4 adenovirus or treated with SK4 inhibitor (TRAM-34). TUNEL staining was used to assess the levels of apoptosis. Real-time polymerase chain reaction and Western blot analysis were used to measure messenger RNA (mRNA) and protein levels, respectively. The present results showed that SK4 expression was upregulated in HiPSC-CMs stimulated by Ang II. The downregulation of SK4 by a specific inhibitor TRAM-34 markedly ameliorated cardiac hypertrophy (reflected by the mRNA levels of atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain) and apoptosis (reflected by the level of Caspase 3, Bax, and Bcl-2) induced by Ang II treatment. The action of SK4 in cardiac hypertrophy was mediated by Ras-Raf-mitogen-activated protein kinases 1/2 (MEK1/2)-extracellular-regulated protein kinases 1/2 (ERK1/2) and calcineurin (CN)-nuclear factors of activated T cells (NFAT) activation. Our studies demonstrated that inhibition of SK4 significantly alleviated cardiac hypertrophy induced by Ang II in hiPSC-CMs by targeting Ras-Raf-MEK1/2-ERK1/2 signaling and CN-NFAT signaling pathway. Our studies suggest that SK4 may serve as a potential therapeutic target that could delay hypertrophy.
Collapse
Affiliation(s)
- Hongyi Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, P. R. China.,Cardiovascular Research Institute, Wuhan University, Wuhan, P. R. China.,Hubei Key Laboratory of Cardiology, Wuhan, P. R. China
| |
Collapse
|
7
|
Zhang Z, Dalan R, Hu Z, Wang JW, Chew NW, Poh KK, Tan RS, Soong TW, Dai Y, Ye L, Chen X. Reactive Oxygen Species Scavenging Nanomedicine for the Treatment of Ischemic Heart Disease. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202169. [PMID: 35470476 DOI: 10.1002/adma.202202169] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Ischemic heart disease (IHD) is the leading cause of disability and mortality worldwide. Reactive oxygen species (ROS) have been shown to play key roles in the progression of diabetes, hypertension, and hypercholesterolemia, which are independent risk factors that lead to atherosclerosis and the development of IHD. Engineered biomaterial-based nanomedicines are under extensive investigation and exploration, serving as smart and multifunctional nanocarriers for synergistic therapeutic effect. Capitalizing on cell/molecule-targeting drug delivery, nanomedicines present enhanced specificity and safety with favorable pharmacokinetics and pharmacodynamics. Herein, the roles of ROS in both IHD and its risk factors are discussed, highlighting cardiovascular medications that have antioxidant properties, and summarizing the advantages, properties, and recent achievements of nanomedicines that have ROS scavenging capacity for the treatment of diabetes, hypertension, hypercholesterolemia, atherosclerosis, ischemia/reperfusion, and myocardial infarction. Finally, the current challenges of nanomedicines for ROS-scavenging treatment of IHD and possible future directions are discussed from a clinical perspective.
Collapse
Affiliation(s)
- Zhan Zhang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 408433, Singapore
| | - Zhenyu Hu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jiong-Wei Wang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Nicholas Ws Chew
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre, National University Hospital, Singapore, 119074, Singapore
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore, 119609, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macao, Taipa, Macau SAR, 999078, China
| | - Lei Ye
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Chemical and Biomolecular Engineering and Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
8
|
The Application of the Neuroprotective and Potential Antioxidant Effect of Ergotamine Mediated by Targeting N-Methyl-D-Aspartate Receptors. Antioxidants (Basel) 2022; 11:antiox11081471. [PMID: 36009192 PMCID: PMC9405237 DOI: 10.3390/antiox11081471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: The N-methyl-D-aspartate receptors (NMDARs) mediate fast excitatory currents leading to depolarization. Postsynaptic NMDARs are ionotropic glutamate receptors that mediate excitatory glutamate or glycine signaling in the CNS and play a primary role in long-term potentiation, which is a major form of use-dependent synaptic plasticity. The overstimulation of NMDARs mediates excessive Ca2+ influx to postsynaptic neurons and facilitates more production of ROS, which induces neuronal apoptosis. (2) Methods: To confirm the induced inward currents by the coapplication of glutamate and ergotamine on NMDARs, a two-electrode voltage clamp (TEVC) was conducted. The ergotamine-mediated inhibitory effects of NR1a/NR2A subunits were explored among four different kinds of recombinant NMDA subunits. In silico docking modeling was performed to confirm the main binding site of ergotamine. (3) Results: The ergotamine-mediated inhibitory effect on the NR1a/NR2A subunits has concentration-dependent, reversible, and voltage-independent properties. The major binding sites were V169 of the NR1a subunit and N466 of the NR2A subunit. (4) Conclusion: Ergotamine effectively inhibited NR1a/NR2A subunit among the subtypes of NMDAR. This inhibition effect can prevent excessive Ca2+ influx, which prevents neuronal death.
Collapse
|
9
|
Ahmad T, Khan T, Tabassum T, Alqahtani YS, Mahnashi MH, Alyami BA, Alqarni AO, Alasmary MY, Almedhesh SA, Shah AJ. Juglone from Walnut Produces Cardioprotective Effects against Isoproterenol-Induced Myocardial Injury in SD Rats. Curr Issues Mol Biol 2022; 44:3180-3193. [PMID: 35877444 PMCID: PMC9319353 DOI: 10.3390/cimb44070220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
Therapeutic and/or preventive interventions using phytochemical constituents for ischemic heart disease have gained considerable attention worldwide, mainly due to their antioxidant activity. This study investigated the cardioprotective effect and possible mechanism of juglone, a major constituent of the walnut tree, using an isoproterenol (ISO)-induced myocardial infarction (MI) model in rats. Rats were pretreated for five (5) days with juglone (1, 3 mg/kg, i.p) and atenolol (1 mg/kg, i.p) in separate experiments before inducing myocardial injury by administration of ISO (80 mg/kg, s.c) at an interval of 24 h for 2 consecutive days (4th and 5th day). The cardioprotective effect of juglone was confirmed through a lead II electrocardiograph (ECG), cardiac biomarkers (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological study. The results of our present study suggest that prior administration of juglone (1 and 3 mg/kg) proved to be effective as a cardioprotective therapeutic agent in reducing the extent of myocardial damage (induced by ISO) by fortifying the myocardial cell membrane, preventing elevated T-waves, deep Q-waves in the ECG, heart to body weight ratio, infarction and also by normalizing cardiac marker enzymes (cTnI, CPK, CK-MB, LDH, ALT and AST) and histopathological changes, such as inflammation, edema and necrosis. In conclusion, this study has identified phytochemical constituents, in particular juglone, as a potential cardioprotective agent.
Collapse
Affiliation(s)
- Taseer Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (T.A.); (T.K.)
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (T.A.); (T.K.)
| | - Tahira Tabassum
- Department Pathology, Sargodha Medical College, University of Sargodha, Sargodha 40100, Pakistan;
| | - Yahya S. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 61441, Saudi Arabia; (Y.S.A.); (M.H.M.); (B.A.A.); (A.O.A.)
| | - Mohammed Y. Alasmary
- Medical Department, College of Medicine, Najran University, Najran 61441, Saudi Arabia;
| | - Sultan A. Almedhesh
- Pediatric Department, College of Medicine, Najran University, Najran 61441, Saudi Arabia;
| | - Abdul Jabbar Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan; (T.A.); (T.K.)
- Correspondence:
| |
Collapse
|
10
|
Wu X, Hussain M, Syed SK, Saadullah M, Alqahtani AM, Alqahtani T, Aldahish A, Fatima M, Shaukat S, Hussain L, Jamil Q, Mukhtar I, Khan KUR, Zeng LH. Verapamil attenuates oxidative stress and inflammatory responses in cigarette smoke (CS)-induced murine models of acute lung injury and CSE-stimulated RAW 264.7 macrophages via inhibiting the NF-κB pathway. Biomed Pharmacother 2022; 149:112783. [PMID: 35299124 DOI: 10.1016/j.biopha.2022.112783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 01/09/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), severe form of ALI, are characterized by overwhelming of lung inflammation, and no treatment is currently available to treat ALI/ARDS. Cigarette smoke (CS) is one of the prime causes to induce ALI/ARDS via oxidative stress. Despite extensive research, no appropriate therapy is currently available to treat ALI/ARDS. Hence, new potential approaches are needed to treat ALI/ARDS. Consequently, this project was designed to explore the protective effects of verapamil against CS-induced ALI by in vivo and in vitro method. In vivo data obtained from respiratory mechanics, pulmonary morphometric analyses and lung histopathology revealed that verapamil dose-dependently and strikingly decreased the lung weight coefficient, attenuated the albumin exudation into lungs, minimized the infiltration of macrophages and neutrophils into lungs, reduced the pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and keratinocyte chemoattractant (KC)) production, and improved the hypoxemia and lung histopathological changes. Similarly, verapamil also reduced the production of TNF-α, IL-6 and KC from cigarette smoke extract (CSE)-stimulated RAW 264.7 macrophage. Importantly, verapamil dose-dependently and remarkably suppressed the CS-induced oxidative stress via not only reducing the myeloperoxidase (MPO) activity of lungs, total oxidative stress (TOS) and malondialdehyde (MDA) content in the lungs and supernatant of RAW 264.7 macrophage but also improving total antioxidant capacity (TAC) and superoxide dismutase (SOD) production. Finally, verapamil strikingly decreased the NF-κB expression both in in vivo and in vitro models. Hence, verapamil has positive therapeutic effects against CS-induced ALI via suppressing uncontrolled inflammatory response, oxidative stress and NF-κB p65 signaling.
