1
|
Wang R, Remsing RC, Klein ML, Borguet E, Carnevale V. On the role of α-alumina in the origin of life: Surface-driven assembly of amino acids. SCIENCE ADVANCES 2025; 11:eadt4151. [PMID: 40215313 PMCID: PMC11988445 DOI: 10.1126/sciadv.adt4151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
We investigate the hypothesis that mineral/water interfaces played a crucial catalytic role in peptide formation by promoting the self-assembly of amino acids. Using classical molecular dynamics simulations, we demonstrate that the α-alumina(0001) surface exhibits an affinity of 4 kBT for individual glycine or GG dipeptide molecules due to hydrogen bonds. In simulations with multiple glycine molecules, surface-bound glycine enhances further adsorption, leading to the formation of long chains connected by hydrogen bonds between the carboxyl and amine groups of glycine molecules. We find that the likelihood of observing chains longer than 10 glycine units increases by at least five orders of magnitude at the surface compared to the bulk. This surface-driven assembly is primarily due to local high density and alignment with the alumina surface pattern. Together, these results propose a model for how mineral surfaces can induce configuration-specific assembly of amino acids, thereby promoting condensation reactions.
Collapse
Affiliation(s)
- Ruiyu Wang
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Center for Complex Materials from First Principles (CCM), Temple University, Philadelphia, PA 19122, USA
| | - Richard C. Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael L. Klein
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Center for Complex Materials from First Principles (CCM), Temple University, Philadelphia, PA 19122, USA
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
- Center for Complex Materials from First Principles (CCM), Temple University, Philadelphia, PA 19122, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
3
|
Tagawa S, Hatami R, Morino K, Terazawa S, Akıl C, Johnson-Finn K, Shibuya T, Fujishima K. Prebiotic Nucleoside Phosphorylation in a Simulated Deep-Sea Supercritical Carbon Dioxide-Water Two-Phase Environment. ASTROBIOLOGY 2024; 24:1151-1165. [PMID: 39560458 DOI: 10.1089/ast.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Prebiotic synthesis of complex organic molecules in water-rich environments has been a long-standing challenge. In the modern deep sea, emission of liquid CO2 has been observed in multiple locations, which indicates the existence of benthic CO2 pools. Recently, a liquid/supercritical CO2 (ScCO2) hypothesis has been proposed that a two-phase ScCO2-water environment could lead to efficient dehydration and condensation of organics. To confirm this hypothesis, we conducted a nucleoside phosphorylation reaction in a hydrothermal reactor creating ScCO2-water two-phase environment. After 120 h of uridine, cytosine, guanosine, and adenosine phosphorylation at 68.9°C, various nucleoside monophosphates (NMPs), nucleotide diphosphates, and carbamoyl nucleosides were produced. The addition of urea enhanced the overall production of phosphorylated species with 5'-NMPs, the major products that reached over 10% yield. As predicted, phosphorylation did not proceed in the fully aqueous environment without ScCO2. Further, a glass window reactor was introduced for direct observation of the two-phase environment, where the escape of water into the ScCO2 phase was observed. These results are similar to those of a wet-dry cycle experiment simulating the terrestrial hot spring environment, indicating that the presence of ScCO2 can create a comparatively dry condition in the deep sea. In addition, the high acidity present in the aqueous phase further supports nucleotide synthesis by enabling the release of orthophosphate from the hydroxyapatite mineral solving the phosphate problem. Thus, the present study highlights the potential of the unique ScCO2-water two-phase environment to drive prebiotic nucleotide synthesis and likely induce condensation reactions of various organic and inorganic compounds in the deep-sea CO2 pool on Earth and potentially other ocean worlds.
Collapse
Affiliation(s)
- Shotaro Tagawa
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ryota Hatami
- Astronomical Science Program, The Graduate University for Advanced Studies, SOKENDAI, Tokyo, Japan
- National Astronomical Observatory of Japan, Mitaka, Japan
| | - Kohei Morino
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Shohei Terazawa
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
| | - Caner Akıl
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kristin Johnson-Finn
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Takazo Shibuya
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Kosuke Fujishima
- Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan
- School of Life Science and Technology, Institute of Science Tokyo, Tokyo, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
4
|
Saha R, Poduval P, Baratam K, Nagesh J, Srivastava A. Membrane Catalyzed Formation of Nucleotide Clusters and Their Role in the Origins of Life: Insights from Molecular Simulations and Lattice Modeling. J Phys Chem B 2024; 128:3121-3132. [PMID: 38518175 DOI: 10.1021/acs.jpcb.3c08061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
One of the mysteries in studying the molecular "Origin of Life" is the emergence of RNA and RNA-based life forms, where nonenzymatic polymerization of nucleotides is a crucial hypothesis in formation of large RNA chains. The nonenzymatic polymerization can be mediated by various environmental settings, such as cycles of hydration and dehydration, temperature variations, and proximity to a variety of organizing matrices, such as clay, salt, fatty acids, lipid membrane, and mineral surface. In this work, we explore the influence of different phases of the lipid membrane toward nucleotide organization and polymerization in a simulated prebiotic setting. Our molecular simulations quantify the localization propensity of a mononucleotide, uridine monophosphate (UMP), in distinct membrane settings. We perform all-atom molecular dynamics (MD) simulations to estimate the role of the monophasic and biphasic membranes in modifying the behavior of UMPs localization and their clustering mechanism. Based on the interaction energy of mononucleotides with the membrane and their diffusion profile from our MD calculations, we developed a lattice-based model to explore the thermodynamic limits of the observations made from the MD simulations. The mathematical model substantiates our hypothesis that the lipid layers can act as unique substrates for "catalyzing" polymerization of mononucleotides due to the inherent spatiotemporal heterogeneity and phase change behavior.
