1
|
Lupo V, Roomans C, Royen E, Ongena L, Jacquemin O, Mullender C, Kerff F, Baurain D. Identification and characterization of archaeal pseudomurein biosynthesis genes through pangenomics. mSystems 2025; 10:e0140124. [PMID: 39936904 PMCID: PMC11915815 DOI: 10.1128/msystems.01401-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
The peptidoglycan (PG, or murein) is a mesh-like structure, which is made of glycan polymers connected by short peptides and surrounds the cell membrane of nearly all bacterial species. In contrast, there is no PG counterpart that would be universally found in Archaea but rather various polymers that are specific to some lineages. Methanopyrales and Methanobacteriales are two orders of Euryarchaeota that harbor pseudomurein (PM), a structural analog of the bacterial PG. Owing to the differences between PG and PM biosynthesis, some have argued that the origin of both polymers is not connected. However, recent studies have revealed that the genomes of PM-containing Archaea encode homologs of the bacterial genes involved in PG biosynthesis, even though neither their specific functions nor the relationships within the corresponding inter-domain phylogenies have been investigated so far. In this work, we devised a pangenomic bioinformatic pipeline to identify proteins for PM biosynthesis in Archaea without prior genetic knowledge. The taxonomic distribution and evolutionary relationships of the candidate proteins were studied in detail in Archaea and Bacteria through HMM sequence mining and phylogenetic inference of the Mur domain-containing family, the ATP-grasp superfamily, and the MraY-like family. Our results show that archaeal muramyl ligases are of bacterial origin but diversified through a mixture of horizontal gene transfers and gene duplications. However, in the ATP-grasp and MraY-like families, the archaeal members were not found to originate from Bacteria. Our pangenomic approach further identified five new genes potentially involved in PM synthesis and that would deserve functional characterization.IMPORTANCEMethanobrevibacter smithii is an archaea commonly found in the human gut, but its presence alongside pathogenic bacteria during infections has led some researchers to consider it as an opportunistic pathogen. Fortunately, endoisopeptidases isolated from phages, such as PeiW and PeiP, can cleave the cell walls of M. smithii and other pseudomurein-containing archaea. However, additional research is required to identify effective anti-archaeal agents to combat these opportunistic microorganisms. A better understanding of the pseudomurein cell wall and its biosynthesis is necessary to achieve this goal. Our study sheds light on the origin of cell wall structures in those microorganisms, showing that the archaeal muramyl ligases responsible for its formation have bacterial origins. This discovery challenges the conventional view of the cell-wall architecture in the last archaeal common ancestor and shows that the distinction between "common origin" and "convergent evolution" can be blurred in some cases.
Collapse
Affiliation(s)
- Valérian Lupo
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Célyne Roomans
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Edmée Royen
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Loïc Ongena
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Olivier Jacquemin
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Coralie Mullender
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Frédéric Kerff
- InBioS, Center for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| |
Collapse
|
2
|
Zhang X, Wu P, Bai R, Gan Q, Yang Y, Li H, Ni J, Huang Q, Shen Y. PerR functions as a redox-sensing transcription factor regulating metal homeostasis in the thermoacidophilic archaeon Saccharolobus islandicus REY15A. Nucleic Acids Res 2025; 53:gkae1263. [PMID: 39727184 PMCID: PMC11724291 DOI: 10.1093/nar/gkae1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Thermoacidophilic archaea thrive in environments with high temperatures and low pH where cells are prone to severe oxidative stress due to elevated levels of reactive oxygen species (ROS). While the oxidative stress responses have been extensively studied in bacteria and eukaryotes, the mechanisms in archaea remain largely unexplored. Here, using a multidisciplinary approach, we reveal that SisPerR, the homolog of bacterial PerR in Saccharolobus islandicus REY15A, is responsible for ROS response of transcriptional regulation. We show that with H2O2 treatment and sisperR deletion, expression of genes encoding proteins predicted to be involved in cellular metal ion homeostasis regulation, Dps, NirD, VIT1/CCC1 and MntH, is significantly upregulated, while expression of ROS-scavenging enzymes remains unaffected. Conversely, the expression of these genes is repressed when SisPerR is overexpressed. Notably, the genes coding for Dps, NirD and MntH are direct targets of SisPerR. Moreover, we identified three novel residues critical for ferrous ion binding and one novel residue for zinc ion binding. In summary, this study has established that SisPerR is a repressive redox-sensing transcription factor regulating intracellular metal ion homeostasis in Sa. islandicus for oxidative stress defense. These findings have shed new light on our understanding of microbial adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- Xuemei Zhang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Pengju Wu
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Ruining Bai
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qi Gan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Haodun Li
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Jinfeng Ni
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qihong Huang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| |
Collapse
|
3
|
Frazier AN, Beck MR, Waldrip H, Koziel JA. Connecting the ruminant microbiome to climate change: insights from current ecological and evolutionary concepts. Front Microbiol 2024; 15:1503315. [PMID: 39687868 PMCID: PMC11646987 DOI: 10.3389/fmicb.2024.1503315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Ruminant livestock provide meat, milk, wool, and other products required for human subsistence. Within the digestive tract of ruminant animals, the rumen houses a complex and diverse microbial ecosystem. These microbes generate many of the nutrients that are needed by the host animal for maintenance and production. However, enteric methane (CH4) is also produced during the final stage of anaerobic digestion. Growing public concern for global climate change has driven the agriculture sector to enhance its investigation into CH4 mitigation. Many CH4 mitigation methods have been explored, with varying outcomes. With the advent of new sequencing technologies, the host-microbe interactions that mediate fermentation processes have been examined to enhance ruminant enteric CH4 mitigation strategies. In this review, we describe current knowledge of the factors driving ruminant microbial assembly, how this relates to functionality, and how CH4 mitigation approaches influence ecological and evolutionary gradients. Through the current literature, we elucidated that many ecological and evolutionary properties are working in tandem in the assembly of ruminant microbes and in the functionality of these microbes in methanogenesis. Additionally, we provide a conceptual framework for future research wherein ecological and evolutionary dynamics account for CH4 mitigation in ruminant microbial composition. Thus, preparation of future research should incorporate this framework to address the roles ecology and evolution have in anthropogenic climate change.
Collapse
Affiliation(s)
- A. Nathan Frazier
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| | - Matthew R. Beck
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
- Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Heidi Waldrip
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| | - Jacek A. Koziel
- Conservation and Production Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Bushland, TX, United States
| |
Collapse
|
4
|
Kumar P, Roy A, Mukul SJ, Singh AK, Singh DK, Nalli A, Banerjee P, Babu KSD, Raman B, Kruparani SP, Siddiqi I, Sankaranarayanan R. A translation proofreader of archaeal origin imparts multi-aldehyde stress tolerance to land plants. eLife 2024; 12:RP92827. [PMID: 38372335 PMCID: PMC10942605 DOI: 10.7554/elife.92827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024] Open
Abstract
Aldehydes, being an integral part of carbon metabolism, energy generation, and signalling pathways, are ingrained in plant physiology. Land plants have developed intricate metabolic pathways which involve production of reactive aldehydes and its detoxification to survive harsh terrestrial environments. Here, we show that physiologically produced aldehydes, i.e., formaldehyde and methylglyoxal in addition to acetaldehyde, generate adducts with aminoacyl-tRNAs, a substrate for protein synthesis. Plants are unique in possessing two distinct chiral proofreading systems, D-aminoacyl-tRNA deacylase1 (DTD1) and DTD2, of bacterial and archaeal origins, respectively. Extensive biochemical analysis revealed that only archaeal DTD2 can remove the stable D-aminoacyl adducts on tRNA thereby shielding archaea and plants from these system-generated aldehydes. Using Arabidopsis as a model system, we have shown that the loss of DTD2 gene renders plants susceptible to these toxic aldehydes as they generate stable alkyl modification on D-aminoacyl-tRNAs, which are recycled only by DTD2. Bioinformatic analysis identifies the expansion of aldehyde metabolising repertoire in land plant ancestors which strongly correlates with the recruitment of archaeal DTD2. Finally, we demonstrate that the overexpression of DTD2 offers better protection against aldehydes than in wild type Arabidopsis highlighting its role as a multi-aldehyde detoxifier that can be explored as a transgenic crop development strategy.
Collapse
Affiliation(s)
- Pradeep Kumar
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR–CCMB CampusHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ankit Roy
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Shivapura Jagadeesha Mukul
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR–CCMB CampusHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | | | | | - Aswan Nalli
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
| | | | | | | | | | - Imran Siddiqi
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR–CCMB CampusHyderabadIndia
| | - Rajan Sankaranarayanan
- CSIR–Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR–CCMB CampusHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
5
|
Banchi E, Corre E, Del Negro P, Celussi M, Malfatti F. Genome-resolved metagenomics of Venice Lagoon surface sediment bacteria reveals high biosynthetic potential and metabolic plasticity as successful strategies in an impacted environment. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:126-142. [PMID: 38433960 PMCID: PMC10902248 DOI: 10.1007/s42995-023-00192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/05/2023] [Indexed: 03/05/2024]
Abstract
Bacteria living in sediments play essential roles in marine ecosystems and deeper insights into the ecology and biogeochemistry of these largely unexplored organisms can be obtained from 'omics' approaches. Here, we characterized metagenome-assembled-genomes (MAGs) from the surface sediment microbes of the Venice Lagoon (northern Adriatic Sea) in distinct sub-basins exposed to various natural and anthropogenic pressures. MAGs were explored for biodiversity, major marine metabolic processes, anthropogenic activity-related functions, adaptations at the microscale, and biosynthetic gene clusters. Starting from 126 MAGs, a non-redundant dataset of 58 was compiled, the majority of which (35) belonged to (Alpha- and Gamma-) Proteobacteria. Within the broad microbial metabolic repertoire (including C, N, and S metabolisms) the potential to live without oxygen emerged as one of the most important features. Mixotrophy was also found as a successful lifestyle. Cluster analysis showed that different MAGs encoded the same metabolic patterns (e.g., C fixation, sulfate oxidation) thus suggesting metabolic redundancy. Antibiotic and toxic compounds resistance genes were coupled, a condition that could promote the spreading of these genetic traits. MAGs showed a high biosynthetic potential related to antimicrobial and biotechnological classes and to organism defense and interactions as well as adaptive strategies for micronutrient uptake and cellular detoxification. Our results highlighted that bacteria living in an impacted environment, such as the surface sediments of the Venice Lagoon, may benefit from metabolic plasticity as well as from the synthesis of a wide array of secondary metabolites, promoting ecosystem resilience and stability toward environmental pressures. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00192-z.