Collapse
Affiliation(s)
- Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China.
| | - Musaddique Hussain
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, 54000, Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Ali M Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Afaf Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Mobeen Fatima
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Saira Shaukat
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Liaqat Hussain
- Department of Pharmacology, Government College University, Faisalabad 38000, Pakistan
| | - Qurratulain Jamil
- Department of Pharmacy Practice, Faculty of Pharmacy, The Islamia University of Bahawalpur, Pakistan
| | - Imran Mukhtar
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Sir Sadiq Muhammad Khan Abassi post Graduate Medical College, The Islamia University of Bahawalpur, Pakistan
| | - Kashif-Ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China
| |
Collapse
|
11
|
Alam T, Ansari MA, Baboota S, Ali J. Nanostructured lipid carriers of isradipine for effective management of hypertension and isoproterenol induced myocardial infarction. Drug Deliv Transl Res 2022; 12:577-588. [PMID: 33782898 DOI: 10.1007/s13346-021-00958-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
The objective of the present paper is to formulate nanostructured lipid carriers (NLCs) of a calcium channel blocker, isradipine, to enhance its oral bioavailability and prolong its antihypertensive effect apart from evaluating efficacy of the formulation in isoproterenol induced myocardial infarction in rats. Formulation was optimized using quality by design (QbD)-based approach. Three factors i.e., total lipid concentration (%), homogenization pressure (bar), and number of cycles were optimized through Box-Behnken design to estimate their effect on critical quality attributes (CQAs) viz., size (nm), % entrapment efficiency, and in vitro % drug release which were found to be 80.9 ± 1.7 nm, 83.51 ± 2.15%, and 83.3 ± 3.86% after 24 h, respectively. In vivo pharmacokinetic study indicated 4.207 and 1.907 times increase in the oral bioavailability of optimized nanostructured lipid carrier without and with cycloheximide (lymphatic transport inhibitor), respectively. Treatment with ISO (isoproterenol) significantly diverges the levels of antioxidant marker, TBARS (thiobarbituric acid), and ultrastructure of the cardiac tissue indicating significant myocardial damage. Pretreatment of nanostructured lipid carrier of isradipine (ISD-NLCs) significantly prevented the antioxidant status and ultrastructural changes in the heart. In conclusion, this study confirms that optimized NLCs can substantially improve oral bioavailability of isradipine and presents a promising strategy in the management of hypertension for longer duration of time apart from demonstrating its preclinical efficacy in cardioprotection.
Collapse
Affiliation(s)
- Tausif Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
12
|
Olatoye FJ, Akindele AJ, Onwe S. Ameliorative effect of Kolaviron, an extract of Garcinia kola seeds, on induced hypertension. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:37-46. [PMID: 33977689 DOI: 10.1515/jcim-2020-0354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Early diagnosis and management of known cardiovascular disease risk attributes such as hypertension lessens morbidity and mortality as well as increase quality of life of patients. This present study was modelled to investigate the ameliorative effect of Kolaviron, an extract of Garcinia kola Heckel seeds, in ethanol- and sucrose-induced hypertension. METHODS Test animals were divided into six groups of six animals each for each hypertensive model. Animals were treated daily with distilled water (10 ml/kg); 35% ethanol (3 g/kg) or sucrose (5-7%); Kolaviron (50, 100 and 200 mg/kg) separately plus ethanol or sucrose and Amlodipine (0.14 mg/kg) separately plus ethanol or sucrose for 8 weeks. Systolic, diastolic and mean arterial pressures were determined using non-invasive BP system after 8 weeks. Blood was obtained for the assessment of biochemical parameters, lipid profile and antioxidant indices. Vital organs were collected for approximation of tissue antioxidant levels. RESULTS Results show that Kolaviron at various doses and Amlodipine significantly reduced (p<0.05-0.001) the elevated systolic, diastolic, and mean arterial pressures produced by ethanol and sucrose administration. Additionally, Kolaviron and Amlodipine significantly overturned (p<0.05-0.001) the reduction in GSH, SOD and CAT, and elevation in MDA levels elicited by ethanol and sucrose. Furthermore, Kolaviron and Amlodipine produced significant reduction (p<0.001) in levels of cholesterol, triglycerides and low-density lipoproteins, as well as significant increase (p<0.01-0.001) in levels of high-density lipoproteins. CONCLUSIONS Results from this study demonstrate that Kolaviron possibly possesses significant antihypertensive effect which may possibly be attributed to its antioxidant effects and relative improvement of lipid profile.
Collapse
Affiliation(s)
- Francis J Olatoye
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abidemi J Akindele
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Samson Onwe
- Department of Pharmacology, Therapeutics and Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
13
|
Andreadou I, Daiber A, Baxter GF, Brizzi MF, Di Lisa F, Kaludercic N, Lazou A, Varga ZV, Zuurbier CJ, Schulz R, Ferdinandy P. Influence of cardiometabolic comorbidities on myocardial function, infarction, and cardioprotection: Role of cardiac redox signaling. Free Radic Biol Med 2021; 166:33-52. [PMID: 33588049 DOI: 10.1016/j.freeradbiomed.2021.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
The morbidity and mortality from cardiovascular diseases (CVD) remain high. Metabolic diseases such as obesity, hyperlipidemia, diabetes mellitus (DM), non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) as well as hypertension are the most common comorbidities in patients with CVD. These comorbidities result in increased myocardial oxidative stress, mainly from increased activity of nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, mitochondria as well as downregulation of antioxidant defense systems. Oxidative and nitrosative stress play an important role in ischemia/reperfusion injury and may account for increased susceptibility of the myocardium to infarction and myocardial dysfunction in the presence of the comorbidities. Thus, while early reperfusion represents the most favorable therapeutic strategy to prevent ischemia/reperfusion injury, redox therapeutic strategies may provide additive benefits, especially in patients with heart failure. While oxidative and nitrosative stress are harmful, controlled release of reactive oxygen species is however important for cardioprotective signaling. In this review we summarize the current data on the effect of hypertension and major cardiometabolic comorbidities such as obesity, hyperlipidemia, DM, NAFLD/NASH on cardiac redox homeostasis as well as on ischemia/reperfusion injury and cardioprotection. We also review and discuss the therapeutic interventions that may restore the redox imbalance in the diseased myocardium in the presence of these comorbidities.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
| | - Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr, Germany.
| | - Gary F Baxter
- Division of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, United Kingdom
| | | | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council of Italy (CNR), Padova, Italy
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Budapest, Hungary
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany.
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
14
|
The Role of Oxidative Stress in Physiopathology and Pharmacological Treatment with Pro- and Antioxidant Properties in Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2082145. [PMID: 32774665 PMCID: PMC7396016 DOI: 10.1155/2020/2082145] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/08/2020] [Indexed: 01/01/2023]
Abstract
Oxidative stress (OS) has the ability to damage different molecules and cellular structures, altering the correct function of organs and systems. OS accumulates in the body by endogenous and exogenous mechanisms. Increasing evidence points to the involvement of OS in the physiopathology of various chronic diseases that require prolonged periods of pharmacological treatment. Long-term treatments may contribute to changes in systemic OS. In this review, we discuss the involvement of OS in the pathological mechanisms of some chronic diseases, the pro- or antioxidant effects of their pharmacological treatments, and possible adjuvant antioxidant alternatives. Diseases such as high blood pressure, arteriosclerosis, and diabetes mellitus contribute to the increased risk of cardiovascular disease. Antihypertensive, lipid-lowering, and hypoglycemic treatments help reduce the risk with an additional antioxidant benefit. Treatment with methotrexate in autoimmune systemic inflammatory diseases, such as rheumatoid arthritis, has a dual role in stimulating the production of OS and producing mitochondrial dysfunction. However, it can also help indirectly decrease the systemic OS induced by inflammation. Medicaments used to treat neurodegenerative diseases tend to decrease the mechanisms related to the production of reactive oxygen species (ROS) and balance OS. On the other hand, immunosuppressive treatments used in cancer or human immunodeficiency virus infection increase the production of ROS, causing significant oxidative damage in different organs and systems without widely documented exogenous antioxidant administration alternatives.