Collapse
Affiliation(s)
- Rajlaxmi Saha
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata 741246, India
| | - Prathyush Poduval
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Krishnakanth Baratam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Jayashree Nagesh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
5
|
Verma A, Mateo T, Quintero Botero J, Mohankumar N, Fraccia TP. Microfluidics-Based Drying-Wetting Cycles to Investigate Phase Transitions of Small Molecules Solutions. Life (Basel) 2024; 14:472. [PMID: 38672743 PMCID: PMC11050796 DOI: 10.3390/life14040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Drying-wetting cycles play a crucial role in the investigation of the origin of life as processes that both concentrate and induce the supramolecular assembly and polymerization of biomolecular building blocks, such as nucleotides and amino acids. Here, we test different microfluidic devices to study the dehydration-hydration cycles of the aqueous solutions of small molecules, and to observe, by optical microscopy, the insurgence of phase transitions driven by self-assembly, exploiting water pervaporation through polydimethylsiloxane (PDMS). As a testbed, we investigate solutions of the chromonic dye Sunset Yellow (SSY), which self-assembles into face-to-face columnar aggregates and produces nematic and columnar liquid crystal (LC) phases as a function of concentration. We show that the LC temperature-concentration phase diagram of SSY can be obtained with a fair agreement with previous reports, that droplet hydration-dehydration can be reversibly controlled and automated, and that the simultaneous incubation of samples with different final water contents, corresponding to different phases, can be implemented. These methods can be further extended to study the assembly of diverse prebiotically relevant small molecules and to characterize their phase transitions.
Collapse
Affiliation(s)
- Ajay Verma
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Tiphaine Mateo
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
| | | | - Nishanth Mohankumar
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Tommaso P. Fraccia
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
6
|
Rodriguez LE, Altair T, Hermis NY, Jia TZ, Roche TP, Steller LH, Weber JM. Chapter 4: A Geological and Chemical Context for the Origins of Life on Early Earth. ASTROBIOLOGY 2024; 24:S76-S106. [PMID: 38498817 DOI: 10.1089/ast.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.
Collapse
Affiliation(s)
- Laura E Rodriguez
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Lunar and Planetary Institute, Universities Space Research Association, Houston, Texas, USA. (Current)
| | - Thiago Altair
- Institute of Chemistry of São Carlos, Universidade de São Paulo, São Carlos, Brazil
- Department of Chemistry, College of the Atlantic, Bar Harbor, Maine, USA. (Current)
| | - Ninos Y Hermis
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Department of Physics and Space Sciences, University of Granada, Granada Spain. (Current)
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Tyler P Roche
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Luke H Steller
- Australian Centre for Astrobiology, and School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, Australia
| | - Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
7
|
Ross D, Deamer D. Template-Directed Replication and Chiral Resolution during Wet-Dry Cycling in Hydrothermal Pools. Life (Basel) 2023; 13:1749. [PMID: 37629605 PMCID: PMC10456050 DOI: 10.3390/life13081749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The commonly supposed template-based format for RNA self-replication requires both duplex assembly and disassembly. This requisite binary provision presents a challenge to the development of a serviceable self-replication model since chemical reactions are thermochemically unidirectional. We submit that a solution to this problem lies in volcanic landmasses that engage in continuous cycles of wetting and drying and thus uniquely provide the twofold state required for self-replication. Moreover, they offer conditions that initiate chain branching, and thus furnish a path to autocatalytic self-replication. The foundations of this dual thermochemical landscape arise from the broad differences in the properties of the bulk water phase on the one hand, and the air/water interfacial regions that emerge in the evaporative stages on the other. With this reaction system as a basis and employing recognized thermochemical and kinetic parameters, we present simulations displaying the spontaneous and autocatalyzed conversion of racemic and unactivated RNA monomers to necessarily homochiral duplex structures over characteristic periods of years.
Collapse
Affiliation(s)
- David Ross
- SRI International, Menlo Park, CA 94025, USA
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Volchek VV, Kompankov NB, Sokolov MN, Abramov PA. Proton Affinity in the Chemistry of Beta-Octamolybdate: HPLC-ICP-AES, NMR and Structural Studies. Molecules 2022; 27:8368. [PMID: 36500457 PMCID: PMC9738851 DOI: 10.3390/molecules27238368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The affinity of [β-Mo8O26]4- toward different proton sources has been studied in various conditions. The proposed sites for proton coordination were highlighted with single crystal X-ray diffraction (SCXRD) analysis of (Bu4N)3[β-{Ag(py-NH2)Mo8O26]}] (1) and from analysis of reported structures. Structural rearrangement of [β-Mo8O26]4- as a direct response to protonation was studied in solution with 95Mo NMR and HPLC-ICP-AES techniques. A new type of proton transfer reaction between (Bu4N)4[β-Mo8O26] and (Bu4N)4H2[V10O28] in DMSO results in both polyoxometalates transformation into [V2Mo4O19]4-, which was confirmed by the 95Mo, 51V NMR and HPLC-ICP-AES techniques. The same type of reaction with [H4SiW12O40] in DMSO leads to metal redistribution with formation of [W2Mo4O19]2-.