Collapse
Affiliation(s)
- Elisa Banchi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Erwan Corre
- FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), Sorbonne Université CNRS, 29680 Roscoff, France
| | - Paola Del Negro
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Mauro Celussi
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
| | - Francesca Malfatti
- National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
6
|
Aryee G, Luecke SM, Dahlen CR, Swanson KC, Amat S. Holistic View and Novel Perspective on Ruminal and Extra-Gastrointestinal Methanogens in Cattle. Microorganisms 2023; 11:2746. [PMID: 38004757 PMCID: PMC10673468 DOI: 10.3390/microorganisms11112746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Despite the extensive research conducted on ruminal methanogens and anti-methanogenic intervention strategies over the last 50 years, most of the currently researched enteric methane (CH4) abatement approaches have shown limited efficacy. This is largely because of the complex nature of animal production and the ruminal environment, host genetic variability of CH4 production, and an incomplete understanding of the role of the ruminal microbiome in enteric CH4 emissions. Recent sequencing-based studies suggest the presence of methanogenic archaea in extra-gastrointestinal tract tissues, including respiratory and reproductive tracts of cattle. While these sequencing data require further verification via culture-dependent methods, the consistent identification of methanogens with relatively greater frequency in the airway and urogenital tract of cattle, as well as increasing appreciation of the microbiome-gut-organ axis together highlight the potential interactions between ruminal and extra-gastrointestinal methanogenic communities. Thus, a traditional singular focus on ruminal methanogens may not be sufficient, and a holistic approach which takes into consideration of the transfer of methanogens between ruminal, extra-gastrointestinal, and environmental microbial communities is of necessity to develop more efficient and long-term ruminal CH4 mitigation strategies. In the present review, we provide a holistic survey of the methanogenic archaea present in different anatomical sites of cattle and discuss potential seeding sources of the ruminal methanogens.
Collapse
Affiliation(s)
- Godson Aryee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Kendall C. Swanson
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58102, USA; (C.R.D.); (K.C.S.)
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA; (G.A.); (S.M.L.)
| |
Collapse
|
7
|
Siebieszuk A, Sejbuk M, Witkowska AM. Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping. Int J Mol Sci 2023; 24:16169. [PMID: 38003359 PMCID: PMC10671191 DOI: 10.3390/ijms242216169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The recently observed circadian oscillations of the intestinal microbiota underscore the profound nature of the human-microbiome relationship and its importance for health. Together with the discovery of circadian clocks in non-photosynthetic gut bacteria and circadian rhythms in anucleated cells, these findings have indicated the possibility that virtually all microorganisms may possess functional biological clocks. However, they have also raised many essential questions concerning the fundamentals of biological timekeeping, its evolution, and its origin. This narrative review provides a comprehensive overview of the recent literature in molecular chronobiology, aiming to bring together the latest evidence on the structure and mechanisms driving microbial biological clocks while pointing to potential applications of this knowledge in medicine. Moreover, it discusses the latest hypotheses regarding the evolution of timing mechanisms and describes the functions of peroxiredoxins in cells and their contribution to the cellular clockwork. The diversity of biological clocks among various human-associated microorganisms and the role of transcriptional and post-translational timekeeping mechanisms are also addressed. Finally, recent evidence on metabolic oscillators and host-microbiome communication is presented.
Collapse
Affiliation(s)
- Adam Siebieszuk
- Department of Physiology, Faculty of Medicine, Medical University of Bialystok, Mickiewicza 2C, 15-222 Białystok, Poland;
| | - Monika Sejbuk
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Faculty of Health Sciences, Medical University of Bialystok, Szpitalna 37, 15-295 Białystok, Poland;
| |
Collapse
|
8
|
Khairunisa BH, Heryakusuma C, Ike K, Mukhopadhyay B, Susanti D. Evolving understanding of rumen methanogen ecophysiology. Front Microbiol 2023; 14:1296008. [PMID: 38029083 PMCID: PMC10658910 DOI: 10.3389/fmicb.2023.1296008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Production of methane by methanogenic archaea, or methanogens, in the rumen of ruminants is a thermodynamic necessity for microbial conversion of feed to volatile fatty acids, which are essential nutrients for the animals. On the other hand, methane is a greenhouse gas and its production causes energy loss for the animal. Accordingly, there are ongoing efforts toward developing effective strategies for mitigating methane emissions from ruminant livestock that require a detailed understanding of the diversity and ecophysiology of rumen methanogens. Rumen methanogens evolved from free-living autotrophic ancestors through genome streamlining involving gene loss and acquisition. The process yielded an oligotrophic lifestyle, and metabolically efficient and ecologically adapted descendants. This specialization poses serious challenges to the efforts of obtaining axenic cultures of rumen methanogens, and consequently, the information on their physiological properties remains in most part inferred from those of their non-rumen representatives. This review presents the current knowledge of rumen methanogens and their metabolic contributions to enteric methane production. It also identifies the respective critical gaps that need to be filled for aiding the efforts to mitigate methane emission from livestock operations and at the same time increasing the productivity in this critical agriculture sector.
Collapse
Affiliation(s)
| | - Christian Heryakusuma
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Kelechi Ike
- Department of Biology, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Biswarup Mukhopadhyay
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Dwi Susanti
- Microbial Discovery Research, BiomEdit, Greenfield, IN, United States
| |
Collapse
|
9
|
Yang Z, Lian Z, Liu L, Fang B, Li W, Jiao J. Cultivation strategies for prokaryotes from extreme environments. IMETA 2023; 2:e123. [PMID: 38867929 PMCID: PMC10989778 DOI: 10.1002/imt2.123] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2024]
Abstract
The great majority of microorganisms are as-yet-uncultivated, mostly found in extreme environments. High-throughput sequencing provides data-rich genomes from single-cell and metagenomic techniques, which has enabled researchers to obtain a glimpse of the unexpected genetic diversity of "microbial dark matter." However, cultivating microorganisms from extreme environments remains essential for dissecting and utilizing the functions of extremophiles. Here, we provide a straightforward protocol for efficiently isolating prokaryotic microorganisms from different extreme habitats (thermal, xeric, saline, alkaline, acidic, and cryogenic environments), which was established through previous successful work and our long-term experience in extremophile resource mining. We propose common processes for extremophile isolation at first and then summarize multiple cultivation strategies for recovering prokaryotic microorganisms from extreme environments and meanwhile provide specific isolation tips that are always overlooked but important. Furthermore, we propose the use of multi-omics-guided microbial cultivation approaches for culturing these as-yet-uncultivated microorganisms and two examples are provided to introduce how these approaches work. In summary, the protocol allows researchers to significantly improve the isolation efficiency of pure cultures and novel taxa, which therefore paves the way for the protection and utilization of microbial resources from extreme environments.
Collapse
Affiliation(s)
- Zi‐Wen Yang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Zheng‐Han Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Lan Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| | - Bao‐Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Wen‐Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesUrumqiChina
| | - Jian‐Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Mei R, Kaneko M, Imachi H, Nobu MK. The origin and evolution of methanogenesis and Archaea are intertwined. PNAS NEXUS 2023; 2:pgad023. [PMID: 36874274 PMCID: PMC9982363 DOI: 10.1093/pnasnexus/pgad023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Methanogenesis has been widely accepted as an ancient metabolism, but the precise evolutionary trajectory remains hotly debated. Disparate theories exist regarding its emergence time, ancestral form, and relationship with homologous metabolisms. Here, we report the phylogenies of anabolism-involved proteins responsible for cofactor biosynthesis, providing new evidence for the antiquity of methanogenesis. Revisiting the phylogenies of key catabolism-involved proteins further suggests that the last Archaea common ancestor (LACA) was capable of versatile H2-, CO2-, and methanol-utilizing methanogenesis. Based on phylogenetic analyses of the methyl/alkyl-S-CoM reductase family, we propose that, in contrast to current paradigms, substrate-specific functions emerged through parallel evolution traced back to a nonspecific ancestor, which likely originated from protein-free reactions as predicted from autocatalytic experiments using cofactor F430. After LACA, inheritance/loss/innovation centered around methanogenic lithoautotrophy coincided with ancient lifestyle divergence, which is clearly reflected by genomically predicted physiologies of extant archaea. Thus, methanogenesis is not only a hallmark metabolism of Archaea, but the key to resolve the enigmatic lifestyle that ancestral archaea took and the transition that led to physiologies prominent today.
Collapse
Affiliation(s)
- Ran Mei
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Masanori Kaneko
- Institute for Geo-Resources and Environment, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567, Japan
| | - Hiroyuki Imachi
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Masaru K Nobu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan.,Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
11
|
Explainable artificial intelligence as a reliable annotator of archaeal promoter regions. Sci Rep 2023; 13:1763. [PMID: 36720898 PMCID: PMC9889792 DOI: 10.1038/s41598-023-28571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/20/2023] [Indexed: 02/02/2023] Open
Abstract
Archaea are a vast and unexplored cellular domain that thrive in a high diversity of environments, having central roles in processes mediating global carbon and nutrient fluxes. For these organisms to balance their metabolism, the appropriate regulation of their gene expression is essential. A key momentum in regulating genes responsible for the life maintenance of archaea is when transcription factor proteins bind to the promoter element. This DNA segment is conserved, which enables its exploration by machine learning techniques. Here, we trained and tested a support vector machine with 3935 known archaeal promoter sequences. All promoter sequences were coded into DNA Duplex Stability. After, we performed a model interpretation task to map the decision pattern of the classification procedure. We also used a dataset of known-promoter sequences for validation. Our results showed that an AT rich region around position - 27 upstream (relative to the start TSS) is the most conserved in the analyzed organisms. In addition, we were able to identify the BRE element (- 33), the PPE (at - 10) and a position at + 3, that provides a more understandable picture of how promoters are organized in all the archaeal organisms. Finally, we used the interpreted model to identify potential promoter sequences of 135 unannotated organisms, delivering regulatory regions annotation of archaea in a scale never accomplished before ( https://pcyt.unam.mx/gene-regulation/ ). We consider that this approach will be useful to understand how gene regulation is achieved in other organisms apart from the already established transcription factor binding sites.