Collapse
|
15
|
Pardeep Singh, Kumar M, Bansal N. Azelnidipine Ameliorates Dementia in Streptozotocin Treated Rats: Interplay between Oxidative Stress and Calcium. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Song Z, Li S, Zhang C, Yuan L, Han L, Liu Y. The therapeutic effect of verapamil in lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun 2019; 517:648-654. [PMID: 31395340 DOI: 10.1016/j.bbrc.2019.07.090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023]
Abstract
The objective of this study was to investigate the exact therapeutic effects of Verapamil on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the molecular mechanism involved, through using LPS-induced animal models as well as LPS-stimulated mouse primary peritoneal macrophages models. Our results demonstrated that Verapamil reduced LPS-induced pathological damage of the lung tissue, infiltration of inflammatory cells and the production of IL-1β, TNF-α, and MCP-1 in the serum. The MPO activity, MDA content, lung wet/dry ratio and LDH activity were also attenuated by Verapamil. In addition, Verapamil attenuated LPS-induced inflammatory cytokine production and oxidative stress in primary murine peritoneal macrophages in vitro. Moreover, we confirmed that NF-κB/NLRP3 pathway was involved in the therapeutic effect of Verapamil against LPS-induced injury in vivo and in vitro. In conclusion, these findings indicate that Verapamil has a therapeutic effect on LPS-induced ALI in mice. The mechanism may be related to the inhibition of NF-κB and NLRP3 signaling pathways. Verapamil may be a potential therapeutic agent for the treatment of ALI.
Collapse
Affiliation(s)
- Zhuohui Song
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Shufen Li
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Cuiying Zhang
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Li Yuan
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Lingna Han
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Yan Liu
- Department of Physiology, Changzhi Medical College, Changzhi, Shanxi, China.
| |
Collapse
|
17
|
|
18
|
Jori N, Quispe PA, Islas MS, Piro OE, Echeverría GA, Ferrer EG, Williams PA. Unexpected oxidation of nitrendipine. Properties of oxidized nitrendipine and its Cu(II) complex. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.09.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Santa-Helena E, da Costa Cabrera D, Teixeira S, Rodrigues J, Castro M, Montes D'Oca MG, Maia Nery LE, Neves Gonçalves CA. New fatty dihydropyridines present cardioprotective potential in H9c2 cardioblasts submitted to simulated ischemia and reperfusion. Biomed Pharmacother 2018; 109:1532-1540. [PMID: 30551405 DOI: 10.1016/j.biopha.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022] Open
Abstract
Nifedipine is a calcium channel blocker dihydropyridine that has been used in the treatment of hypertension. The production of reactive species and calcium overload are the main contributors to myocardial ischemia-reperfusion (I / R) injury. We investigated the ability of novel dihydropyridines (DHPs) to improve the effect of protecting against the injury induced by ischemia and reperfusion in cardioblasts when compared to nifedipine. Forty three DHPs were created varying the fatty chains derived from palmitic acid, stearic acid and oleic acids and aromatic moiety in addition to the addition of chemical elements such as chlorine, nitrogen dioxide, furfural, hydroxyl and methoxy. Cytotoxicity and inhibition of linoleic oxidation were evaluated for all new DHPs and also for nifedipine. The alpha-tocopherol and butylated hydroxytoluene (BHT) were used as antioxidants controls. The compounds with the best antioxidant potential were used in the ischemia and reperfusion (I / R) induction test in cardioblasts (H9c2). Cardioblasts were treated 24 h after assembly of plates and submitted to the ischemia simulation (30 min), after which, normoxia and cellular nutrition conditions were reestablished, simulating reperfusion (additional 30 min). Right after, cell viability, apoptosis, necrosis, and the generation of reactive oxygen species (ROS) were evaluated. Cell viability during I / R was not altered in cells treated with nifedipine, BHT and the new DHP composed of palmitic acid with hydroxyl group in the aromatic substituent. The other new DHPs increased cell viability during I / R simulation and reduced levels of reactive species compared to the I / R group, demonstrating the antioxidant capacity of the new DHPs. Therefore, DHPS with palmitic and oleic acids in the C3 and C5 position with NO2 or Cl in aromatic moiety, presented the highest antioxidant potential (linoleic oxidant test). The new DHPs increased cell viability during I / R simulation and reduced levels of reactive species compared to the ischemia and reperfusion group, demonstrating the antioxidant capacity of the new DHPs. Taken together, these results indicate that those new DHPs have a greater cardioprotective antioxidant capacity to face the damages of ischemia and reperfusion.
Collapse
Affiliation(s)
- Eduarda Santa-Helena
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Diego da Costa Cabrera
- Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Stefanie Teixeira
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Jonathan Rodrigues
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Micheli Castro
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Marcelo G Montes D'Oca
- Laboratório Kolbe de Síntese Orgânica, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Luiz Eduardo Maia Nery
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| | - Carla Amorim Neves Gonçalves
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
20
|
Mohamed MZ, Hafez HM, Hassan M, Ibrahim MA. PI3K/Akt and Nrf2/HO-1 pathways involved in the hepatoprotective effect of verapamil against thioacetamide toxicity in rats. Hum Exp Toxicol 2018; 38:381-388. [PMID: 30526075 DOI: 10.1177/0960327118817099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver is a precious organ to maintain body life. Hepatotoxicity is a worldwide health problem that is still a challenge for research. Although countless pharmaceutical drugs and herbal compounds were screened for their hepatoprotective effects, the death from hepatotoxicity is increasing. Thus, there is continuous necessity of searching for the hepatoprotective effect of commonly used drugs. Accordingly, our aim was to examine a hepatoprotective potential for the antihypertensive drug, verapamil, and searching for new insights underlie its protective mechanism. Four groups of adult male rats were randomly arranged as controls, thioacetamide (TAA) hepatotoxic, and TAA + verapamil treated. Serum liver enzyme, hepatic antioxidant, lipid peroxidation, and inflammatory parameters were assessed. Gene relative expression for heme oxygenase-1 (HO-1), nuclear factor-erythroid 2-related factor 2 (Nrf2), phosphoinositide 3-kinase (PI3K), and serine/threonine-specific protein kinase (Akt) were quantified in hepatic tissue. TAA caused hepatic injury evident both histopathologically and biochemically by a decrease in all gene expressions. Verapamil alleviated the injury via its antioxidant and anti-inflammatory effects that were suggested to be via upregulation of the previous gene expressions. In conclusion, the calcium channel blocker, verapamil, that is used widely as antihypertensive exhibits a valuable hepatoprotective effect. The protection partially rests on activation of Nrf2/HO-1 and PI3K/Akt pathways.
Collapse
Affiliation(s)
- M Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - H M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - M Hassan
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - M A Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
21
|
Carbonara R, Giardinelli F, Pepe M, Luzzi G, Panettieri I, Vulpis V, Bortone AS, Ciccone MM. Correlation between endothelial dysfunction and myocardial damage in acute phase of Tako-Tsubo cardiomyopathy: brachial flow mediated dilation as a potential marker for assessment of patient with Tako-Tsubo. Heart Vessels 2018; 33:291-298. [PMID: 29027587 DOI: 10.1007/s00380-017-1062-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
Takotsubo cardiomyopathy (TTC) is characterized by transient systolic ventricular dysfunction. It is supposed to be caused by a cathecolaminergic wave which leads to myocardial stunning through a massive action on beta2-adrenoreceptor. Moreover, beta2-receptor hyperactivity negatively influences endothelial function. It can be detected by brachial flow mediated dilation (b-FMD) which assesses endothelium regulated vasomotility. The study aim is to analyze the b-FMD variability during hospitalization in 50 patients admitted with TTC. In addition, we investigated a possible correlation between b-FMD at admission and both length of hospital stay (LOHS) and troponin I peak. We detected b-FMD by measuring the hypoxic induced vasoreactivity through assessing brachial artery dilation after 5 min of iatrogenic ischemia obtained by inflating a sphygmomanometer cuff. Artery diameter modifications were assessed by high-resolution ultrasound, and a dedicated software calculated accurately the percentage of dilation after ischemia by comparing it to the basal. These values were measured at admission and on discharge. The obtained values were compared for each patient to explore their variability during hospitalization. Moreover, the correlation between the b-FMD at admission and both the troponin I peak and the LOHS was investigated. There was a statistical significant difference between mean FMD measured at admission and at discharge (respectively 1.54 ± 0.34 and 8.92 ± 2.48%; p < 0.001). Moreover, we found a significant negative correlation between troponin I peak and FMD values at admission (r = - 0.7645; p < 0.001) and a significant inverse correlation between FMD at admission and LOHS (r = - 0.7543; p < 0.001). There is a significant improvement of b-FMD during hospitalization in patients admitted for Tako-Tsubo Cardiomyopathy. Moreover, for the first time, a direct correlation among b-FMD, troponin I peak and LOHS has been detected.