Collapse
Affiliation(s)
- Victoria V. Volchek
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Nikolay B. Kompankov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Pavel A. Abramov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., 630090 Novosibirsk, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University Named after B.N. Yeltsin, 620075 Ekaterinburg, Russia
| |
Collapse
|
9
|
Verma A, Åberg-Zingmark E, Sparrman T, Mushtaq AU, Rogne P, Grundström C, Berntsson R, Sauer UH, Backman L, Nam K, Sauer-Eriksson E, Wolf-Watz M. Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human adenylate kinases. SCIENCE ADVANCES 2022; 8:eabm4089. [PMID: 36332013 PMCID: PMC9635829 DOI: 10.1126/sciadv.abm4089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Enzymatic catalysis is critically dependent on selectivity, active site architecture, and dynamics. To contribute insights into the interplay of these properties, we established an approach with NMR, crystallography, and MD simulations focused on the ubiquitous phosphotransferase adenylate kinase (AK) isolated from Odinarchaeota (OdinAK). Odinarchaeota belongs to the Asgard archaeal phylum that is believed to be the closest known ancestor to eukaryotes. We show that OdinAK is a hyperthermophilic trimer that, contrary to other AK family members, can use all NTPs for its phosphorylation reaction. Crystallographic structures of OdinAK-NTP complexes revealed a universal NTP-binding motif, while 19F NMR experiments uncovered a conserved and rate-limiting dynamic signature. As a consequence of trimerization, the active site of OdinAK was found to be lacking a critical catalytic residue and is therefore considered to be "atypical." On the basis of discovered relationships with human monomeric homologs, our findings are discussed in terms of evolution of enzymatic substrate specificity and cold adaptation.
Collapse
Affiliation(s)
- Apoorv Verma
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Tobias Sparrman
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Per Rogne
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | | | - Ronnie Berntsson
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87 Umeå, Sweden
| | - Uwe H. Sauer
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Lars Backman
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | |
Collapse
|
10
|
Saha A, Yi R, Fahrenbach AC, Wang A, Jia TZ. A Physicochemical Consideration of Prebiotic Microenvironments for Self-Assembly and Prebiotic Chemistry. Life (Basel) 2022; 12:1595. [PMID: 36295030 PMCID: PMC9604842 DOI: 10.3390/life12101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The origin of life on Earth required myriads of chemical and physical processes. These include the formation of the planet and its geological structures, the formation of the first primitive chemicals, reaction, and assembly of these primitive chemicals to form more complex or functional products and assemblies, and finally the formation of the first cells (or protocells) on early Earth, which eventually evolved into modern cells. Each of these processes presumably occurred within specific prebiotic reaction environments, which could have been diverse in physical and chemical properties. While there are resources that describe prebiotically plausible environments or nutrient availability, here, we attempt to aggregate the literature for the various physicochemical properties of different prebiotic reaction microenvironments on early Earth. We introduce a handful of properties that can be quantified through physical or chemical techniques. The values for these physicochemical properties, if they are known, are then presented for each reaction environment, giving the reader a sense of the environmental variability of such properties. Such a resource may be useful for prebiotic chemists to understand the range of conditions in each reaction environment, or to select the medium most applicable for their targeted reaction of interest for exploratory studies.
Collapse
Affiliation(s)
- Arpita Saha
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Amity Institute of Applied Sciences, Amity University, Kolkata 700135, India
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Albert C. Fahrenbach
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tony Z. Jia
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
11
|
Dagar S, Sarkar S, Rajamani S. Porphyrin in prebiotic catalysis: Ascertaining a route for the emergence of early metalloporphyrins. Chembiochem 2022; 23:e202200013. [PMID: 35233914 DOI: 10.1002/cbic.202200013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/15/2022] [Indexed: 11/09/2022]
Abstract
Metal ions are known to catalyze certain prebiotic reactions. However, the transition from metal ions to extant metalloenzymes remains unclear. Porphyrins are found ubiquitously in the catalytic core of many ancient metalloenzymes. In this study, we evaluated the influence of porphyrin-based organic scaffold, on the catalysis, emergence and putative molecular evolution of prebiotic metalloporphyrins. We studied the effect of porphyrins on the transition metal ion-mediated oxidation of hydroquinone (HQ). We report a change in the catalytic activity of the metal ions in the presence of porphyrin. This was observed to be facilitated by the coordination between metal ions and porphyrins or by the formation of non-coordinated complexes. The metal-porphyrin complexes also oxidized NADH, underscoring its versatility at oxidizing more than one substrate. Our study highlights the selective advantage that some of the metal ions would have had in the presence of porphyrin, underscoring their role in shaping the evolution of protometalloenzymes.
Collapse
Affiliation(s)
- Shikha Dagar
- IISER Pune: Indian Institute of Science Education Research Pune, Biology, IISER Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Pune, INDIA
| | - Susovan Sarkar
- IISER Pune: Indian Institute of Science Education Research Pune, Biology, Iiser Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Pune, INDIA
| | - Sudha Rajamani
- IISER Pune: Indian Institute of Science Education Research Pune, Biology, Dr. Homi Bhaba Rd, Pashan, Near NCL, 411008, Pune, INDIA
| |
Collapse
|
12
|
Furze JN, Mayad EH. Harmonics, evolutionary generators, DANCE, and HEAR-functional dimensions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64181-64190. [PMID: 33846914 DOI: 10.1007/s11356-021-13159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Evolution of the major kingdoms of life has spanned over the last 4 billion years on Earth. Studies of the process comprise different fields of study with alternative perspectives. This paper focuses on mathematic unification of the subject area; enriching an engineering based structure to advance our understanding of pathways which lead to distinct constructs in life, furthering geographic bordering processes with biological context. Application of logistic regression requires partitioning of variance within cellular and molecular systems; use of higher mathematic technique (multi-objective genetic algorithm) generates variance within the different scales of evolution, the result of which is analogous with the Fisher equation model of gene distribution within populations. Laboratory and field studies were integrated to illustrate emergence in evolutionary processes in the terrestrial/soil environment. Nematological field and laboratory trials validate the existence of triangular relationships within biological communities; further harmonic constants between interacting species may be found with emergent consequence. We distinguish different strategical groupings in the soil community, with the core groupings recognized with Meloidogyne spp. illustrating positive (emergent) growth; Radopholus similis (neutral growth), and Helicotylenchus pseudorobustus (negative growth). The patterns of emergent systems are shown in the extremes of Morocco's dynamic soil environment. Fuzzy classification methods: Mamdani, Takugi-Sugeno-Kang; additional novel DANCE (Differential Algorithmic Network Centered Emergence) and functional expressions HEAR (Harmonic Evolutionary Algorithmic Resilience), are recommended to give a basis for development of constructs covering different categories of life.