Collapse
|
12
|
Samman N, Mohabatkar H, Rabiei P. Using several pseudo amino acid composition types and different machine learning algorithms to classify and predict archaeal phospholipases. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2023; 12:117-126. [PMID: 37525666 PMCID: PMC10387176 DOI: 10.22099/mbrc.2023.47756.1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Phospholipases, as important lipolytic enzymes, have diverse industrial applications. Regarding the stability of extremophilic archaea's proteins in harsh conditions, analyses of unusual features of their proteins are significantly important for their utilization. This research was accomplished to in silico study of archaeal phospholipases' properties and to develop a pioneering method for distinguishing these enzymes from other archaeal enzymes via machine learning algorithms and Chou's pseudo-amino acid composition concept. The non-redundant sequences of archaeal phospholipases were collected. BioSeq-Analysis sever was used with Support Vector Machine (SVM), Random Forests (RF), Covariance Discrimination (CD), and Optimized Evidence-Theoretic K-nearest Neighbor (OET-KNN) as powerful machine learnings algorithms. Also, different Chou's pseudo-amino acid composition modes were performed and then, 5-fold cross-validation was applied to the sequences. Based on our results, the OET-KNN predictor, with 96% accuracy, yields the best performance in SC-PseAAC mode by 5-fold cross-validation. This predictor also achieved very high values of specificity (95%), sensitivity (96%), Matthews's correlation coefficient (0.92), and accuracy (96%). The present investigation yielded a robust anticipatory model for the archaeal phospholipase prediction utilizing the tenets PseAAC and OET-KNN machine learning algorithm.
Collapse
Affiliation(s)
| | - Hassan Mohabatkar
- Corresponding Author: Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. Tel: +98 313 793 4391; Fax:+98 313 793 2342;
| | | |
Collapse
|
13
|
Meng K, Chung CZ, Söll D, Krahn N. Unconventional genetic code systems in archaea. Front Microbiol 2022; 13:1007832. [PMID: 36160229 PMCID: PMC9499178 DOI: 10.3389/fmicb.2022.1007832] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Archaea constitute the third domain of life, distinct from bacteria and eukaryotes given their ability to tolerate extreme environments. To survive these harsh conditions, certain archaeal lineages possess unique genetic code systems to encode either selenocysteine or pyrrolysine, rare amino acids not found in all organisms. Furthermore, archaea utilize alternate tRNA-dependent pathways to biosynthesize and incorporate members of the 20 canonical amino acids. Recent discoveries of new archaeal species have revealed the co-occurrence of these genetic code systems within a single lineage. This review discusses the diverse genetic code systems of archaea, while detailing the associated biochemical elements and molecular mechanisms.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Christina Z. Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
14
|
Lemaire O, Wagner T. A Structural View of Alkyl-Coenzyme M Reductases, the First Step of Alkane Anaerobic Oxidation Catalyzed by Archaea. Biochemistry 2022; 61:805-821. [PMID: 35500274 PMCID: PMC9118554 DOI: 10.1021/acs.biochem.2c00135] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Indexed: 11/28/2022]
Abstract
Microbial anaerobic oxidation of alkanes intrigues the scientific community by way of its impact on the global carbon cycle, and its biotechnological applications. Archaea are proposed to degrade short- and long-chain alkanes to CO2 by reversing methanogenesis, a theoretically reversible process. The pathway would start with alkane activation, an endergonic step catalyzed by methyl-coenzyme M reductase (MCR) homologues that would generate alkyl-thiols carried by coenzyme M. While the methane-generating MCR found in methanogens has been well characterized, the enzymatic activity of the putative alkane-fixing counterparts has not been validated so far. Such an absence of biochemical investigations contrasts with the current explosion of metagenomics data, which draws new potential alkane-oxidizing pathways in various archaeal phyla. Therefore, validating the physiological function of these putative alkane-fixing machines and investigating how their structures, catalytic mechanisms, and cofactors vary depending on the targeted alkane have become urgent needs. The first structural insights into the methane- and ethane-capturing MCRs highlighted unsuspected differences and proposed some explanations for their substrate specificity. This Perspective reviews the current physiological, biochemical, and structural knowledge of alkyl-CoM reductases and offers fresh ideas about the expected mechanistic and chemical differences among members of this broad family. We conclude with the challenges of the investigation of these particular enzymes, which might one day generate biofuels for our modern society.
Collapse
Affiliation(s)
- Olivier
N. Lemaire
- Max Planck Institute for
Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Tristan Wagner
- Max Planck Institute for
Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| |
Collapse
|
15
|
Schiller H, Young C, Schulze S, Tripepi M, Pohlschroder M. A Twist to the Kirby-Bauer Disk Diffusion Susceptibility Test: an Accessible Laboratory Experiment Comparing Haloferax volcanii and Escherichia coli Antibiotic Susceptibility to Highlight the Unique Cell Biology of Archaea. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2022; 23:e00234-21. [PMID: 35340443 PMCID: PMC8943627 DOI: 10.1128/jmbe.00234-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Archaea, once thought to only live in extreme environments, are present in many ecosystems, including the human microbiome, and they play important roles ranging from nutrient cycling to bioremediation. Yet this domain is often overlooked in microbiology classes and rarely included in laboratory exercises. Excluding archaea from high school and undergraduate curricula prevents students from learning the uniqueness and importance of this domain. Here, we have modified a familiar and popular microbiology experiment-the Kirby-Bauer disk diffusion antibiotic susceptibility test-to include, together with the model bacterium Escherichia coli, the model archaeon Haloferax volcanii. Students will learn the differences and similarities between archaea and bacteria by using antibiotics that target, for example, the bacterial peptidoglycan cell wall or the ribosome. Furthermore, the experiment provides a platform to reiterate basic cellular biology concepts that students may have previously discussed. We have developed two versions of this experiment, one designed for an undergraduate laboratory curriculum and the second, limited to H. volcanii, that high school students can perform in their classrooms. This nonpathogenic halophile can be cultured aerobically at ambient temperature in high-salt media, preventing contamination, making the experiment low-cost and safe for use in the high school setting.
Collapse
Affiliation(s)
- Heather Schiller
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Criston Young
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan Schulze
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Manuela Tripepi
- College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
16
|
Medina-Chávez NO, Travisano M. Archaeal Communities: The Microbial Phylogenomic Frontier. Front Genet 2022; 12:693193. [PMID: 35154237 PMCID: PMC8826477 DOI: 10.3389/fgene.2021.693193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Archaea are a unique system for investigating the diversity of life. There are the most diverse group of organisms with the longest evolutionary history of life on Earth. Phylogenomic investigations reveal the complex evolutionary history of Archaea, overturning longstanding views of the history of life. They exist in the harshest environments and benign conditions, providing a system to investigate the basis for living in extreme environments. They are frequently members of microbial communities, albeit generally rare. Archaea were central in the evolution of Eukaryotes and can be used as a proxy for studying life on other planets. Future advances will depend not only upon phylogenomic studies but also on a better understanding of isolation and cultivation techniques.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Michael Travisano
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
17
|
Neira G, Vergara E, Cortez D, Holmes DS. A Large-Scale Multiple Genome Comparison of Acidophilic Archaea (pH ≤ 5.0) Extends Our Understanding of Oxidative Stress Responses in Polyextreme Environments. Antioxidants (Basel) 2021; 11:antiox11010059. [PMID: 35052563 PMCID: PMC8773360 DOI: 10.3390/antiox11010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Acidophilic archaea thrive in anaerobic and aerobic low pH environments (pH < 5) rich in dissolved heavy metals that exacerbate stress caused by the production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH) and superoxide (O2−). ROS react with lipids, proteins and nucleic acids causing oxidative stress and damage that can lead to cell death. Herein, genes and mechanisms potentially involved in ROS mitigation are predicted in over 200 genomes of acidophilic archaea with sequenced genomes. These organisms are often be subjected to simultaneous multiple stresses such as high temperature, high salinity, low pH and high heavy metal loads. Some of the topics addressed include: (1) the phylogenomic distribution of these genes and what this can tell us about the evolution of these mechanisms in acidophilic archaea; (2) key differences in genes and mechanisms used by acidophilic versus non-acidophilic archaea and between acidophilic archaea and acidophilic bacteria and (3) how comparative genomic analysis predicts novel genes or pathways involved in oxidative stress responses in archaea and likely horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
| | - Diego Cortez
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; (G.N.); (E.V.); (D.C.)
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago 8420524, Chile
- Correspondence:
| |
Collapse
|
18
|
Martinez GS, Sarkar S, Kumar A, Pérez‐Rueda E, de Avila e Silva S. Characterization of promoters in archaeal genomes based on DNA structural parameters. Microbiologyopen 2021; 10:e1230. [PMID: 34713600 PMCID: PMC8553660 DOI: 10.1002/mbo3.1230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
The transcription machinery of archaea can be roughly classified as a simplified version of eukaryotic organisms. The basal transcription factor machinery binds to the TATA box found around 28 nucleotides upstream of the transcription start site; however, some transcription units lack a clear TATA box and still have TBP/TFB binding over them. This apparent absence of conserved sequences could be a consequence of sequence divergence associated with the upstream region, operon, and gene organization. Furthermore, earlier studies have found that a structural analysis gains more information compared with a simple sequence inspection. In this work, we evaluated and coded 3630 archaeal promoter sequences of three organisms, Haloferax volcanii, Thermococcus kodakarensis, and Sulfolobus solfataricus into DNA duplex stability, enthalpy, curvature, and bendability parameters. We also split our dataset into conserved TATA and degenerated TATA promoters to identify differences among these two classes of promoters. The structural analysis reveals variations in archaeal promoter architecture, that is, a distinctive signal is observed in the TFB, TBP, and TFE binding sites independently of these being TATA-conserved or TATA-degenerated. In addition, the promoter encountering method was validated with upstream regions of 13 other archaea, suggesting that there might be promoter sequences among them. Therefore, we suggest a novel method for locating promoters within the genome of archaea based on DNA energetic/structural features.