Collapse
Affiliation(s)
- Rosa Carbonara
- Department of Emergency and Organ Transplant, Cardiology Unit, Bari University Hospital, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - Francesco Giardinelli
- Department of Emergency and Organ Transplant, Cardiology Unit, Bari University Hospital, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Martino Pepe
- Department of Emergency and Organ Transplant, Cardiology Unit, Bari University Hospital, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Giovanni Luzzi
- Department of Emergency and Organ Transplant, Cardiology Unit, Bari University Hospital, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Immacolata Panettieri
- Department of Medicine, Foggia University Hospital, Viale Pinto, 1, 71100, Foggia, Italy
| | - Vito Vulpis
- Department of Medicine "Pende-Ferrannini", Bari University Hospital, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Alessandro Santo Bortone
- Department of Cardiac Surgery, Bari University Hospital, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Marco Matteo Ciccone
- Department of Emergency and Organ Transplant, Cardiology Unit, Bari University Hospital, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
22
|
Cumsille S, Morales J, Sandoval-Altamirano C, Günther G, Vega A, Pizarro N. Substituent effect of side chains on the photochemical behavior of a new generation 1,4-dihydropyridine: Lercanidipine. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Park JW, Mun GH. Comparative analysis of the effect of antihypertensive drugs on the survival of perforator flaps in a rat model. Microsurgery 2017; 38:310-317. [DOI: 10.1002/micr.30286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 11/17/2017] [Accepted: 12/08/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Jin-Woo Park
- Department of Plastic Surgery; Samsung Medical Center, Sungkyunkwan University School of Medicine, Ilwon-dong 50, Gangnam-gu; Seoul 135-710 South Korea
| | - Goo-Hyun Mun
- Department of Plastic Surgery; Samsung Medical Center, Sungkyunkwan University School of Medicine, Ilwon-dong 50, Gangnam-gu; Seoul 135-710 South Korea
| |
Collapse
|
24
|
Godfraind T. Discovery and Development of Calcium Channel Blockers. Front Pharmacol 2017; 8:286. [PMID: 28611661 PMCID: PMC5447095 DOI: 10.3389/fphar.2017.00286] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/05/2017] [Indexed: 12/25/2022] Open
Abstract
In the mid 1960s, experimental work on molecules under screening as coronary dilators allowed the discovery of the mechanism of calcium entry blockade by drugs later named calcium channel blockers. This paper summarizes scientific research on these small molecules interacting directly with L-type voltage-operated calcium channels. It also reports on experimental approaches translated into understanding of their therapeutic actions. The importance of calcium in muscle contraction was discovered by Sidney Ringer who reported this fact in 1883. Interest in the intracellular role of calcium arose 60 years later out of Kamada (Japan) and Heibrunn (USA) experiments in the early 1940s. Studies on pharmacology of calcium function were initiated in the mid 1960s and their therapeutic applications globally occurred in the the 1980s. The first part of this report deals with basic pharmacology in the cardiovascular system particularly in isolated arteries. In the section entitled from calcium antagonists to calcium channel blockers, it is recalled that drugs of a series of diphenylpiperazines screened in vivo on coronary bed precontracted by angiotensin were initially named calcium antagonists on the basis of their effect in depolarized arteries contracted by calcium. Studies on arteries contracted by catecholamines showed that the vasorelaxation resulted from blockade of calcium entry. Radiochemical and electrophysiological studies performed with dihydropyridines allowed their cellular targets to be identified with L-type voltage-operated calcium channels. The modulated receptor theory helped the understanding of their variation in affinity dependent on arterial cell membrane potential and promoted the terminology calcium channel blocker (CCB) of which the various chemical families are introduced in the paper. In the section entitled tissue selectivity of CCBs, it is shown that characteristics of the drug, properties of the tissue, and of the stimuli are important factors of their action. The high sensitivity of hypertensive animals is explained by the partial depolarization of their arteries. It is noted that they are arteriolar dilators and that they cannot be simply considered as vasodilators. The second part of this report provides key information about clinical usefulness of CCBs. A section is devoted to the controversy on their safety closed by the Allhat trial (2002). Sections are dedicated to their effect in cardiac ischemia, in cardiac arrhythmias, in atherosclerosis, in hypertension, and its complications. CCBs appear as the most commonly used for the treatment of cardiovascular diseases. As far as hypertension is concerned, globally the prevalence in adults aged 25 years and over was around 40% in 2008. Usefulness of CCBs is discussed on the basis of large clinical trials. At therapeutic dosage, they reduce the elevated blood pressure of hypertensive patients but don't change blood pressure of normotensive subjects, as was observed in animals. Those active on both L- and T-type channels are efficient in nephropathy. Alteration of cognitive function is a complication of hypertension recognized nowadays as eventually leading to dementia. This question is discussed together with the efficacy of CCBs in cognitive pathology. In the section entitled beyond the cardiovascular system, CCBs actions in migraine, neuropathic pain, and subarachnoid hemorrhage are reported. The final conclusions refer to long-term effects discovered in experimental animals that have not yet been clearly reported as being important in human pharmacotherapy.
Collapse
Affiliation(s)
- Théophile Godfraind
- Pharmacologie, Faculté de Médecine et de Dentisterie, Université Catholique de LouvainBruxelles, Belgium
| |
Collapse
|
25
|
Wang YW, Zhang JH, Yu Y, Yu J, Huang L. Inhibition of Store-Operated Calcium Entry Protects Endothelial Progenitor Cells from H2O2-Induced Apoptosis. Biomol Ther (Seoul) 2016; 24:371-9. [PMID: 27169819 PMCID: PMC4930280 DOI: 10.4062/biomolther.2015.130] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Store-operated calcium entry (SOCE), a major mode of extracellular calcium entry, plays roles in a variety of cell activities. Accumulating evidence indicates that the intracellular calcium ion concentration and calcium signaling are critical for the responses induced by oxidative stress. The present study was designed to investigate the potential effect of SOCE inhibition on H2O2-induced apoptosis in endothelial progenitor cells (EPCs), which are the predominant cells involved in endothelial repair. The results showed that H2O2-induced EPC apoptosis was reversed by SOCE inhibition induced either using the SOCE antagonist ML-9 or via silencing of stromal interaction molecule 1 (STIM1), a component of SOCE. Furthermore, SOCE inhibition repressed the increases in intracellular reactive oxygen species (ROS) levels and endoplasmic reticulum (ER) stress and ameliorated the mitochondrial dysfunction caused by H2O2. Our findings provide evidence that SOCE inhibition exerts a protective effect on EPCs in response to oxidative stress induced by H2O2 and may serve as a potential therapeutic strategy against vascular endothelial injury.
Collapse
Affiliation(s)
- Yan-Wei Wang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Ji-Hang Zhang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Yang Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Jie Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| |
Collapse
|
26
|
Velena A, Zarkovic N, Gall Troselj K, Bisenieks E, Krauze A, Poikans J, Duburs G. 1,4-Dihydropyridine Derivatives: Dihydronicotinamide Analogues-Model Compounds Targeting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1892412. [PMID: 26881016 PMCID: PMC4736762 DOI: 10.1155/2016/1892412] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/07/2015] [Indexed: 02/06/2023]
Abstract
Many 1,4-dihydropyridines (DHPs) possess redox properties. In this review DHPs are surveyed as protectors against oxidative stress (OS) and related disorders, considering the DHPs as specific group of potential antioxidants with bioprotective capacities. They have several peculiarities related to antioxidant activity (AOA). Several commercially available calcium antagonist, 1,4-DHP drugs, their metabolites, and calcium agonists were shown to express AOA. Synthesis, hydrogen donor properties, AOA, and methods and approaches used to reveal biological activities of various groups of 1,4-DHPs are presented. Examples of DHPs antioxidant activities and protective effects of DHPs against OS induced damage in low density lipoproteins (LDL), mitochondria, microsomes, isolated cells, and cell cultures are highlighted. Comparison of the AOA of different DHPs and other antioxidants is also given. According to the data presented, the DHPs might be considered as bellwether among synthetic compounds targeting OS and potential pharmacological model compounds targeting oxidative stress important for medicinal chemistry.