Collapse
Affiliation(s)
- James Nicholas Furze
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Sciences of Agadir, Department of Biology, Ibn Zohr University, BP 8106, Agadir, 80000, Morocco.
- Control and Systems Engineering Department, University of Technology, Alsinaah Street, P.O. Box: 19006, Baghdad, 10066, Iraq.
- Royal Geographical Society with the Institute of British Geographers, 1 Kensington Gore, London, SW7 2AR, UK.
| | - El Hassan Mayad
- Control and Systems Engineering Department, University of Technology, Alsinaah Street, P.O. Box: 19006, Baghdad, 10066, Iraq
| |
Collapse
|
13
|
Jukić I, Požar M, Lovrinčević B, Perera A. Universal features in the lifetime distribution of clusters in hydrogen-bonding liquids. Phys Chem Chem Phys 2021; 23:19537-19546. [PMID: 34524299 DOI: 10.1039/d1cp02027g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen-bonding liquids, typically water and alcohols, are known to form labile structures (network, chains, etc.); hence, the lifetime of these structures is an important microscopic parameter, which can be calculated via computer simulations. Since these cluster entities are mostly statistical in nature, one would expect that, in the short-timescale regime, their lifetime distribution would be a broad Gaussian-like function of time, with a single maximum representing their mean lifetime, and be weakly dependent on criteria such as the bonding distance and angle, much similar to non-hydrogen-bonding simple liquids, while the long-timescale regime is known to have some power law dependence. Unexpectedly, all the hydrogen-bonding liquids studied herein, namely water and alcohols, display three highly hierarchical specific lifetimes, in the sub-picosecond range 0-0.5 ps. The dominant lifetime depends very strongly on the bonding-distance criterion and is related to hydrogen-bonded pairs. This mode is absent in non-H-bonding simple liquids. The secondary and tertiary mean lifetimes are related to clusters and are nearly independent of the bonding criterion. Of these two lifetimes, only the first one can be related to that of simple liquids, which poses the question of the nature of the third lifetime. The study of alcohols reveals that this third lifetime is related to the topology of the H-bonded clusters and that its distribution may also be affected by the alkyl tail surrounding the "bath". This study shows that hydrogen-bonding liquids have a universal hierarchy of hydrogen-bonding lifetimes with a timescale regularity across very different types, and which depend on the topology of the cluster structures.
Collapse
Affiliation(s)
- Ivo Jukić
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252, Paris cedex 05, France.
- University of Split, Faculty of Science, Ruđera Boškovića 33, 21000, Split, Croatia.
| | - Martina Požar
- University of Split, Faculty of Science, Ruđera Boškovića 33, 21000, Split, Croatia.
| | - Bernarda Lovrinčević
- University of Split, Faculty of Science, Ruđera Boškovića 33, 21000, Split, Croatia.
| | - Aurélien Perera
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600), 4 Place Jussieu, F75252, Paris cedex 05, France.
| |
Collapse
|
14
|
Gaylor MO, Miro P, Vlaisavljevich B, Kondage AAS, Barge LM, Omran A, Videau P, Swenson VA, Leinen LJ, Fitch NW, Cole KL, Stone C, Drummond SM, Rageth K, Dewitt LR, González Henao S, Karanauskus V. Plausible Emergence and Self Assembly of a Primitive Phospholipid from Reduced Phosphorus on the Primordial Earth. ORIGINS LIFE EVOL B 2021; 51:185-213. [PMID: 34279769 DOI: 10.1007/s11084-021-09613-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
How life arose on the primitive Earth is one of the biggest questions in science. Biomolecular emergence scenarios have proliferated in the literature but accounting for the ubiquity of oxidized (+ 5) phosphate (PO43-) in extant biochemistries has been challenging due to the dearth of phosphate and molecular oxygen on the primordial Earth. A compelling body of work suggests that exogenous schreibersite ((Fe,Ni)3P) was delivered to Earth via meteorite impacts during the Heavy Bombardment (ca. 4.1-3.8 Gya) and there converted to reduced P oxyanions (e.g., phosphite (HPO32-) and hypophosphite (H2PO2-)) and phosphonates. Inspired by this idea, we review the relevant literature to deduce a plausible reduced phospholipid analog of modern phosphatidylcholines that could have emerged in a primordial hydrothermal setting. A shallow alkaline lacustrine basin underlain by active hydrothermal fissures and meteoritic schreibersite-, clay-, and metal-enriched sediments is envisioned. The water column is laden with known and putative primordial hydrothermal reagents. Small system dimensions and thermal- and UV-driven evaporation further concentrate chemical precursors. We hypothesize that a reduced phospholipid arises from Fischer-Tropsch-type (FTT) production of a C8 alkanoic acid, which condenses with an organophosphinate (derived from schreibersite corrosion to hypophosphite with subsequent methylation/oxidation), to yield a reduced protophospholipid. This then condenses with an α-amino nitrile (derived from Strecker-type reactions) to form the polar head. Preliminary modeling results indicate that reduced phospholipids do not aggregate rapidly; however, single layer micelles are stable up to aggregates with approximately 100 molecules.