Collapse
Affiliation(s)
| | - Sharmilee Sarkar
- Department of Molecular Biology and BiotechnologyTezpur UniversityTezpurAssamIndia
| | - Aditya Kumar
- Department of Molecular Biology and BiotechnologyTezpur UniversityTezpurAssamIndia
| | - Ernesto Pérez‐Rueda
- Unidad Académica de YucatánInstituto de Investigaciones en Matemáticas Aplicadas y en SistemasUniversidad Nacional Autónoma de MéxicoMéridaYucatánMéxico
| | | |
Collapse
|
19
|
A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol 2021; 6:946-959. [PMID: 34155373 DOI: 10.1038/s41564-021-00918-8] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
The accrual of genomic data from both cultured and uncultured microorganisms provides new opportunities to develop systematic taxonomies based on evolutionary relationships. Previously, we established a bacterial taxonomy through the Genome Taxonomy Database. Here, we propose a standardized archaeal taxonomy that is derived from a 122-concatenated-protein phylogeny that resolves polyphyletic groups and normalizes ranks based on relative evolutionary divergence. The resulting archaeal taxonomy, which forms part of the Genome Taxonomy Database, is stable for a range of phylogenetic variables including marker gene selection, inference methods, corrections for rate heterogeneity and compositional bias, tree rooting scenarios and expansion of the genome database. Rank normalization is shown to robustly correct for substitution rates varying up to 30-fold using simulated datasets. Taxonomic curation follows the rules of the International Code of Nomenclature of Prokaryotes while taking into account proposals to formally recognize the rank of phylum and to use genome sequences as type material. This taxonomy is based on 2,392 archaeal genomes, 93.3% of which required one or more changes to their existing taxonomy, mainly owing to incomplete classification. We identify 16 archaeal phyla and reclassify 3 major monophyletic units from the former Euryarchaeota and one phylum that unites the Thaumarchaeota-Aigarchaeota-Crenarchaeota-Korarchaeota (TACK) superphylum into a single phylum.
Collapse
|
20
|
Feng S, Wang R, Pastor RW, Klauda JB, Im W. Location and Conformational Ensemble of Menaquinone and Menaquinol, and Protein-Lipid Modulations in Archaeal Membranes. J Phys Chem B 2021; 125:4714-4725. [PMID: 33913729 PMCID: PMC8379905 DOI: 10.1021/acs.jpcb.1c01930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Halobacteria, a type of archaea in high salt environments, have phytanyl ether phospholipid membranes containing up to 50% menaquinone. It is not understood why a high concentration of menaquinone is required and how it influences membrane properties. In this study, menaquinone-8 headgroup and torsion parameters of isoprenoid tail are optimized in the CHARMM36 force field. Molecular dynamics simulations of archaeal bilayers containing 0 to 50% menaquinone characterize the distribution of menaquinone-8 and menaquinol-8, as well as their effects on mechanical properties and permeability. Menaquinone-8 segregates to the membrane midplane above concentrations of 10%, favoring an extended conformation in a fluid state. Menaquinone-8 increases the bilayer thickness but does not significantly alter the area compressibility modulus and lipid chain ordering. Counterintuitively, menaquinone-8 increases water permeability because it lowers the free energy barrier in the midplane. The thickness increase due to menaquinone-8 may help halobacteria ameliorate hyper-osmotic pressure by increasing the membrane bending constant. Simulations of the archaeal membranes with archaerhodopsin-3 show that the local membrane surface adjusts to accommodate the thick membranes. Overall, this study delineates the biophysical landscape of 50% menaquinone in the archaeal bilayer, demonstrates the mixing of menaquinone and menaquinol, and provides atomistic details about menaquinone configurations.
Collapse
Affiliation(s)
- Shasha Feng
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | - Ruixing Wang
- Department of Chemistry and Biochemistry, Chemistry Program, University of Maryland, College Park, Maryland 20742, USA
| | - Richard W. Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering, Biophysics Program, University of Maryland, College Park, Maryland 20742, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| |
Collapse
|
21
|
Comments on the evolution of TRPV6. Ann Anat 2021; 238:151753. [PMID: 33964462 DOI: 10.1016/j.aanat.2021.151753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
It is well known that not all biological findings derived from animals can be directly applied to humans. The TRPV6 protein may serve as an example which highlights these inter-species differences as an example of parallel evolutionary pathways. TRPV6 (and TRPV5) belong to a family of ion channels from the transient receptor potential group but are selectively permeable for Ca2+, in contrast to other members of the family. Sequences with recognizable similarity to TRPV6 can already be found in archaebacteria. These ancient sequences show clear similarity to the ion-conducting pore of TRPV6. Over the course of evolution, the duplication of the TRPV6 gene gave rise to TRPV5. Duplications of the complete genome as well as subsequent loss of genetic material have led to a variety of different TRPV5/6 combinations. In addition, there is an N-terminal extension of the protein in placental animals. This extension causes translation of TRPV6 to be initiated from an ACG codon. Inactivation of one TRPV6 allele can be correlated with alcohol-independent pancreatitis in humans while inactivation of both alleles leads to skeletal dysplasia of newborn babies. The latter effect is not observed in mice, implying that the effects due to perturbations in TRPV6 levels are much more pronounced in humans.
Collapse
|
22
|
Two Metagenome-Assembled Genomes of Hydrogen-Dependent Methanomassiliicoccales Methanogens from the Zoige Wetland of the Tibetan Plateau. Microbiol Resour Announc 2021; 10:10/17/e00021-21. [PMID: 33927027 PMCID: PMC8086201 DOI: 10.1128/mra.00021-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wetlands in the Tibetan Plateau play a crucial role in global carbon cycling. Here, we report the metagenome-assembled genomes (MAGs) of two hydrogen-dependent methanogens from the Zoige wetland of the Tibetan Plateau. The novel species belong to Methanomassiliicoccales, the seventh euryarchaeal methanogenic order.
Collapse
|
23
|
Moosmann B, Schindeldecker M, Hajieva P. Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation. Biol Chem 2021; 401:213-231. [PMID: 31318686 DOI: 10.1515/hsz-2019-0232] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Life most likely developed under hyperthermic and anaerobic conditions in close vicinity to a stable geochemical source of energy. Epitomizing this conception, the first cells may have arisen in submarine hydrothermal vents in the middle of a gradient established by the hot and alkaline hydrothermal fluid and the cooler and more acidic water of the ocean. To enable their escape from this energy-providing gradient layer, the early cells must have overcome a whole series of obstacles. Beyond the loss of their energy source, the early cells had to adapt to a loss of external iron-sulfur catalysis as well as to a formidable temperature drop. The developed solutions to these two problems seem to have followed the principle of maximum parsimony: Cysteine was introduced into the genetic code to anchor iron-sulfur clusters, and fatty acid unsaturation was installed to maintain lipid bilayer viscosity. Unfortunately, both solutions turned out to be detrimental when the biosphere became more oxidizing after the evolution of oxygenic photosynthesis. To render cysteine thiol groups and fatty acid unsaturation compatible with life under oxygen, numerous counter-adaptations were required including the advent of glutathione and the addition of the four latest amino acids (methionine, tyrosine, tryptophan, selenocysteine) to the genetic code. In view of the continued diversification of derived antioxidant mechanisms, it appears that modern life still struggles with the initially developed strategies to escape from its hydrothermal birthplace. Only archaea may have found a more durable solution by entirely exchanging their lipid bilayer components and rigorously restricting cysteine usage.
Collapse
Affiliation(s)
- Bernd Moosmann
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Mario Schindeldecker
- Evolutionary Biochemistry and Redox Medicine, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| | - Parvana Hajieva
- Cellular Adaptation Group, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, D-55128 Mainz, Germany
| |
Collapse
|
24
|
Pereira-Santana A, Gamboa-Tuz SD, Zhao T, Schranz ME, Vinuesa P, Bayona A, Rodríguez-Zapata LC, Castano E. Fibrillarin evolution through the Tree of Life: Comparative genomics and microsynteny network analyses provide new insights into the evolutionary history of Fibrillarin. PLoS Comput Biol 2020; 16:e1008318. [PMID: 33075080 PMCID: PMC7608942 DOI: 10.1371/journal.pcbi.1008318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 11/03/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved.
Collapse
Affiliation(s)
- Alejandro Pereira-Santana
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
- Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Zapopan, Jalisco, México
- Dirección de Cátedras, Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Samuel David Gamboa-Tuz
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | - Tao Zhao
- Bioinformatics and Evolutionary Genomics, VIB-UGent Center for Plant Systems Biology, Gent, Belgium
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Andrea Bayona
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| | | | - Enrique Castano
- Unidad de Bioquímica y Biología molecular de plantas, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México
| |
Collapse
|
25
|
Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020; 21:ijms21124228. [PMID: 32545812 PMCID: PMC7349289 DOI: 10.3390/ijms21124228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965903400 (ext. 1258)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
26
|
Sun Y, Liu Y, Pan J, Wang F, Li M. Perspectives on Cultivation Strategies of Archaea. MICROBIAL ECOLOGY 2020; 79:770-784. [PMID: 31432245 DOI: 10.1007/s00248-019-01422-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Archaea have been recognized as a major domain of life since the 1970s and occupy a key position in the tree of life. Recent advances in culture-independent approaches have greatly accelerated the research son Archaea. However, many hypotheses concerning the diversity, physiology, and evolution of archaea are waiting to be confirmed by culture-base experiments. Consequently, archaeal isolates are in great demand. On the other hand, traditional approaches of archaeal cultivation are rarely successful and require urgent improvement. Here, we review the current practices and applicable microbial cultivation techniques, to inform on potential strategies that could improve archaeal cultivation in the future. We first summarize the current knowledge on archaeal diversity, with an emphasis on cultivated and uncultivated lineages pertinent to future research. Possible causes for the low success rate of the current cultivation practices are then discussed to propose future improvements. Finally, innovative insights for archaeal cultivation are described, including (1) medium refinement for selective cultivation based on the genetic and transcriptional information; (2) consideration of the up-to-date archaeal culturing skills; and (3) application of multiple cultivation techniques, such as co-culture, direct interspecies electron transfer (DIET), single-cell isolation, high-throughput culturing (HTC), and simulation of the natural habitat. Improved cultivation efforts should allow successful isolation of as yet uncultured archaea, contributing to the much-needed physiological investigation of archaea.