Collapse
Affiliation(s)
- Astrida Velena
- Laboratory of Membrane Active Compounds and Beta-Diketones, Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Neven Zarkovic
- Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | | | - Egils Bisenieks
- Laboratory of Membrane Active Compounds and Beta-Diketones, Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Aivars Krauze
- Laboratory of Membrane Active Compounds and Beta-Diketones, Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Janis Poikans
- Laboratory of Membrane Active Compounds and Beta-Diketones, Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
| | - Gunars Duburs
- Laboratory of Membrane Active Compounds and Beta-Diketones, Latvian Institute of Organic Synthesis, Riga LV-1006, Latvia
| |
Collapse
|
27
|
Godfraind T, Salomone S. Ambiguities in dietary antioxidant supplementation compared to calcium channel blockers therapy. Front Pharmacol 2015; 6:10. [PMID: 25691869 PMCID: PMC4315019 DOI: 10.3389/fphar.2015.00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/12/2015] [Indexed: 12/31/2022] Open
Affiliation(s)
- Théophile Godfraind
- Faculté de Médecine et de Dentisterie, Université Catholique de Louvain Brussels, Belgium
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, Catania University Catania, Italy
| |
Collapse
|
28
|
Ding W, Dong M, Deng J, Yan D, Liu Y, Xu T, Liu J. Polydatin attenuates cardiac hypertrophy through modulation of cardiac Ca2+ handling and calcineurin-NFAT signaling pathway. Am J Physiol Heart Circ Physiol 2014; 307:H792-802. [DOI: 10.1152/ajpheart.00017.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polydatin (PD), a resveratrol glucoside extracted from the perennial herbage Polygonum cuspidatum, has been suggested to have wide cardioprotective effects. This study aimed to explore the direct antihypertrophic role of PD in cultured neonatal rat ventricular myocytes (NRVMs) and its therapeutic effects against pressure overload (PO)-induced hypertrophic remodeling and heart failure. Furthermore, we investigated the mechanisms underlying the actions of PD. Treatment of NRVMs with phenylephrine for 72 h induced myocyte hypertrophy, where the cell surface area and protein levels of atrial natriuretic peptide and β-myosin heavy chain (β-MHC) were significantly increased. The amplitude of systolic Ca2+ transient was increased, and sarcoplasmic reticulum Ca2+ recycling was prolonged. Concomitantly, calcineurin activity was increased and NFAT protein was imported into the nucleus. PD treatment restored Ca2+ handling and inhibited calcineurin-NFAT signaling, thus attenuating the hypertrophic remodeling in NRVMs. PO-induced cardiac hypertrophy was produced by transverse aortic constriction (TAC) in C57BL/6 mice, where the left ventricular posterior wall thickness and heart-to-body weight ratio were significantly increased. The cardiac function was increased at 5 wk of TAC, but significantly decreased at 13 wk of TAC. The amplitude of Ca2+ transient and calcineurin activity were increased at 5 wk of TAC. PD treatment largely abolished TAC-induced hypertrophic remodeling by inhibiting the Ca2+-calcineurin pathway. Surprisingly, PD did not inhibit myocyte contractility despite that the amplitude of Ca2+ transient was decreased. The cardiac function remained intact at 13 wk of TAC. In conclusion, PD is beneficial against PO-induced cardiac hypertrophy and heart failure largely through inhibiting the Ca2+-calcineurin pathway without compromising cardiac contractility.
Collapse
Affiliation(s)
- Wenwen Ding
- Department of Pathophysiology, Southern Medical University, Guangzhou, China; and
| | - Ming Dong
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jianxin Deng
- Department of Pathophysiology, Southern Medical University, Guangzhou, China; and
| | - Dewen Yan
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yun Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Teng Xu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jie Liu
- Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, China
- Department of Pathophysiology, Southern Medical University, Guangzhou, China; and
| |
Collapse
|
29
|
Michiels CF, Van Hove CE, Martinet W, De Meyer GRY, Fransen P. L-type Ca2+ channel blockers inhibit the window contraction of mouse aorta segments with high affinity. Eur J Pharmacol 2014; 738:170-8. [PMID: 24886884 DOI: 10.1016/j.ejphar.2014.05.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022]
Abstract
L-type calcium channel blockers (LCCBs) reduce blood pressure more effectively in hypertensive than in normotensive subjects and are more effective in vascular smooth muscle (VSM) than in cardiac muscle. This has been explained by the depolarized resting potential of VSM in comparison with heart muscle cells and during hypertension, because both favor the "high affinity" inactivated state of the L-type calcium channel (LCC). Depolarized resting potentials, however, also increase Ca(2+) influx via window, non-inactivating LCC. The present study investigated whether these channels can be effectively blocked by nifedipine, verapamil or diltiazem, as representatives of different LCCB classes. C57Bl6 mouse aortic segments were depolarized by 50mM K(+) to attain similar degree of inactivation. The depolarization evoked biphasic contractions with the slow force component displaying higher sensitivity to LCCBs than the fast component. Removal of the fast force component increased, whereas stimulation of Ca(2+) influx with the dihydropyridine BAY K8644, a structural analog of nifedipine, decreased the efficacy of the LCCBs. Addition of LCCBs during the contraction caused concentration-dependent relaxation, which was independent of the presence of a fast force component, but still showed lower sensitivity in the presence of BAY K8644. Our data suggest that steady-state contractions by depolarization with 50mM K(+) are completely due to window Ca(2+) influx, which is preferentially inhibited by LCCBs. Furthermore, results point to interactions between the LCCB receptors and Ca(2+) ions or BAY K8644. The high affinity for open, non-inactivating LCC may play a dominant role in the anti-hypertensive effects of LCCBs.
Collapse
Affiliation(s)
- Cédéric F Michiels
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Cor E Van Hove
- Laboratory of Pharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
30
|
Abstract
This paper summarizes the pharmacological properties of calcium channel blockers (CCBs), their established therapeutic uses for cardiovascular disorders and the current improvement of their clinical effects through drug combinations. Their identification resulted from study of small molecules including coronary dilators, which were named calcium antagonists. Further experiments showed that they reduced contraction of arteries by inhibiting calcium entry and by interacting with binding sites identified on voltage-dependent calcium channels. This led to the denomination calcium channel blockers. In short-term studies, by decreasing total peripheral resistance, CCBs lower arterial pressure. By unloading the heart and increasing coronary blood flow, CCBs improve myocardial oxygenation. In long-term treatment, the decrease in blood pressure is more pronounced in hypertensive than in normotensive patients. A controversy on the safety of CCBs ended after a large antihypertensive trial (ALLHAT) sponsored by the National Heart, Lung, and Blood Institute. There are two main types of CCBs: dihydopyridine and non-dihydropyridine; the first type is vascular selective. Dihydropyrines are indicated for hypertension, chronic, stable and vasospastic angina. Non-dihydropyridines have the same indications plus antiarrythmic effects in atrial fibrillation or flutter and paroxysmal supraventricular tachycardia. In addition, CCBs reduced newly formed coronary lesions in atherosclerosis. In order to reach recommended blood pressure goals, there is a recent therapeutic move by combination of CCBs with other antihypertensive agents particularly with inhibitors acting at the level of the renin-angiotensin system. They are also combined with statins. Prevention of dementia has been reported in hypertensive patients treated with nitrendipine, opening a way for further studies on CCBs' beneficial effect in cognitive deterioration associated with aging.
Collapse
|
31
|
García C, Cabezas K, Nonell S, Núñez-Vergara LJ, Morales J, Günther G, Pizarro N. Substituent Effect on the Photolability of 4-Aryl-1,4-Dihydropyridines. Photochem Photobiol 2013; 90:73-8. [PMID: 24112052 DOI: 10.1111/php.12178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022]
Abstract
The electronic nature of substituents attached to the 4-aryl moiety of 1,4-dihydropyridines strongly affects the photophysical and photochemical behavior of these family of compounds. The presence of an electron donor substituent on the 4-aryl moiety (or the absence of electron-withdrawing ones) modifies the luminescence lifetimes (τ < 100 ps) and diminishes the photodecomposition quantum yields. For electron-withdrawing substituents, the photodegradation quantum yield is affected by the media, changing more than two orders of magnitude as the polarity is increased. Studies in micellar media allow us to conclude that 4-aryl-1,4-dihydropyridines are located near to the interface; however, the surface charge of micelles has no effect on the photodegradation rate constant or the photoproducts profile. The main conclusion of this work is that the photolability of 4-aryl-1,4-dihydropyridines can be significantly reduced by the incorporation of antioxidant moieties.