Collapse
Affiliation(s)
- Michael O Gaylor
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA.
| | - Pere Miro
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | - Bess Vlaisavljevich
- Department of Chemistry, University of South Dakota, Vermillion, SD, 57069, USA
| | | | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA
| | - Arthur Omran
- School of Geosciences, University of South Florida, Tampa, FL, 33620, USA
- Department of Chemistry, University of North Florida, Jacksonville, FL, 32224, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
- Bayer Crop Science, Chesterfield, MO, 63017, USA
| | - Vaille A Swenson
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lucas J Leinen
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Nathaniel W Fitch
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Krista L Cole
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Chris Stone
- Department of Biology, Southern Oregon University, Ashland, OR, 97520, USA
| | - Samuel M Drummond
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Kayli Rageth
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | - Lillian R Dewitt
- Department of Chemistry, Dakota State University, Madison, SD, 57042, USA
| | | | | |
Collapse
|
15
|
Clark BC, Kolb VM, Steele A, House CH, Lanza NL, Gasda PJ, VanBommel SJ, Newsom HE, Martínez-Frías J. Origin of Life on Mars: Suitability and Opportunities. Life (Basel) 2021; 11:539. [PMID: 34207658 PMCID: PMC8227854 DOI: 10.3390/life11060539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
Although the habitability of early Mars is now well established, its suitability for conditions favorable to an independent origin of life (OoL) has been less certain. With continued exploration, evidence has mounted for a widespread diversity of physical and chemical conditions on Mars that mimic those variously hypothesized as settings in which life first arose on Earth. Mars has also provided water, energy sources, CHNOPS elements, critical catalytic transition metal elements, as well as B, Mg, Ca, Na and K, all of which are elements associated with life as we know it. With its highly favorable sulfur abundance and land/ocean ratio, early wet Mars remains a prime candidate for its own OoL, in many respects superior to Earth. The relatively well-preserved ancient surface of planet Mars helps inform the range of possible analogous conditions during the now-obliterated history of early Earth. Continued exploration of Mars also contributes to the understanding of the opportunities for settings enabling an OoL on exoplanets. Favoring geochemical sediment samples for eventual return to Earth will enhance assessments of the likelihood of a Martian OoL.
Collapse
Affiliation(s)
| | - Vera M. Kolb
- Department of Chemistry, University of Wisconsin—Parkside, Kenosha, WI 53141, USA;
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA;
| | - Christopher H. House
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, State College, PA 16807, USA;
| | - Nina L. Lanza
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Patrick J. Gasda
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (N.L.L.); (P.J.G.)
| | - Scott J. VanBommel
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Horton E. Newsom
- Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 88033, USA;
| | | |
Collapse
|
16
|
Russell MJ. The "Water Problem"( sic), the Illusory Pond and Life's Submarine Emergence-A Review. Life (Basel) 2021; 11:429. [PMID: 34068713 PMCID: PMC8151828 DOI: 10.3390/life11050429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 01/10/2023] Open
Abstract
The assumption that there was a "water problem" at the emergence of life-that the Hadean Ocean was simply too wet and salty for life to have emerged in it-is here subjected to geological and experimental reality checks. The "warm little pond" that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative "Icelands" or "Hawaiis", nor even an "Ontong Java" then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life's womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life's emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean-specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound.
Collapse
Affiliation(s)
- Michael J Russell
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
17
|
Deamer D. Where Did Life Begin? Testing Ideas in Prebiotic Analogue Conditions. Life (Basel) 2021; 11:life11020134. [PMID: 33578711 PMCID: PMC7916457 DOI: 10.3390/life11020134] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 02/07/2021] [Indexed: 11/17/2022] Open
Abstract
Publications related to the origin of life are mostly products of laboratory research and have the tacit assumption that the same reactions would have been possible on the early Earth some 4 billion years ago. Can this assumption be tested? We cannot go back in time, but we are able to venture out of the laboratory and perform experiments in natural conditions that are presumably analogous to the prebiotic environment. This brief review describes initial attempts to undertake such studies and some of the lessons we have learned.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95060, USA
| |
Collapse
|
18
|
Abstract
Mechanical forces and mechanical energy are prevalent in living cells. This may be because mechanical forces and mechanical energy preceded chemical energy at life’s origins. Mechanical energy is more readily available in nonliving systems than the various forms of chemical energy used by living systems. Two possible prebiotic environments that might have provided mechanical energy are hot pools that experience wet/dry cycles and mica sheets as they move, open and shut, as heat pumps or in response to water movements.