Collapse
Affiliation(s)
- Yihua Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Yang Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Jie Pan
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Catchpole RJ, Forterre P. The Evolution of Reverse Gyrase Suggests a Nonhyperthermophilic Last Universal Common Ancestor. Mol Biol Evol 2020; 36:2737-2747. [PMID: 31504731 PMCID: PMC6878951 DOI: 10.1093/molbev/msz180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reverse gyrase (RG) is the only protein found ubiquitously in hyperthermophilic organisms, but absent from mesophiles. As such, its simple presence or absence allows us to deduce information about the optimal growth temperature of long-extinct organisms, even as far as the last universal common ancestor of extant life (LUCA). The growth environment and gene content of the LUCA has long been a source of debate in which RG often features. In an attempt to settle this debate, we carried out an exhaustive search for RG proteins, generating the largest RG data set to date. Comprising 376 sequences, our data set allows for phylogenetic reconstructions of RG with unprecedented size and detail. These RG phylogenies are strikingly different from those of universal proteins inferred to be present in the LUCA, even when using the same set of species. Unlike such proteins, RG does not form monophyletic archaeal and bacterial clades, suggesting RG emergence after the formation of these domains, and/or significant horizontal gene transfer. Additionally, the branch lengths separating archaeal and bacterial groups are very short, inconsistent with the tempo of evolution from the time of the LUCA. Despite this, phylogenies limited to archaeal RG resolve most archaeal phyla, suggesting predominantly vertical evolution since the time of the last archaeal ancestor. In contrast, bacterial RG indicates emergence after the last bacterial ancestor followed by significant horizontal transfer. Taken together, these results suggest a nonhyperthermophilic LUCA and bacterial ancestor, with hyperthermophily emerging early in the evolution of the archaeal and bacterial domains.
Collapse
Affiliation(s)
- Ryan J Catchpole
- Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Patrick Forterre
- Département de Microbiologie, Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University of Paris-Sud, University of Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
28
|
Ryan F. Viral Symbiosis in the Origins and Evolution of Life with a Particular Focus on the Placental Mammals. Results Probl Cell Differ 2020; 69:3-24. [PMID: 33263867 DOI: 10.1007/978-3-030-51849-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Advances in understanding over the last decade or so highlight the need for a reappraisal of the role of viruses in relation to the origins and evolution of cellular life, as well as in the homeostasis of the biosphere on which all of life depends. The relevant advances have, in particular, revealed an important contribution of viruses to the evolution of the placental mammals, while also contributing key roles to mammalian embryogenesis, genomic evolution, and physiology. Part of this reappraisal will include the origins of viruses, a redefinition of their quintessential nature, and a suggestion as to how we might view viruses in relation to the tree of life.
Collapse
Affiliation(s)
- Frank Ryan
- The Academic Unit of Medical Education, Faculty of Medicine, Dentistry and Health, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
29
|
Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc Natl Acad Sci U S A 2019; 116:5037-5044. [PMID: 30814220 PMCID: PMC6421429 DOI: 10.1073/pnas.1815631116] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methane-producing microorganisms are thought to be among the earliest cellular life forms colonizing our planet, and are major contributors to the past and present global carbon cycle. Currently, all methanogens belong to the archaeal domain of life, and there is compounding evidence for a variety of methanogenic metabolisms among a wide distribution of archaeal phyla. However, the predominantly hydrogenotrophic (CO2-fixing) Euryarchaeota are distinct from the recently discovered methylotrophic (biomass-degrading) noneuryarchaea, making the shared ancestry and origins of all methanogens unclear. We discovered hydrogenotrophic methanogenesis in a thermophilic order of the Verstraetearchaeota, a noneuryarchaeote. The Verstraetearchaeota, hitherto known as methylotrophs, unify the origins of methanogenesis and shed light on how organisms can evolve to adapt from hydrogenotrophic to methylotrophic methane metabolism. Methanogenic archaea are major contributors to the global carbon cycle and were long thought to belong exclusively to the euryarchaeal phylum. Discovery of the methanogenesis gene cluster methyl-coenzyme M reductase (Mcr) in the Bathyarchaeota, and thereafter the Verstraetearchaeota, led to a paradigm shift, pushing back the evolutionary origin of methanogenesis to predate that of the Euryarchaeota. The methylotrophic methanogenesis found in the non-Euryarchaota distinguished itself from the predominantly hydrogenotrophic methanogens found in euryarchaeal orders as the former do not couple methanogenesis to carbon fixation through the reductive acetyl-CoA [Wood–Ljungdahl pathway (WLP)], which was interpreted as evidence for independent evolution of the two methanogenesis pathways. Here, we report the discovery of a complete and divergent hydrogenotrophic methanogenesis pathway in a thermophilic order of the Verstraetearchaeota, which we have named Candidatus Methanohydrogenales, as well as the presence of the WLP in the crenarchaeal order Desulfurococcales. Our findings support the ancient origin of hydrogenotrophic methanogenesis, suggest that methylotrophic methanogenesis might be a later adaptation of specific orders, and provide insight into how the transition from hydrogenotrophic to methylotrophic methanogenesis might have occurred.
Collapse
|
30
|
An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol 2019; 17:219-232. [DOI: 10.1038/s41579-018-0136-7] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/26/2018] [Indexed: 11/08/2022]
|
31
|
Celakovská J, Bukac J, Ettler K, Vaneckova J, Krcmova I, Ettlerova K, Krejsek J. The occurrence of food hypersensitivity reactions and the relation to the sensitization to grass and trees in atopic dermatitis patients 14 years of age and older. Indian J Dermatol 2019; 64:346-354. [PMID: 31543527 PMCID: PMC6749770 DOI: 10.4103/ijd.ijd_164_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Methods: Results: Conclusion:
Collapse
|
32
|
Koga Y, Konishi K, Kobayashi A, Kanaya S, Takano K. Anaerobic glycerol-3-phosphate dehydrogenase complex from hyperthermophilic archaeon Thermococcus kodakarensis KOD1. J Biosci Bioeng 2018; 127:679-685. [PMID: 30583977 DOI: 10.1016/j.jbiosc.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 11/30/2022]
Abstract
Glycerol-3-phosphate (G3P) is a key intermediate of glycerol metabolism and is oxidized to dihydroxyacetone phosphate aerobically or anaerobically by appropriate G3P dehydrogenases. A hyperthermophilic archaeon Thermococcus kodakarensis KOD1 has a novel operon consisting of three genes encoding an anaerobic G3P dehydrogenase (G3PDH), an NADH oxidase (NOX), and a molybdopterin oxidoreductase (MOX). Typically, the G3PDH gene (glpA) is included in an operon with genes encoding essential subunits of the G3PDH complex, glpB and glpC. The three genes from T. kodakarensis were cloned and expressed in Escherichia coli, and their recombinant proteins, Tk-G3PDH, Tk-NOX and Tk-MOX, were characterized. The optimal temperature of Tk-G3PDH for activity was 80°C, indicating high thermal stability. Tk-G3PDH has flavin adenine dinucleotide as a prosthetic group and catalyzes oxidation of G3P with kcat/Km 1.93 × 103 M-1s-1 at 80°C, compared with 9.83 × 105 M-1s-1 for the E. coli G3PDH complex at 37°C. Interestingly, Tk-G3PDH can catalyze this reaction even as a monomer, whereas GlpA must form a complex with GlpB and GlpC. Tk-G3PDH also forms a putative heteropentamer with Tk-NOX and Tk-MOX (G3PDH:NOX:MOX = 2:2:1). This complex may form an electron transfer pathway to a final electron acceptor in the cell membrane, as is the case for the typical G3PDH complex GlpABC.
Collapse
Affiliation(s)
- Yuichi Koga
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kanako Konishi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Kobayashi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigenori Kanaya
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazufumi Takano
- Department of Biomolecular Chemistry, Kyoto Prefectural University, Hangi-cho, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| |
Collapse
|
33
|
Li J, Xiao L, Zheng S, Zhang Y, Luo M, Tong C, Xu H, Tan Y, Liu J, Wang O, Liu F. A new insight into the strategy for methane production affected by conductive carbon cloth in wetland soil: Beneficial to acetoclastic methanogenesis instead of CO 2 reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:1024-1030. [PMID: 30189519 DOI: 10.1016/j.scitotenv.2018.06.271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/03/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
Conductive materials/minerals can promote direct interspecies electron transfer (DIET) between syntrophic bacteria and methanogens in defined co-culture systems and artificial anaerobic digesters; however, little is known about the stimulation strategy of carbon material on methane production in natural environments. Herein, the effect of carbon cloth, as a representative of conductive carbon materials, on methane production with incubated wetland soil was investigated. Carbon cloth significantly promoted methanogenesis. With the application of electrochemical technology, calculation of the apparent electron transfer rate constant showed that carbon cloth significantly increased electron transfer rate (ETR) compared with the control experiment in presence of cotton cloth, from 0.0017 ± 0.0003 to 0.0056 ± 0.0015 s-1. Results obtained from both stable carbon isotope measurements and application of specific inhibitor (CH3F) for acetoclastic methanogenesis indicated that carbon cloth obviously promoted acetoclastic methanogenesis instead of CO2 reduction. High-throughput sequencing showed that methane production may stem from the involvement of Methanosarcina for both treatments. Our findings suggested that conductive carbon material can promote acetoclastic methanogenesis instead of CO2 reduction in a natural environment.
Collapse
Affiliation(s)
- Jiajia Li
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Shiling Zheng
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuechao Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Luo
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Chuan Tong
- Key Laboratory of Humid Subtropical Eco-geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Hengduo Xu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yang Tan
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Juan Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Oumei Wang
- Binzhou Medical University, Yantai 264003, China
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
34
|
Muñoz-Velasco I, García-Ferris C, Hernandez-Morales R, Lazcano A, Peretó J, Becerra A. Methanogenesis on Early Stages of Life: Ancient but Not Primordial. ORIGINS LIFE EVOL B 2018; 48:407-420. [PMID: 30612264 DOI: 10.1007/s11084-018-9570-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
Of the six known autotrophic pathways, the Wood-Ljungdahl pathway (WL) is the only one present in both the acetate producing Bacteria (homoacetogens) and the methane producing Archaea (hydrogenotrophic methanogens), and it has been suggested that WL is one of the oldest metabolic pathways. However, only the so-called carbonyl branch is shared by Archaea and Bacteria, while the methyl branch is different, both in the number of reactions and enzymes, which are not homologous among them. In this work we show that some parts of the methyl branch of archaeal Wood-Ljungdahl pathway (MBWL) are present in bacteria as well as in non-methanogen archaea, although the tangled evolutionary history of MBWL cannot be traced back to the Last Common Ancestor. We have also analyzed the different variants of methanogenesis (hydrogenotrophic, acetoclastic and methylotrophic pathways), and concluded that each of these pathways, and every different enzyme or subunit (in the case of multimeric enzymes), has their own intricate evolutionary history. Our study supports the scenario of hydrogenotrophic methanogenesis being older than the other variants, albeit not old enough to be present in the last archaeal common ancestor.