Collapse
Affiliation(s)
- Cristóbal García
- Departamento de Ciencias Quimicas, Universidad Andres Bello, Santiago, Chile
| | - Karina Cabezas
- Departamento de Ciencias Quimicas, Universidad Andres Bello, Santiago, Chile
| | - Santi Nonell
- Universitat Ramon Llull, Institut Quimic de Sarrià, Barcelona, Spain
| | - Luis J Núñez-Vergara
- Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, Santiago, Chile
| | - Javier Morales
- Facultad de Ciencias Químicas y Farmacéuticas, Depto. de Ciencias y Tecnología Farmacéutica, Universidad de Chile, Santiago, Chile
| | - Germán Günther
- Facultad de Ciencias Químicas y Farm., Depto. de Química Orgánica y Fisicoquímica, Universidad de Chile, Santiago, Chile
| | - Nancy Pizarro
- Departamento de Ciencias Quimicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
32
|
Ghyasi R, Sepehri G, Mohammadi M, Badalzadeh R, Ghyasi A. Effect of mebudipine on oxidative stress and lipid peroxidation in myocardial ischemic-reperfusion injury in male rat. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2012; 17:1150-5. [PMID: 23853633 PMCID: PMC3703167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 10/21/2012] [Accepted: 11/13/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is the acute condition of necrosis in myocardium which occurs as a result of imbalance between coronary blood supply and myocardial demand. The resultant oxidative stress excess leads to worsen the condition. The aim of this study was to investigate the effect of mebudipine, a new dihydropyridine calcium channel blocker, on lipid peroxidation and antioxidant enzymes in myocardial ischemia-reperfusion injury. MATERIALS AND METHODS Male Wistar rats (250-300 g) were randomly divided to Control-ischemic, mebudipine-ischemic and vehicle (ethanol-ischemic) groups. The hearts of anaesthetized rats were removed and mounted on Langendorff apparatus and perfused by Krebs-Henseleit solution under constant pressure of 75 mmHg at 37°C. Ischemic groups were received 30 min global ischemia and 120 min reperfusion and the mebudipine and vehicle groups received mebudipine (0.1 nM) or ethanol (0.01%)-enriched solution 25 min before global ischemia. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase levels of heart tissue samples were determined by commercial specific Kits. RESULTS Mebudipine significantly reduced the MDA level (2.3 ± 0.07 nmol/mg protein) as the biochemical indicator of oxidative damage and lipid peroxidation product as compared with those of vehicle (4.6 ± 0.01 nmol/mg protein) and control groups (4.8 ± 0.09 nmol/mg protein). Furthermore, antioxidant enzymes SOD (0.1 ± 0.006 in drug vs. 0.037 ± 0.009 U/mg Protein in control), GPX (16 ± 0.009 in drug vs. 0.068 ± 0.01 U/mg Protein in control) and catalase activities (0.075 ± 0.006 in drug vs. 0.028 ± 0.002 U/mg Protein in control), activities of myocardium were significantly increased by mebudipine (P < 0.01). CONCLUSION Our results showed that mebudipine may have antioxidant activity against myocardial ischemia-reperfusion injury since it decreased oxidative stress by enhancing the enzymatic antioxidant defense and inhibiting the lipid peroxidation. Thus, this drug can reduce the intensity of cardiac ischemic insults.
Collapse
Affiliation(s)
- Rafigheh Ghyasi
- Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Sepehri
- Molecular Biology Lab, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran,Address for correspondence: Dr. Gholamreza Sepehri, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran. E-mail:
| | - Mustafa Mohammadi
- Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Ghyasi
- Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Zou J, Li Y, Fan HQ, Wang JG. Effects of dihydropyridine calcium channel blockers on oxidized low-density lipoprotein induced proliferation and oxidative stress of vascular smooth muscle cells. BMC Res Notes 2012; 5:168. [PMID: 22455621 PMCID: PMC3392741 DOI: 10.1186/1756-0500-5-168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/28/2012] [Indexed: 11/24/2022] Open
Abstract
Background Dihydropyridine calcium channel blockers (CCBs) are more effective in reducing carotid intima-media thickness (IMT) than other classes of antihypertensive drugs due to their vascular effects. However, the mechanism remains to be elucidated. Findings Ox-LDL induced HUVSMCs proliferation in a time- and dose-dependent manner. When pretreated with three CCBs before 50 μg/ml ox-LDL stimulation, 30 μM lacidipine and 3 μM amlodipine exhibited 27% and 18% decrease of pro-proliferative effect induced by ox-LDL, whereas (S-)-amlodipine did not have any anti-proliferative effect. 30 μM lacidipine inhibited about two-thirds of the ox-LDL induced ROS production in HUVSMCs, whereas amlodipine and (S-)-amlodipine did not have influence on ROS production. The MAPKs pathway inhibitors inhibited the ox-LDL induced proliferation of HUVSMCs. Conclusion Our study has demonstrated that lipophilic CCBs, such as lacidipine may inhibit ox-LDL induced proliferation and oxidative stress of VSMCs, and that the ROS-MAPKs pathway might be involved in the mechanism.
Collapse
Affiliation(s)
- Jun Zou
- Centre for Epidemiological Studies and Clinical Trials The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Ruijin 2nd Road 197, Shanghai 200025, China
| | | | | | | |
Collapse
|
34
|
Salazar R, Pardo-Jimenez V, Navarrete-Encina PA, Squella JA, Camargo C, Núñez-Vergara LJ. Scavenging activity of C4-hydroxyphenyl- and polyhydroxyphenyl-1,4-dihydropyridines toward free radicals. INT J CHEM KINET 2012. [DOI: 10.1002/kin.20733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Abdel-Rahman MA, Abdel-Nabi IM, El-Naggar MS, Abbas OA, Strong PN. Intraspecific variation in the venom of the vermivorous cone snail Conus vexillum. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:318-25. [PMID: 21771667 DOI: 10.1016/j.cbpc.2011.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/30/2011] [Accepted: 06/30/2011] [Indexed: 01/12/2023]
Abstract
A combination of proteomic and biochemical assays was used to examine variations in the venom of Conus vexillum taken from two locations (Hurgada and Sharm El-Shaikh) in the Red Sea, Egypt. Using MALDI/TOF-MS, a remarkable degree of intra-species variation between venom samples from both locations was identified. To evaluate variability in the cytotoxic effects of Conus venom, mice were injected with the same dose from each location. The oxidative stress biomarkers [malondialdehyde (MDA), protein carbonyl content (PCC)], antioxidants [glutathione (GSH), superoxide dismutase (SOD), catalase (CAT)], total antioxidant capacity (TAC) and nitric oxide (NO), were measured 3, 6, 9 and 12h post venom injection. The venoms induced a significant increase in the levels of PCC, MDA, NO, GSH and CAT. The venoms significantly inhibited the activity of SOD and reduced the TAC. Toxicological data showed that the venom obtained from Hurgada was more potent than that obtained from Sharm El-Shaikh. It can be concluded that: (1) the venom of the same Conus species from different regions is highly diversified (2) the venoms from different locations reflect clear differences in venom potency and (3) the cytotoxic effects of C. vexillum venom can be attributed to its ability to induce oxidative stress.
Collapse
|
36
|
Antifertility effect of calcium channel blockers on male rats: association with oxidative stress. Adv Med Sci 2011; 56:95-105. [PMID: 21596665 DOI: 10.2478/v10039-011-0018-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE Calcium ions are vital in many biologic processes including a variety of enzymatic reactions, activation of excitable cells, coupling of electrical activation to cellular secretion, haemostasis, bone metabolism and sperm functions. Calcium channel blockers (CCB) appear to have a reversible anti-fertility effect on male rats which does not occur through inhibition of the pituitary-gonadal axis. While the effects of CCB on male reproductive function have been investigated, less information is available regarding other reproductive indices and the underlying mechanism in the pathogenesis of male reproductive dysfunction. Therefore, the involvement of oxidative mechanisms in the adverse manifestation induced by CCB on male reproductive functions is investigated in this study. METHODS For this purpose, lipid peroxidation; enzymatic antioxidants such as superoxide dismutase, catalase and glutathione reduced; epididymal sperm count, motility; histopathology of the testes, epididymis, seminal vesicle, prostate glands; and reproductive performance were determined. RESULTS CCB administration in rats causes significant oxidative stress in the male reproductive milieu in term of increase in malondialdehyde (MDA) level and a concomitant decrease in catalase, superoxide dismutase and reduced glutathione enzyme activities in the testes. In addition, CCB treatment significantly decreased the sperm count, sperm motility, fertility index, implantation count, and litter size in this study. CONCLUSION There is substantial evidence that CCB induces significant oxidative stress in the testes, which appears to be responsible for the adverse effects of decreased sperm count and motility ultimately leading to reduced fertility in rats.