Collapse
|
19
|
Ponce CP, Kloprogge JT. Urea-Assisted Synthesis and Characterization of Saponite with Different Octahedral (Mg, Zn, Ni, Co) and Tetrahedral Metals (Al, Ga, B), a Review. Life (Basel) 2020; 10:life10090168. [PMID: 32872173 PMCID: PMC7555627 DOI: 10.3390/life10090168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022] Open
Abstract
Clay minerals surfaces potentially play a role in prebiotic synthesis through adsorption of organic monomers that give rise to highly concentrated systems; facilitate condensation and polymerization reactions, protection of early biomolecules from hydrolysis and photolysis, and surface-templating for specific adsorption and synthesis of organic molecules. This review presents processes of clay formation using saponite as a model clay mineral, since it has been shown to catalyze organic reactions, is easy to synthesize in large and pure form, and has tunable properties. In particular, a method involving urea is presented as a reasonable analog of natural processes. The method involves a two-step process: (1) formation of the precursor aluminosilicate gel and (2) hydrolysis of a divalent metal (Mg, Ni, Co, and Zn) by the slow release of ammonia from urea decomposition. The aluminosilicate gels in the first step forms a 4-fold-coordinated Al3+ similar to what is found in nature such as in volcanic glass. The use of urea, a compound figuring in many prebiotic model reactions, circumvents the formation of undesirable brucite, Mg(OH)2, in the final product, by slowly releasing ammonia thereby controlling the hydrolysis of magnesium. In addition, the substitution of B and Ga for Si and Al in saponite is also described. The saponite products from this urea-assisted synthesis were tested as catalysts for several organic reactions, including Friedel–Crafts alkylation, cracking, and isomerization reactions.
Collapse
Affiliation(s)
- Concepcion P. Ponce
- Department of Chemistry, College of Arts and Sciences, University of the Philippines, Miag-ao, Iloilo 5023, Philippines;
| | - J. Theo Kloprogge
- Department of Chemistry, College of Arts and Sciences, University of the Philippines, Miag-ao, Iloilo 5023, Philippines;
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Correspondence:
| |
Collapse
|
20
|
Dagar S, Sarkar S, Rajamani S. Geochemical influences on nonenzymatic oligomerization of prebiotically relevant cyclic nucleotides. RNA (NEW YORK, N.Y.) 2020; 26:756-769. [PMID: 32205323 PMCID: PMC7266160 DOI: 10.1261/rna.074302.119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/19/2020] [Indexed: 06/01/2023]
Abstract
The spontaneous emergence of long RNA molecules on the early Earth, a phenomenon central to the RNA World hypothesis, continues to remain an enigma in the field of origins of life. Few studies have looked at the nonenzymatic oligomerization of cyclic mononucleotides under neutral to alkaline conditions, albeit in fully dehydrated state. In this study, we systematically investigated the oligomerization of cyclic nucleotides under prebiotically relevant conditions, wherein starting reactants were subjected to repeated dehydration-rehydration (DH-RH) regimes. DH-RH conditions, a recurring geological theme that was prevalent on prebiotic Earth, are driven by naturally occurring processes including diurnal cycles and tidal pool activity. These conditions have been shown to facilitate uphill oligomerization reactions. The polymerization of 2'-3' and 3'-5' cyclic nucleotides of a purine (adenosine) and a pyrimidine (cytidine) was investigated. Additionally, the effect of amphiphiles was also evaluated. Furthermore, to discern the effect of "realistic" conditions on this process, the reactions were also performed using a hot spring water sample from a candidate early Earth environment. Our study showed that the oligomerization of cyclic nucleotides under DH-RH conditions resulted in intact informational oligomers. Amphiphiles increased the stability of both the starting monomers and the resultant oligomers in selected reactions. In the hot spring reactions, both the oligomerization of nucleotides and the back hydrolysis of the resultant oligomers were pronounced. Altogether, this study demonstrates how nonenzymatic oligomerization of cyclic nucleotides, under both laboratory-simulated prebiotic conditions and in a candidate early Earth environment, could have resulted in RNA oligomers of a putative RNA World.
Collapse
Affiliation(s)
- Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
21
|
Longo A, Damer B. Factoring Origin of Life Hypotheses into the Search for Life in the Solar System and Beyond. Life (Basel) 2020; 10:E52. [PMID: 32349245 PMCID: PMC7281141 DOI: 10.3390/life10050052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/22/2020] [Indexed: 01/13/2023] Open
Abstract
Two widely-cited alternative hypotheses propose geological localities and biochemical mechanisms for life's origins. The first states that chemical energy available in submarine hydrothermal vents supported the formation of organic compounds and initiated primitive metabolic pathways which became incorporated in the earliest cells; the second proposes that protocells self-assembled from exogenous and geothermally-delivered monomers in freshwater hot springs. These alternative hypotheses are relevant to the fossil record of early life on Earth, and can be factored into the search for life elsewhere in the Solar System. This review summarizes the evidence supporting and challenging these hypotheses, and considers their implications for the search for life on various habitable worlds. It will discuss the relative probability that life could have emerged in environments on early Mars, on the icy moons of Jupiter and Saturn, and also the degree to which prebiotic chemistry could have advanced on Titan. These environments will be compared to ancient and modern terrestrial analogs to assess their habitability and biopreservation potential. Origins of life approaches can guide the biosignature detection strategies of the next generation of planetary science missions, which could in turn advance one or both of the leading alternative abiogenesis hypotheses.