Collapse
Affiliation(s)
- Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P., 04510, Ciudad de México, Mexico
| | - Carlos García-Ferris
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Apartat Postal 22085, 46071, València, Spain
- Institute for Integrative Systems Biology, (I2SysBio, Universitat de València-CSIC), Apartat Postal 22085, 46071, València, Spain
| | - Ricardo Hernandez-Morales
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
| | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico
- Miembro de El Colegio Nacional, El Colegio Nacional, Donceles 104, Centro Histórico, 06020, Ciudad de México, Mexico
| | - Juli Peretó
- Departament de Bioquímica i Biologia Molecular, Universitat de València, Apartat Postal 22085, 46071, València, Spain
- Institute for Integrative Systems Biology, (I2SysBio, Universitat de València-CSIC), Apartat Postal 22085, 46071, València, Spain
| | - Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-407 Cd. Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
35
|
The mesophilic archaeon Methanosarcina acetivorans counteracts uracil in DNA with multiple enzymes: EndoQ, ExoIII, and UDG. Sci Rep 2018; 8:15791. [PMID: 30361558 PMCID: PMC6202378 DOI: 10.1038/s41598-018-34000-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/25/2018] [Indexed: 02/04/2023] Open
Abstract
Cytosine deamination into uracil is one of the most prevalent and pro-mutagenic forms of damage to DNA. Base excision repair is a well-known process of uracil removal in DNA, which is achieved by uracil DNA glycosylase (UDG) that is found in all three domains of life. However, other strategies for uracil removal seem to have been evolved in Archaea. Exonuclease III (ExoIII) from the euryarchaeon Methanothermobacter thermautotrophicus has been described to exhibit endonuclease activity toward uracil-containing DNA. Another uracil-acting protein, endonuclease Q (EndoQ), was recently identified from the euryarchaeon Pyrococcus furiosus. Here, we describe the uracil-counteracting system in the mesophilic euryarchaeon Methanosarcina acetivorans through genomic sequence analyses and biochemical characterizations. Three enzymes, UDG, ExoIII, and EndoQ, from M. acetivorans exhibited uracil cleavage activities in DNA with a distinct range of substrate specificities in vitro, and the transcripts for these three enzymes were detected in the M. acetivorans cells. Thus, this organism appears to conduct uracil repair using at least three distinct pathways. Distribution of the homologs of these uracil-targeting proteins in Archaea showed that this tendency is not restricted to M. acetivorans, but is prevalent and diverse in most Archaea. This work further underscores the importance of uracil-removal systems to maintain genome integrity in Archaea, including 'UDG lacking' organisms.
Collapse
|
36
|
Zorec R, Parpura V, Verkhratsky A. Astroglial vesicular network: evolutionary trends, physiology and pathophysiology. Acta Physiol (Oxf) 2018; 222. [PMID: 28665546 DOI: 10.1111/apha.12915] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 05/17/2017] [Accepted: 06/24/2017] [Indexed: 12/13/2022]
Abstract
Intracellular organelles, including secretory vesicles, emerged when eukaryotic cells evolved some 3 billion years ago. The primordial organelles that evolved in Archaea were similar to endolysosomes, which developed, arguably, for specific metabolic tasks, including uptake, metabolic processing, storage and disposal of molecules. In comparison with prokaryotes, cell volume of eukaryotes increased by several orders of magnitude and vesicle traffic emerged to allow for communication between distant intracellular locations. Lysosomes, first described in 1955, a prominent intermediate of endo- and exocytotic pathways, operate virtually in all eukaryotic cells including astroglia, the most heterogeneous type of homeostatic glia in the central nervous system. Astrocytes support neuronal network activity in particular through elaborated secretion, based on a complex intracellular vesicle network dynamics. Deranged homeostasis underlies disease and astroglial vesicle traffic contributes to the pathophysiology of neurodegenerative (Alzheimer's disease, Huntington's disease), neurodevelopmental diseases (intellectual deficiency, Rett's disease) and neuroinfectious (Zika virus) disorders. This review addresses astroglial cell-autonomous vesicular traffic network, as well as its into primary and secondary vesicular network defects in diseases, and considers this network as a target for developing new therapies for neurological conditions.
Collapse
Affiliation(s)
- R. Zorec
- Laboratory of Neuroendocrinology and Molecular Cell Physiology; Institute of Pathophysiology; University of Ljubljana; Ljubljana Slovenia
- Celica; BIOMEDICAL; Ljubljana Slovenia
| | - V. Parpura
- Department of Neurobiology; Civitan International Research Center and Center for Glial Biology in Medicine; Evelyn F. McKnight Brain Institute; Atomic Force Microscopy and Nanotechnology Laboratories; University of Alabama; Birmingham AL USA
| | - A. Verkhratsky
- Laboratory of Neuroendocrinology and Molecular Cell Physiology; Institute of Pathophysiology; University of Ljubljana; Ljubljana Slovenia
- Celica; BIOMEDICAL; Ljubljana Slovenia
- Faculty of Biology; Medicine and Health; The University of Manchester; Manchester UK
- Achucarro Center for Neuroscience; IKERBASQUE; Basque Foundation for Science; Bilbao Spain
- Department of Neurosciences; University of the Basque Country UPV/EHU and CIBERNED; Leioa Spain
| |
Collapse
|
37
|
Abby SS, Melcher M, Kerou M, Krupovic M, Stieglmeier M, Rossel C, Pfeifer K, Schleper C. Candidatus Nitrosocaldus cavascurensis, an Ammonia Oxidizing, Extremely Thermophilic Archaeon with a Highly Mobile Genome. Front Microbiol 2018; 9:28. [PMID: 29434576 PMCID: PMC5797428 DOI: 10.3389/fmicb.2018.00028] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Ammonia oxidizing archaea (AOA) of the phylum Thaumarchaeota are widespread in moderate environments but their occurrence and activity has also been demonstrated in hot springs. Here we present the first enrichment of a thermophilic representative with a sequenced genome, which facilitates the search for adaptive strategies and for traits that shape the evolution of Thaumarchaeota. Candidatus Nitrosocaldus cavascurensis has been enriched from a hot spring in Ischia, Italy. It grows optimally at 68°C under chemolithoautotrophic conditions on ammonia or urea converting ammonia stoichiometrically into nitrite with a generation time of approximately 23 h. Phylogenetic analyses based on ribosomal proteins place the organism as a sister group to all known mesophilic AOA. The 1.58 Mb genome of Ca. N. cavascurensis harbors an amoAXCB gene cluster encoding ammonia monooxygenase and genes for a 3-hydroxypropionate/4-hydroxybutyrate pathway for autotrophic carbon fixation, but also genes that indicate potential alternative energy metabolisms. Although a bona fide gene for nitrite reductase is missing, the organism is sensitive to NO-scavenging, underlining the potential importance of this compound for AOA metabolism. Ca. N. cavascurensis is distinct from all other AOA in its gene repertoire for replication, cell division and repair. Its genome has an impressive array of mobile genetic elements and other recently acquired gene sets, including conjugative systems, a provirus, transposons and cell appendages. Some of these elements indicate recent exchange with the environment, whereas others seem to have been domesticated and might convey crucial metabolic traits.
Collapse
Affiliation(s)
- Sophie S Abby
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Laboratoire Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications, Centre National de la Recherche Scientifique, Université Grenoble Alpes, Grenoble, France
| | - Michael Melcher
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Melina Kerou
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Mart Krupovic
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | - Michaela Stieglmeier
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Claudia Rossel
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Kevin Pfeifer
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Christa Schleper
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
38
|
Nayak DD, Mahanta N, Mitchell DA, Metcalf WW. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea. eLife 2017; 6. [PMID: 28880150 PMCID: PMC5589413 DOI: 10.7554/elife.29218] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
Abstract
Methyl-coenzyme M reductase (MCR), found in strictly anaerobic methanogenic and methanotrophic archaea, catalyzes the reversible production and consumption of the potent greenhouse gas methane. The α subunit of MCR (McrA) contains several unusual post-translational modifications, including a rare thioamidation of glycine. Based on the presumed function of homologous genes involved in the biosynthesis of thioviridamide, a thioamide-containing natural product, we hypothesized that the archaeal tfuA and ycaO genes would be responsible for post-translational installation of thioglycine into McrA. Mass spectrometric characterization of McrA from the methanogenic archaeon Methanosarcina acetivorans lacking tfuA and/or ycaO revealed the presence of glycine, rather than thioglycine, supporting this hypothesis. Phenotypic characterization of the ∆ycaO-tfuA mutant revealed a severe growth rate defect on substrates with low free energy yields and at elevated temperatures (39°C - 45°C). Our analyses support a role for thioglycine in stabilizing the protein secondary structure near the active site.