Collapse
|
37
|
Schulz E, Gori T, Münzel T. Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res 2011; 34:665-73. [PMID: 21512515 DOI: 10.1038/hr.2011.39] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Systemic arterial hypertension is a highly prevalent cardiovascular risk factor that causes significant morbidity and mortality, and is becoming an increasingly common health problem because of the increasing longevity and prevalence of predisposing factors such as sedentary lifestyle, obesity and nutritional habits. Further complicating the impact of this disease, mild and moderate hypertension are usually asymptomatic, and their presence (and the subsequent increase in cardiovascular risk) is often unrecognized. The pathophysiology of hypertension involves a complex interaction of multiple vascular effectors including the activation of the sympathetic nervous system, of the renin-angiotensin-aldosterone system and of the inflammatory mediators. Subsequent vasoconstriction and inflammation ensue, leading to vessel wall remodeling and, finally, to the formation of atherosclerotic lesions as the hallmark of advanced disease. Oxidative stress and endothelial dysfunction are consistently observed in hypertensive subjects, but emerging evidence suggests that they also have a causal role in the molecular processes leading to hypertension. Reactive oxygen species (ROS) may directly alter vascular function or cause changes in vascular tone by several mechanisms including altered nitric oxide (NO) bioavailability or signaling. ROS-producing enzymes involved in the increased vascular oxidative stress observed during hypertension include the NADPH oxidase, xanthine oxidase, the mitochondrial respiratory chain and an uncoupled endothelial NO synthase. In the current review, we will summarize our current understanding of the molecular mechanisms in the development of hypertension with an emphasis on oxidative stress and endothelial dysfunction.
Collapse
Affiliation(s)
- Eberhard Schulz
- II. Medizinische Klinik, Universitätsmedizin Mainz, Kardiologie, Angiologie und Internistische Intensivmedizin, Mainz, Germany
| | | | | |
Collapse
|
38
|
Mackrill JJ. Oxysterols and calcium signal transduction. Chem Phys Lipids 2011; 164:488-95. [PMID: 21513705 DOI: 10.1016/j.chemphyslip.2011.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 12/31/2022]
Abstract
Ionised calcium (Ca(2+)) is a key second messenger, regulating almost every cellular process from cell death to muscle contraction. Cytosolic levels of this ion can be increased via gating of channel proteins located in the plasma membrane, endoplasmic reticulum and other membrane-delimited organelles. Ca(2+) can be removed from cells by extrusion across the plasma membrane, uptake into organelles and buffering by anionic components. Ca(2+) channels and extrusion mechanisms work in concert to generate diverse spatiotemporal patterns of this second messenger, the distinct profiles of which determine different cellular outcomes. Increases in cytoplasmic Ca(2+) concentration are one of the most rapid cellular responses upon exposure to certain oxysterol congeners or to oxidised low-density lipoprotein, occurring within seconds of addition and preceding increases in levels of reactive oxygen species, or changes in gene expression. Furthermore, exposure of cells to oxysterols for periods of hours to days modulates Ca(2+) signal transduction, with these longer-term alterations in cellular Ca(2+) homeostasis potentially underlying pathological events within atherosclerotic lesions, such as hyporeactivity to vasoconstrictors observed in vascular smooth muscle, or ER stress-induced cell death in macrophages. Despite their candidate roles in physiology and disease, little is known about the molecular mechanisms that couple changes in oxysterol concentrations to alterations in Ca(2+) signalling. This review examines the ways in which oxysterols could influence Ca(2+) signal transduction and the potential roles of this in health and disease.
Collapse
Affiliation(s)
- John J Mackrill
- Department of Physiology, University College Cork, Cork, Ireland.
| |
Collapse
|
39
|
Abstract
OBJECTIVE The present study was planned to evaluate the effects of lacidipine on STZ induced diabetic neuropathy. MATERIAL AND METHODS Streptozotocin (STZ) induced diabetic neuropathy in rats was monitored by measuring blood sugar levels, motor nerve conduction velocity (MNCV), nociception and histopathology of tibial nerve. Forty rats were divided in to four groups of 10 each. Group I: Control (vehicle). Group II: STZ (50mg/kg, iv, single injection). Group III: Lacidipine (0.5 mg/kg, po, daily + STZ). Group IV: STZ + insulin (4 unit/kg, sc, bid). Similar protocol was used for other parameters also. RESULTS Lacidipine pre-treatment failed to reduce blood sugar levels in diabetic rats but prevented deterioration of motor nerve conduction velocity as compared to STZ diabetic rats. Hyperalgesia induced by STZ was antagonized by lacidipine. Histology of nerve showed less structural damage in lacidipine pre-treated group. DISCUSSION AND CONCLUSION Thus, lacidipine prevents the development of neuropathic changes induced by STZ in rats.
Collapse
|
40
|
Ginsenoside-Rd, a purified component from panax notoginseng saponins, prevents atherosclerosis in apoE knockout mice. Eur J Pharmacol 2010; 652:104-10. [PMID: 21122802 DOI: 10.1016/j.ejphar.2010.11.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 11/12/2010] [Accepted: 11/12/2010] [Indexed: 02/02/2023]
Abstract
Recently, it was revealed that the dysfunction of transmembrane Ca(2+) transport, results in an increase in intracellular Ca(2+)[Ca(2+)](i), which is involved in the process of atherosclerosis. We previously demonstrated that ginsenoside-Rd, a purified component from panax notoginseng, is a voltage-independent Ca(2+) channels blocker. In this study, we investigated the effects of ginsenoside-Rd on atherosclerosis and the underlying mechanisms in apolipoprotein E deficient (apoE(-/-)) mice and RAW264.7 cells. Atherosclerotic plaques were stained by Red oil O staining. Ca(2+) influx was measured by Fura-2 dyed Mn(2+) quenching. Intracellular cholesterol and uptake of lipid was assayed by enzymatic, fluorometric method and DiI-labeled Ox-LDL. Western blot was used to determine protein expression. We found that Ginsenoside-Rd (20mg/kg/day. i.p.) significantly reduced the atherosclerotic plaque areas, oxidized low-density lipoprotein (ox-LDL) uptake and thapsigargin and l-oleoyl-2-acetyl-glycerol (OAG, membrane-permeable diacylglycerol analog)-induced Ca(2+) influx in macrophages from high-fat diet apoE(-/-) mice. In vitro, 20μM ginsenoside-Rd significantly inhibited ox-LDL-induced foam cell formation and the increase of thapsigargin- and OAG-induced Ca(2+) influx. Ox-LDL induced an increase in scavenger receptor A (SR-A) expression, and ginsenoside-Rd inhibited this effect of ox-LDL significantly. The results suggest that ginsenoside-Rd prevents the development of atherosclerosis. The underlying mechanism may be related to the inhibition of Ca(2+) influx through voltage-independent Ca(2+) channels, resulting in the inhibition of SR-A activity and expression, followed by reductions of ox-LDL uptake and cholesterol accumulation in macrophages.
Collapse
|
41
|
Marçal DMO, Rizzi E, Martins-Oliveira A, Ceron CS, Guimaraes DA, Gerlach RF, Tanus-Santos JE. Comparative study on antioxidant effects and vascular matrix metalloproteinase-2 downregulation by dihydropyridines in renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:35-44. [PMID: 21058008 DOI: 10.1007/s00210-010-0573-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 10/17/2010] [Indexed: 12/19/2022]
Abstract
The vascular remodeling associated with hypertension involves oxidative stress and enhanced matrix metalloproteinases (MMPs) expression/activity, especially MMP-2. While previous work showed that lercanidipine, a third-generation dihydropyridine calcium channel blocker (CCB), attenuated the oxidative stress and increased MMP-2 expression/activity in two-kidney, one-clip (2K1C) hypertension, no previous study has examined whether first- or second-generation dihydropyridines produce similar effects. We compared the effects of nifedipine, nimodipine, and amlodipine on 2K1C hypertension-induced changes in systolic blood pressure (SBP), vascular remodeling, oxidative stress, and MMPs levels/activity. Sham-operated and 2K1C rats were treated with water, nifedipine 10 mg/kg/day, nimodipine 15 mg/kg/day, or amlodipine 10 mg/kg/day by gavage, starting 3 weeks after hypertension was induced. SBP was monitored weekly. After 6 weeks of treatment, quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin-stained sections. Aortic and systemic reactive oxygen species levels were measured by using dihydroethidine and thiobarbituric acid-reactive substances (TBARs), respectively. Aortic MMP-2 levels and activity were determined by gelatin zymography, in situ zymography, and immunofluorescence. Nifedipine, nimodipine, or amlodipine attenuated the increases in SBP in hypertensive rats by approximately 17% (P < 0.05) and prevented vascular hypertrophy (P < 0.05). These CCBs blunted 2K1C-induced increases in vascular oxidative stress and plasma TBARs concentrations (P < 0.05). All dihydropyridines attenuated the increases in aortic MMP-2 levels and activity associated with 2K1C hypertension. These findings suggest lack of superiority of one particular dihydropyridine, at least with respect to antioxidant effects, MMPs downregulation, and inhibition of vascular remodeling in hypertension.