Collapse
Affiliation(s)
- Alex Longo
- National Aeronautics and Space Administration Headquarters, Washington, DC 20546, USA
- Department of Geology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA or
- Digital Space Research, Boulder Creek, CA 95006, USA
| |
Collapse
|
22
|
Damer B, Deamer D. The Hot Spring Hypothesis for an Origin of Life. ASTROBIOLOGY 2020; 20:429-452. [PMID: 31841362 PMCID: PMC7133448 DOI: 10.1089/ast.2019.2045] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/23/2019] [Indexed: 05/05/2023]
Abstract
We present a testable hypothesis related to an origin of life on land in which fluctuating volcanic hot spring pools play a central role. The hypothesis is based on experimental evidence that lipid-encapsulated polymers can be synthesized by cycles of hydration and dehydration to form protocells. Drawing on metaphors from the bootstrapping of a simple computer operating system, we show how protocells cycling through wet, dry, and moist phases will subject polymers to combinatorial selection and draw structural and catalytic functions out of initially random sequences, including structural stabilization, pore formation, and primitive metabolic activity. We propose that protocells aggregating into a hydrogel in the intermediate moist phase of wet-dry cycles represent a primitive progenote system. Progenote populations can undergo selection and distribution, construct niches in new environments, and enable a sharing network effect that can collectively evolve them into the first microbial communities. Laboratory and field experiments testing the first steps of the scenario are summarized. The scenario is then placed in a geological setting on the early Earth to suggest a plausible pathway from life's origin in chemically optimal freshwater hot spring pools to the emergence of microbial communities tolerant to more extreme conditions in dilute lakes and salty conditions in marine environments. A continuity is observed for biogenesis beginning with simple protocell aggregates, through the transitional form of the progenote, to robust microbial mats that leave the fossil imprints of stromatolites so representative in the rock record. A roadmap to future testing of the hypothesis is presented. We compare the oceanic vent with land-based pool scenarios for an origin of life and explore their implications for subsequent evolution to multicellular life such as plants. We conclude by utilizing the hypothesis to posit where life might also have emerged in habitats such as Mars or Saturn's icy moon Enceladus. "To postulate one fortuitously catalyzed reaction, perhaps catalyzed by a metal ion, might be reasonable, but to postulate a suite of them is to appeal to magic." -Leslie Orgel.
Collapse
Affiliation(s)
- Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| |
Collapse
|
23
|
Mechanical Energy before Chemical Energy at the Origins of Life? SCI 2020. [DOI: 10.3390/sci2020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mechanical forces and mechanical energy are prevalent in living cells. This may be because mechanical forces and mechanical energy preceded chemical energy at life’s origins. Mechanical energy is more readily available in non-living systems than the various forms of chemical energy used by living systems. Two possible prebiotic environments that might have provided mechanical energy are hot pools that experience wet/dry cycles and mica sheets as they move, open and shut, as heat pumps or in response to water movements.
Collapse
|
24
|
Abstract
Mechanical forces and mechanical energy are prevalent in living cells. This may be because mechanical forces and mechanical energy preceded chemical energy at life’s origins. Mechanical energy is more readily available in non-living systems than the various forms of chemical energy used by living systems. Two possible prebiotic environments that might have provided mechanical energy are hot pools that experience wet/dry cycles and mica sheets as they move, open and shut, as heat pumps or in response to water movements.
Collapse
|
25
|
Deamer D, Damer B, Kompanichenko V. Hydrothermal Chemistry and the Origin of Cellular Life. ASTROBIOLOGY 2019; 19:1523-1537. [PMID: 31596608 DOI: 10.1089/ast.2018.1979] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two processes required for life's origin are condensation reactions that produce essential biopolymers by a nonenzymatic reaction, and self-assembly of membranous compartments that encapsulate the polymers into populations of protocells. Because life today thrives not just in the temperate ocean and lakes but also in extreme conditions of temperature, salinity, and pH, there is a general assumption that any form of liquid water would be sufficient to support the origin of life as long as there are sources of chemical energy and simple organic compounds. We argue here that the first forms of life would be physically and chemically fragile and would be strongly affected by ionic solutes and pH. A hypothesis emerges from this statement that hot springs associated with volcanic land masses have an ionic composition more conducive to self-assembly and polymerization than seawater. Here we have compared the ionic solutes of seawater with those of terrestrial hot springs. We then describe preliminary experimental results that show how the hypothesis can be tested in a prebiotic analog environment.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| | - Bruce Damer
- Department of Biomolecular Engineering, University of California, Santa Cruz, California
| | | |
Collapse
|
26
|
Mechanical Energy before Chemical Energy at the Origins of Life? SCI 2019. [DOI: 10.3390/sci1020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Forces and mechanical energy are prevalent in living cells. This may be because forces and mechanical energy preceded chemical energy at life’s origins. Mechanical energy is more readily available in non-living systems than the various other forms of energy used by living systems. Two possible prebiotic environments that might have provided mechanical energy are hot pools that experience wet/dry cycles and mica sheets as they move, open and shut, as heat pumps or in response to water movements.
Collapse
|
27
|
Kompanichenko VN. Exploring the Kamchatka Geothermal Region in the Context of Life's Beginning. Life (Basel) 2019; 9:E41. [PMID: 31100955 PMCID: PMC6616967 DOI: 10.3390/life9020041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 11/17/2022] Open
Abstract
This article is a brief review of research in the Kamchatka geothermal region initiated by David Deamer and the author in 1999. Results obtained over the last 20 years are described, including a seminal experiment in which biologically important organic compounds were dispersed in a hot spring to determine their fate. Other investigations include ionic and organic composition of hydrothermal water, the source of hydrothermally generated oil, and pressure-temperature oscillations in hydrothermal systems. The relation of these results to research on the origin of life is discussed.