Collapse
Affiliation(s)
- Dipti D Nayak
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, United States
| | - Nilkamal Mahanta
- Department of Chemistry, University of Illinois, Urbana, United States
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, United States.,Department of Chemistry, University of Illinois, Urbana, United States.,Department of Microbiology, University of Illinois, Urbana, United States
| | - William W Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, United States.,Department of Microbiology, University of Illinois, Urbana, United States
| |
Collapse
|
39
|
Lei Y, Xiao Y, Li L, Jiang C, Zu C, Li T, Cao H. Impact of tillage practices on soil bacterial diversity and composition under the tobacco-rice rotation in China. J Microbiol 2017; 55:349-356. [PMID: 28251545 DOI: 10.1007/s12275-017-6242-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 01/02/2017] [Accepted: 01/16/2017] [Indexed: 10/20/2022]
Abstract
Tobacco-rice rotation is a common farming system in south China, and many tillage practices such as straw mulching, dolomite dust, and quicklime application have been adopted to improve crop production. These agricultural management practices alter soil physical and chemical properties and affect microbial life environment and community composition. In this research, six tillage practices including no tobacco and rice straw mulching (CK), tobacco and rice straw mulching (TrSr), rice straw returning fire (TrSc), tobacco and rice straw mulching with dolomite dust (TSD), rice straw returning fire and quicklime (TSQ), and rice straw returning fire, quicklime and reduced fertilizer (TSQf) were conducted to detect changes in soil bacterial diversity and composition using Illumina sequencing. The results showed that the total number of operational taxonomic units (OTUs) from the six treatments was 2030, and the number of mutual OTUs among all samples was 550. The TrSc treatment had the highest diversity and richness, while TSQf had the lowest. Soil physio-chemical properties and microbial diversity can influence each other. Proteobacteria and Actinobacteria had the greatest proportion in all treatments. The abundance of Nitrospirae was the highest in the TrSc treatment. The TSQf treatment had the highest abundance of Firmicutes. The abundance of Nitrospira in the TrSc treatment was 2.29-fold over CK. Streptomyces affiliated with Firmicutes improved by 37.33% in TSQf compared to TSQ. TSQf treatment was considered to be the most important factor in determining the relative abundance at the genus level.
Collapse
Affiliation(s)
- Yanping Lei
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yongliang Xiao
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Lifeng Li
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chaoqiang Jiang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, P. R. China
| | - Chaolong Zu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, P. R. China
| | - Tian Li
- Chizhou Tobacco Company of Anhui Province, Chizhou, 247000, P. R. China
| | - Hui Cao
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
40
|
An Adaptation To Life In Acid Through A Novel Mevalonate Pathway. Sci Rep 2016; 6:39737. [PMID: 28004831 PMCID: PMC5177888 DOI: 10.1038/srep39737] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/28/2016] [Indexed: 11/23/2022] Open
Abstract
Extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previously identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.
Collapse
|
41
|
Cardenas JP, Quatrini R, Holmes DS. Aerobic Lineage of the Oxidative Stress Response Protein Rubrerythrin Emerged in an Ancient Microaerobic, (Hyper)Thermophilic Environment. Front Microbiol 2016; 7:1822. [PMID: 27917155 PMCID: PMC5114695 DOI: 10.3389/fmicb.2016.01822] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/31/2016] [Indexed: 11/27/2022] Open
Abstract
Rubrerythrins (RBRs) are non-heme di-iron proteins belonging to the ferritin-like superfamily. They are involved in oxidative stress defense as peroxide scavengers in a wide range of organisms. The vast majority of RBRs, including classical forms of this protein, contain a C-terminal rubredoxin-like domain involved in electron transport that is used during catalysis in anaerobic conditions. Rubredoxin is an ancient and large protein family of short length (<100 residues) that contains a Fe-S center involved in electron transfer. However, functional forms of the enzyme lacking the rubredoxin-like domain have been reported (e.g., sulerythrin and ferriperoxin). In this study, phylogenomic evidence is presented that suggests that a complete lineage of rubrerythrins, lacking the rubredoxin-like domain, arose in an ancient microaerobic and (hyper)thermophilic environments in the ancestors of the Archaea Thermoproteales and Sulfolobales. This lineage (termed the “aerobic-type” lineage) subsequently evolved to become adapted to environments with progressively lower temperatures and higher oxygen concentrations via the acquisition of two co-localized genes, termed DUF3501 and RFO, encoding a conserved protein of unknown function and a predicted Fe-S oxidoreductase, respectively. Proposed Horizontal Gene Transfer events from these archaeal ancestors to Bacteria expanded the opportunities for further evolution of this RBR including adaption to lower temperatures. The second lineage (termed the cyanobacterial lineage) is proposed to have evolved in cyanobacterial ancestors, maybe in direct response to the production of oxygen via oxygenic photosynthesis during the Great Oxygen Event (GOE). It is hypothesized that both lineages of RBR emerged in a largely anaerobic world with “whiffs” of oxygen and that their subsequent independent evolutionary trajectories allowed microorganisms to transition from this anaerobic world to an aerobic one.
Collapse
Affiliation(s)
- Juan P Cardenas
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Raquel Quatrini
- Laboratory of Microbial Ecophysiology, Fundación Ciencia & Vida Santiago, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundacion Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
42
|
Bharathi M, Chellapandi P. Intergenomic evolution and metabolic cross-talk between rumen and thermophilic autotrophic methanogenic archaea. Mol Phylogenet Evol 2016; 107:293-304. [PMID: 27864137 DOI: 10.1016/j.ympev.2016.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/17/2016] [Accepted: 11/13/2016] [Indexed: 02/01/2023]
Abstract
Methanobrevibacter ruminantium M1 (MRU) is a rumen methanogenic archaean that can be able to utilize formate and CO2/H2 as growth substrates. Extensive analysis on the evolutionary genomic contexts considered herein to unravel its intergenomic relationship and metabolic adjustment acquired from the genomic content of Methanothermobacter thermautotrophicus ΔH. We demonstrated its intergenomic distance, genome function, synteny homologs and gene families, origin of replication, and methanogenesis to reveal the evolutionary relationships between Methanobrevibacter and Methanothermobacter. Comparison of the phylogenetic and metabolic markers was suggested for its archaeal metabolic core lineage that might have evolved from Methanothermobacter. Orthologous genes involved in its hydrogenotrophic methanogenesis might be acquired from intergenomic ancestry of Methanothermobacter via Methanobacterium formicicum. Formate dehydrogenase (fdhAB) coding gene cluster and carbon monoxide dehydrogenase (cooF) coding gene might have evolved from duplication events within Methanobrevibacter-Methanothermobacter lineage, and fdhCD gene cluster acquired from bacterial origins. Genome-wide metabolic survey found the existence of four novel pathways viz. l-tyrosine catabolism, mevalonate pathway II, acyl-carrier protein metabolism II and glutathione redox reactions II in MRU. Finding of these pathways suggested that MRU has shown a metabolic potential to tolerate molecular oxygen, antimicrobial metabolite biosynthesis and atypical lipid composition in cell wall, which was acquainted by metabolic cross-talk with mammalian bacterial origins. We conclude that coevolution of genomic contents between Methanobrevibacter and Methanothermobacter provides a clue to understand the metabolic adaptation of MRU in the rumen at different environmental niches.
Collapse
Affiliation(s)
- M Bharathi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
43
|
Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity. PLoS One 2016; 11:e0164846. [PMID: 27749924 PMCID: PMC5066984 DOI: 10.1371/journal.pone.0164846] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
Sulfatases cleave sulfate groups from various molecules and constitute a biologically and industrially important group of enzymes. However, the number of sulfatases whose substrate has been characterized is limited in comparison to the huge diversity of sulfated compounds, yielding functional annotations of sulfatases particularly prone to flaws and misinterpretations. In the context of the explosion of genomic data, a classification system allowing a better prediction of substrate specificity and for setting the limit of functional annotations is urgently needed for sulfatases. Here, after an overview on the diversity of sulfated compounds and on the known sulfatases, we propose a classification database, SulfAtlas (http://abims.sb-roscoff.fr/sulfatlas/), based on sequence homology and composed of four families of sulfatases. The formylglycine-dependent sulfatases, which constitute the largest family, are also divided by phylogenetic approach into 73 subfamilies, each subfamily corresponding to either a known specificity or to an uncharacterized substrate. SulfAtlas summarizes information about the different families of sulfatases. Within a family a web page displays the list of its subfamilies (when they exist) and the list of EC numbers. The family or subfamily page shows some descriptors and a table with all the UniProt accession numbers linked to the databases UniProt, ExplorEnz, and PDB.
Collapse
|
44
|
Schaeffer A, Amelung W, Hollert H, Kaestner M, Kandeler E, Kruse J, Miltner A, Ottermanns R, Pagel H, Peth S, Poll C, Rambold G, Schloter M, Schulz S, Streck T, Roß-Nickoll M. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 568:1076-1085. [PMID: 27372890 DOI: 10.1016/j.scitotenv.2016.06.161] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Soils are faced with man-made chemical stress factors, such as the input of organic or metal-containing pesticides, in combination with non-chemical stressors like soil compaction and natural disturbance like drought. Although multiple stress factors are typically co-occurring in soil ecosystems, research in soil sciences on this aspect is limited and focuses mostly on single structural or functional endpoints. A mechanistic understanding of the reaction of soils to multiple stressors is currently lacking. Based on a review of resilience theory, we introduce a new concept for research on the ability of polluted soil (xenobiotics or other chemical pollutants as one stressor) to resist further natural or anthropogenic stress and to retain its functions and structure. There is strong indication that pollution as a primary stressor will change the system reaction of soil, i.e., its resilience, stability and resistance. It can be expected that pollution affects the physiological adaption of organisms and the functional redundancy of the soil to further stress. We hypothesize that the recovery of organisms and chemical-physical properties after impact of a follow-up stressor is faster in polluted soil than in non-polluted soil, i.e., polluted soil has a higher dynamical stability (dynamical stability=1/recovery time), whereas resilience of the contaminated soil is lower compared to that of not or less contaminated soil. Thus, a polluted soil might be more prone to change into another system regime after occurrence of further stress. We highlight this issue by compiling the literature exemplarily for the effects of Cu contamination and compaction on soil functions and structure. We propose to intensify research on effects of combined stresses involving a multidisciplinary team of experts and provide suggestions for corresponding experiments. Our concept offers thus a framework for system level analysis of soils paving the way to enhance ecological theory.