Collapse
Affiliation(s)
- Diogo M O Marçal
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Camerino DC, Desaphy JF. Grand challenge for ion channels: an underexploited resource for therapeutics. Front Pharmacol 2010; 1:113. [PMID: 21607064 PMCID: PMC3095370 DOI: 10.3389/fphar.2010.00113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 11/13/2022] Open
Affiliation(s)
- Diana Conte Camerino
- Section of Pharmacology, Department of Pharmacobiology, Faculty of Pharmacy, University of Bari "Aldo Moro" Bari, Italy
| | | |
Collapse
|
43
|
Kothari V, Seshadri S. Antioxidant activity of seed extracts of Annona squamosa and Carica papaya. ACTA ACUST UNITED AC 2010. [DOI: 10.1108/00346651011062050] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Tang EHC, Vanhoutte PM. Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Arch 2010; 459:995-1004. [PMID: 20127126 DOI: 10.1007/s00424-010-0786-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Endothelial dysfunction is a common feature of hypertension, and it results from the imbalanced release of endothelium-derived relaxing factors (EDRFs; in particular, nitric oxide) and endothelium-derived contracting factors (EDCFs; angiotensin II, endothelins, uridine adenosine tetraphosphate, and cyclooxygenase-derived EDCFs). Thus, drugs that increase EDRFs (using direct nitric oxide releasing compounds, tetrahydrobiopterin, or L-arginine supplementation) or decrease EDCF release or actions (using cyclooxygenase inhibitor or thromboxane A2/prostanoid receptor antagonists) would prevent the dysfunction. Many conventional antihypertensive drugs, including angiotensin-converting enzyme inhibitors, calcium channel blockers, and third-generation beta-blockers, possess the ability to reverse endothelial dysfunction. Their use is attractive, as they can address arterial blood pressure and vascular tone simultaneously. The severity of endothelial dysfunction correlates with the development of coronary artery disease and predicts future cardiovascular events. Thus, endothelial dysfunction needs to be considered as a strategic target in the treatment of hypertension.
Collapse
Affiliation(s)
- Eva H C Tang
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB741, Boston, MA 02115, USA.
| | | |
Collapse
|
45
|
Gandhi G, Jyoti J. Assessment of DNA Damage in Peripheral Blood Leukocytes of Patients with Essential Hypertension by the Alkaline Comet Assay. CYTOLOGIA 2010. [DOI: 10.1508/cytologia.75.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Jeevan Jyoti
- Department of Human Genetics, Guru Nanak Dev University
| |
Collapse
|
46
|
Van Hove CE, Van der Donckt C, Herman AG, Bult H, Fransen P. Vasodilator efficacy of nitric oxide depends on mechanisms of intracellular calcium mobilization in mouse aortic smooth muscle cells. Br J Pharmacol 2009; 158:920-30. [PMID: 19788496 DOI: 10.1111/j.1476-5381.2009.00396.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Reduction of intracellular calcium ([Ca(2+)](i)) in smooth muscle cells (SMCs) is an important mechanism by which nitric oxide (NO) dilates blood vessels. We investigated whether modes of Ca(2+) mobilization during SMC contraction influenced NO efficacy. EXPERIMENTAL APPROACH Isometric contractions by depolarization (high potassium, K(+)) or alpha-adrenoceptor stimulation (phenylephrine), and relaxations by acetylcholine chloride (ACh), diethylamine NONOate (DEANO) and glyceryl trinitrate (GTN) and SMC [Ca(2+)](i) (Fura-2) were measured in aortic segments from C57Bl6 mice. KEY RESULTS Phenylephrine-constricted segments were more sensitive to endothelium-derived (ACh) or exogenous (DEANO, GTN) NO than segments contracted by high K(+) solutions. The greater sensitivity of phenylephrine-stimulated segments was independent of the amount of pre-contraction, the source of NO or the resting potential of SMCs. It coincided with a significant decrease of [Ca(2+)](i), which was suppressed by sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA) inhibition, but not by soluble guanylyl cylase (sGC) inhibition. Relaxation of K(+)-stimulated segments did not parallel a decline of [Ca(2+)](i). However, stimulation (BAY K8644) of L-type Ca(2+) influx diminished, while inhibition (nifedipine, 1-100 nM) augmented the relaxing capacity of NO. CONCLUSIONS AND IMPLICATIONS In mouse aorta, NO induced relaxation via two pathways. One mechanism involved a non-cGMP-dependent stimulation of SERCA, causing Ca(2+) re-uptake into the SR and was prominent when intracellular Ca(2+) was mobilized. The other involved sGC-stimulated cGMP formation, causing relaxation without changing [Ca(2+)](i), presumably by desensitizing the contractile apparatus. This pathway seems related to L-type Ca(2+) influx, and L-type Ca(2+) channel blockers increase the vasodilator efficacy of NO.
Collapse
Affiliation(s)
- C E Van Hove
- Division of Pharmacology, University of Antwerp, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
47
|
Li XY, Liang J, Tang YB, Zhou JG, Guan YY. Ginsenoside Rd prevents glutamate-induced apoptosis in rat cortical neurons. Clin Exp Pharmacol Physiol 2009; 37:199-204. [PMID: 19719747 DOI: 10.1111/j.1440-1681.2009.05286.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
1. The role of voltage-independent Ca(2+) entry in cell apoptosis has recently received considerable attention. It has been found that ginsenoside Rd significantly inhibits voltage-independent Ca(2+) entry. The aim of the present study was to investigate the protective effects of ginsenoside Rd against glutamate-induced apoptosis of rat cortical neurons. 2. Ginsenoside Rd significantly reduced glutamate-induced apoptotic morphological changes and DNA laddering. In comparison, nimodipine only had a weak effect. 3. Ginsenoside Rd (1, 3 and 10 micromol/L) concentration-dependently inhibited caspase 3 activation and expression of the p20 subunit of active caspase 3 (by 30 +/- 10%, 41 +/- 9% and 62 +/- 19%, respectively, compared with glutamate alone; P < 0.05), whereas 1 micromol/L nimodipine had no effect. 4. Glutamate decreased cell viability to 37.4 +/- 4.7 (n = 8) and evoked cell apoptosis. Ginsenoside Rd (1, 3, 10 and 30 micromol/L) concentration-dependently inhibited glutamate-induced cell death, increased cell viability and reduced apoptotic percentage (from 47.5 +/- 4.9% to 37.4 +/- 6.9%, 28.3 +/- 5.2% and 22.5 +/- 5.6%, respectively; P < 0.05). At 1 micromol/L, nimodipine had no effect on cell viability. Furthermore, although 1, 3, 10, 30 and 60 micromol/L ginsenoside Rd concentration-dependently inhibited glutamate-induced Ca(2+) entry by 8 +/- 2%, 24 +/- 4%, 40 +/- 7%, 49 +/- 8% and 50 +/- 8% (P < 0.05), respectively, nimodipine had no effect. 5. In conclusion, the results indicate that ginsenoside Rd prevents glutamate-induced apoptosis in rat cortical neurons and provide further evidence of the potential of voltage-independent Ca(2+) channel blockers as new neuroprotective drugs for the prevention of neuronal apoptosis and death induced by cerebral ischaemia.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Department of Pharmacy, Third Affiliated Hospital, Guangzhou, China
| | | | | | | | | |
Collapse
|
48
|
Dincer Y, Sekercioglu N, Pekpak M, Gunes KN, Akcay T. Assessment of DNA Oxidation and Antioxidant Activity in Hypertensive Patients with Chronic Kidney Disease. Ren Fail 2009; 30:1006-11. [DOI: 10.1080/08860220802422044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
49
|
Abstract
The endothelial cell layer plays a major role in the development and progression of atherosclerosis. Endothelial NO synthase (eNOS) produces nitric oxide (NO) from L-arginine. NO can rapidly react with reactive oxygen species to form peroxynitrite. This reduces NO availability, impairs vasodilatation, and mediates proinflammatory and prothrombotic processes such as leukocyte adhesion and platelet aggregation. In the vessel wall, specific NAD(P)H oxidase complexes are major sources of reactive oxygen species. These NAD(P)H oxidases can transfer electrons across membranes to oxygen and generate superoxide anions. The short-lived superoxide anion rapidly dismutates to hydrogen peroxide, which can further increase the production of reactive oxygen species. This can lead to uncoupling of eNOS switching enzymatic activity from NO to superoxide production. This review describes the structure and regulation of different NAD(P)H oxidase complexes. We will also focus on NO/superoxide anion balance as modulated by hemodynamic forces, vasoconstrictors, and oxidized low-density lipoprotein. We will then summarize the recent advances defining the role of nitric oxide and NAD(P)H oxidase-derived reactive oxygen species in the development and progression of atherosclerosis. In conclusion, novel mechanisms affecting the vascular NO/superoxide anion balance will allow the development of therapeutic strategies in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gregor Muller
- Department of Vascular Endothelium and Microcirculation, University of Technology Dresden, Dresden, Germany
| | | |
Collapse
|
50
|
Godfraind T. Is Combined L- and T-Channel Blockade Better Than L-Channel Blockade in Therapy? Hypertension 2009; 54:e3; author reply e4. [DOI: 10.1161/hypertensionaha.109.133504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|