Collapse
Affiliation(s)
- Andreas Schaeffer
- RWTH Aachen University, Institute for Environmental Research (Biology 5), 52074 Aachen, Germany.
| | - Wulf Amelung
- Soil Science and Soil Ecology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 13, 53115 Bonn, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research (Biology 5), 52074 Aachen, Germany
| | - Matthias Kaestner
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, 04318 Leipzig, Germany
| | - Ellen Kandeler
- Soil Science and Land Evaluation, University of Hohenheim, Emil Wolff Str. 27, 70599 Stuttgart, Germany
| | - Jens Kruse
- Soil Science and Soil Ecology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Nussallee 13, 53115 Bonn, Germany
| | - Anja Miltner
- Helmholtz-Centre for Environmental Research - UFZ, Department of Environmental Biotechnology, 04318 Leipzig, Germany
| | - Richard Ottermanns
- RWTH Aachen University, Institute for Environmental Research (Biology 5), 52074 Aachen, Germany
| | - Holger Pagel
- Soil Science and Land Evaluation, University of Hohenheim, Emil Wolff Str. 27, 70599 Stuttgart, Germany
| | - Stephan Peth
- Department of Soil Science, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Christian Poll
- Soil Science and Land Evaluation, University of Hohenheim, Emil Wolff Str. 27, 70599 Stuttgart, Germany
| | - Gerhard Rambold
- Systematic Botany and Mycology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Michael Schloter
- Helmholtz Zentrum München, Research Unit for Environmental Genomics, Ingolstädter Landstr. 1, 85758 Oberschleissheim, Germany
| | - Stefanie Schulz
- Helmholtz Zentrum München, Research Unit for Environmental Genomics, Ingolstädter Landstr. 1, 85758 Oberschleissheim, Germany
| | - Thilo Streck
- Soil Science and Land Evaluation, University of Hohenheim, Emil Wolff Str. 27, 70599 Stuttgart, Germany
| | - Martina Roß-Nickoll
- RWTH Aachen University, Institute for Environmental Research (Biology 5), 52074 Aachen, Germany
| |
Collapse
|
45
|
Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 2016; 1:16170. [PMID: 27694807 DOI: 10.1038/nmicrobiol.2016.170] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/12/2016] [Indexed: 11/09/2022]
Abstract
Methanogenesis is the primary biogenic source of methane in the atmosphere and a key contributor to climate change. The long-standing dogma that methanogenesis originated within the Euryarchaeota was recently challenged by the discovery of putative methane-metabolizing genes in members of the Bathyarchaeota, suggesting that methanogenesis may be more phylogenetically widespread than currently appreciated. Here, we present the discovery of divergent methyl-coenzyme M reductase genes in population genomes recovered from anoxic environments with high methane flux that belong to a new archaeal phylum, the Verstraetearchaeota. These archaea encode the genes required for methylotrophic methanogenesis, and may conserve energy using a mechanism similar to that proposed for the obligate H2-dependent methylotrophic Methanomassiliicoccales and recently described Candidatus 'Methanofastidiosa'. Our findings indicate that we are only beginning to understand methanogen diversity and support an ancient origin for methane metabolism in the Archaea, which is changing our understanding of the global carbon cycle.
Collapse
Affiliation(s)
- Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia.,Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul N Evans
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul D Jensen
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ben J Woodcroft
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
46
|
Physiology, Biochemistry, and Applications of F420- and Fo-Dependent Redox Reactions. Microbiol Mol Biol Rev 2016; 80:451-93. [PMID: 27122598 DOI: 10.1128/mmbr.00070-15] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
5-Deazaflavin cofactors enhance the metabolic flexibility of microorganisms by catalyzing a wide range of challenging enzymatic redox reactions. While structurally similar to riboflavin, 5-deazaflavins have distinctive and biologically useful electrochemical and photochemical properties as a result of the substitution of N-5 of the isoalloxazine ring for a carbon. 8-Hydroxy-5-deazaflavin (Fo) appears to be used for a single function: as a light-harvesting chromophore for DNA photolyases across the three domains of life. In contrast, its oligoglutamyl derivative F420 is a taxonomically restricted but functionally versatile cofactor that facilitates many low-potential two-electron redox reactions. It serves as an essential catabolic cofactor in methanogenic, sulfate-reducing, and likely methanotrophic archaea. It also transforms a wide range of exogenous substrates and endogenous metabolites in aerobic actinobacteria, for example mycobacteria and streptomycetes. In this review, we discuss the physiological roles of F420 in microorganisms and the biochemistry of the various oxidoreductases that mediate these roles. Particular focus is placed on the central roles of F420 in methanogenic archaea in processes such as substrate oxidation, C1 pathways, respiration, and oxygen detoxification. We also describe how two F420-dependent oxidoreductase superfamilies mediate many environmentally and medically important reactions in bacteria, including biosynthesis of tetracycline and pyrrolobenzodiazepine antibiotics by streptomycetes, activation of the prodrugs pretomanid and delamanid by Mycobacterium tuberculosis, and degradation of environmental contaminants such as picrate, aflatoxin, and malachite green. The biosynthesis pathways of Fo and F420 are also detailed. We conclude by considering opportunities to exploit deazaflavin-dependent processes in tuberculosis treatment, methane mitigation, bioremediation, and industrial biocatalysis.
Collapse
|
47
|
Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 2016; 350:434-8. [PMID: 26494757 DOI: 10.1126/science.aac7745] [Citation(s) in RCA: 437] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl-coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota.
Collapse
Affiliation(s)
- Paul N Evans
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Donovan H Parks
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Steven J Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Suzanne D Golding
- School of Earth Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Gene W Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia 4072, Queensland, Australia. Advanced Water Management Centre, University of Queensland, St Lucia 4072, Queensland, Australia.
| |
Collapse
|
48
|
Gupta A, Swati D. Hammerhead Ribozymes in Archaeal Genomes: A Computational Hunt. Interdiscip Sci 2016; 9:192-204. [PMID: 26758619 DOI: 10.1007/s12539-016-0141-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/26/2015] [Accepted: 01/03/2016] [Indexed: 11/28/2022]
Abstract
Hammerhead ribozymes (HHRs) are small self-cleaving RNAs, first discovered in viroids and satellite RNAs of plant viruses. They are composed of a catalytic core of conserved nucleotides flanked by three helices. More recently, hammerhead-encoding sequences have been identified in the genomes of many eukaryotes, prokaryotes and other non-viral species regulating various functions. In this study we have explored the Archaeal domain to identify HHRs using three different bioinformatics approach. Our study reveals four putative hits of HHRs type I and type II in the group Thaumarchaeota and Euryarchaeota in the Archaeal domain, one of which is the instance of HHR 1 in C. symbiosum A, already identified in a previous study. These HHRs are very similar to those previously described in terms of the conservation of their catalytic core. Based on 3-D structure analysis and free energy, these instances were concluded as putative HHRs. Our findings reveal that the catalytic core contains the conserved motifs that are essential for cleavage activity, but there are some instances in which compensatory core variations are present. However, no instances of HHRs have been found in Crenarchaeota. This study reveals a very scarce presence of HHRs in Archaea which suggests the involvement of other ncRNA elements in gene regulatory system like RNase P which are abundantly found in the Archaeal domain.
Collapse
Affiliation(s)
- Angela Gupta
- Department of Bioinformatics, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - D Swati
- Department of Bioinformatics, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India.
- Department of Physics, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
49
|
Gottlieb K, Wacher V, Sliman J, Pimentel M. Review article: inhibition of methanogenic archaea by statins as a targeted management strategy for constipation and related disorders. Aliment Pharmacol Ther 2016; 43:197-212. [PMID: 26559904 PMCID: PMC4737270 DOI: 10.1111/apt.13469] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/29/2015] [Accepted: 10/20/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Observational studies show a strong association between delayed intestinal transit and the production of methane. Experimental data suggest a direct inhibitory activity of methane on the colonic and ileal smooth muscle and a possible role for methane as a gasotransmitter. Archaea are the only confirmed biological sources of methane in nature and Methanobrevibacter smithii is the predominant methanogen in the human intestine. AIM To review the biosynthesis and composition of archaeal cell membranes, archaeal methanogenesis and the mechanism of action of statins in this context. METHODS Narrative review of the literature. RESULTS Statins can inhibit archaeal cell membrane biosynthesis without affecting bacterial numbers as demonstrated in livestock and humans. This opens the possibility of a therapeutic intervention that targets a specific aetiological factor of constipation while protecting the intestinal microbiome. While it is generally believed that statins inhibit methane production via their effect on cell membrane biosynthesis, mediated by inhibition of the HMG-CoA reductase, there is accumulating evidence for an alternative or additional mechanism of action where statins inhibit methanogenesis directly. It appears that this other mechanism may predominate when the lactone form of statins, particularly lovastatin lactone, is administered. CONCLUSIONS Clinical development appears promising. A phase 2 clinical trial is currently in progress that evaluates the effect of lovastatin lactone on methanogenesis and symptoms in patients with irritable bowel syndrome with constipation. The review concludes with an outlook for the future and subsequent work that needs to be done.
Collapse
Affiliation(s)
| | - V. Wacher
- Synthetic BiologicsInc.RockvilleMDUSA
| | - J. Sliman
- Synthetic BiologicsInc.RockvilleMDUSA
| | - M. Pimentel
- GastroenterologyCedars‐Sinai Medical CenterLos AngelesCAUSA
| |
Collapse
|
50
|
Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol Adv 2016; 34:14-29. [PMID: 26657897 DOI: 10.1016/j.biotechadv.2015.12.003] [Citation(s) in RCA: 576] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/28/2022]
Abstract
Algae and bacteria have coexisted ever since the early stages of evolution. This coevolution has revolutionized life on earth in many aspects. Algae and bacteria together influence ecosystems as varied as deep seas to lichens and represent all conceivable modes of interactions - from mutualism to parasitism. Several studies have shown that algae and bacteria synergistically affect each other's physiology and metabolism, a classic case being algae-roseobacter interaction. These interactions are ubiquitous and define the primary productivity in most ecosystems. In recent years, algae have received much attention for industrial exploitation but their interaction with bacteria is often considered a contamination during commercialization. A few recent studies have shown that bacteria not only enhance algal growth but also help in flocculation, both essential processes in algal biotechnology. Hence, there is a need to understand these interactions from an evolutionary and ecological standpoint, and integrate this understanding for industrial use. Here we reflect on the diversity of such relationships and their associated mechanisms, as well as the habitats that they mutually influence. This review also outlines the role of these interactions in key evolutionary events such as endosymbiosis, besides their ecological role in biogeochemical cycles. Finally, we focus on extending such studies on algal-bacterial interactions to various environmental and bio-technological applications.
Collapse
Affiliation(s)
- Rishiram Ramanan
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Byung-Hyuk Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Dae-Hyun Cho
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Mock Oh
- Bioenergy and Biochemical Research Center, KRIBB, Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Hee-Sik Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon 305-806, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology, Yuseong-gu, Daejeon 305-806, Republic of Korea.
| |
Collapse
|