Collapse
|
28
|
Rimmer PB, Shorttle O. Origin of Life's Building Blocks in Carbon- and Nitrogen-Rich Surface Hydrothermal Vents. Life (Basel) 2019; 9:E12. [PMID: 30682803 PMCID: PMC6463091 DOI: 10.3390/life9010012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 11/16/2022] Open
Abstract
There are two dominant and contrasting classes of origin of life scenarios: those predicting that life emerged in submarine hydrothermal systems, where chemical disequilibrium can provide an energy source for nascent life; and those predicting that life emerged within subaerial environments, where UV catalysis of reactions may occur to form the building blocks of life. Here, we describe a prebiotically plausible environment that draws on the strengths of both scenarios: surface hydrothermal vents. We show how key feedstock molecules for prebiotic chemistry can be produced in abundance in shallow and surficial hydrothermal systems. We calculate the chemistry of volcanic gases feeding these vents over a range of pressures and basalt C/N/O contents. If ultra-reducing carbon-rich nitrogen-rich gases interact with subsurface water at a volcanic vent they result in 10 - 3 ⁻ 1 M concentrations of diacetylene (C₄H₂), acetylene (C₂H₂), cyanoacetylene (HC₃N), hydrogen cyanide (HCN), bisulfite (likely in the form of salts containing HSO₃-), hydrogen sulfide (HS-) and soluble iron in vent water. One key feedstock molecule, cyanamide (CH₂N₂), is not formed in significant quantities within this scenario, suggesting that it may need to be delivered exogenously, or formed from hydrogen cyanide either via organometallic compounds, or by some as yet-unknown chemical synthesis. Given the likely ubiquity of surface hydrothermal vents on young, hot, terrestrial planets, these results identify a prebiotically plausible local geochemical environment, which is also amenable to future lab-based simulation.
Collapse
Affiliation(s)
- Paul B Rimmer
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
- Cavendish Astrophysics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK.
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge CB2 0QH, UK.
| | - Oliver Shorttle
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK.
- Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK.
| |
Collapse
|
29
|
Tesoro S, Ahnert SE, Leonard AS. Determinism and boundedness of self-assembling structures. Phys Rev E 2018; 98:022113. [PMID: 30253500 DOI: 10.1103/physreve.98.022113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Indexed: 06/08/2023]
Abstract
Self-assembly processes are widespread in nature and lie at the heart of many biological and physical phenomena. The characteristics of self-assembly building blocks determine the structures that they form. Two crucial properties are the determinism and boundedness of the self-assembly. The former tells us whether the same set of building blocks always generates the same structure, and the latter whether it grows indefinitely. These properties are highly relevant in the context of protein structures, as the difference between deterministic protein self-assembly and nondeterministic protein aggregation is central to a number of diseases. Here we introduce a graph theoretical approach that can determine the determinism and boundedness for several geometries and dimensionalities of self-assembly more accurately and quickly than conventional methods. We apply this methodology to a previously studied lattice self-assembly model and discuss generalizations to a wide range of other self-assembling systems.
Collapse
Affiliation(s)
- S Tesoro
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
| | - S E Ahnert
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| | - A S Leonard
- Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, United Kingdom
- Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom
| |
Collapse
|
30
|
Liu K, Ren X, Sun J, Zou Q, Yan X. Primitive Photosynthetic Architectures Based on Self-Organization and Chemical Evolution of Amino Acids and Metal Ions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1701001. [PMID: 29938179 PMCID: PMC6010005 DOI: 10.1002/advs.201701001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/15/2018] [Indexed: 05/23/2023]
Abstract
The emergence of light-energy-utilizing metabolism is likely to be a critical milestone in prebiotic chemistry and the origin of life. However, how the primitive pigment is spontaneously generated still remains unknown. Herein, a primitive pigment model based on adaptive self-organization of amino acids (Cystine, Cys) and metal ions (zinc ion, Zn2+) followed by chemical evolution under hydrothermal conditions is developed. The resulting hybrid microspheres are composed of radially aligned cystine/zinc (Cys/Zn) assembly decorated with carbonate-doped zinc sulfide (C-ZnS) nanocrystals. The part of C-ZnS can work as a light-harvesting antenna to capture ultraviolet and visible light, and use it in various photochemical reactions, including hydrogen (H2) evolution, carbon dioxide (CO2) photoreduction, and reduction of nicotinamide adenine dinucleotide (NAD+) to nicotinamide adenine dinucleotide hydride (NADH). Additionally, guest molecules (e.g., glutamate dehydrogenase, GDH) can be encapsulated within the hierarchical Cys/Zn framework, which facilitates sustainable photoenzymatic synthesis of glutamate. This study helps deepen insight into the emergent functionality (conversion of light energy) and complexity (hierarchical architecture) from interaction and reaction of prebiotic molecules. The primitive pigment model is also promising to work as an artificial photosynthetic microreactor.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
| | - Xiaokang Ren
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
| | - Jianxuan Sun
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
| | - Qianli Zou
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
| | - Xuehai Yan
- State Key Laboratory of Biochemical EngineeringInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
- University of Chinese Academy of Sciences100049BeijingChina
- Center for MesoscienceInstitute of Process EngineeringChinese Academy of Sciences100190BeijingChina
| |
Collapse
|
31
|
Milshteyn D, Damer B, Havig J, Deamer D. Amphiphilic Compounds Assemble into Membranous Vesicles in Hydrothermal Hot Spring Water but Not in Seawater. Life (Basel) 2018; 8:life8020011. [PMID: 29748464 PMCID: PMC6027054 DOI: 10.3390/life8020011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 12/28/2022] Open
Abstract
There is a general assumption that amphiphilic compounds, such as fatty acids, readily form membranous vesicles when dispersed in aqueous phases. However, from earlier studies, it is known that vesicle stability depends strongly on pH, temperature, chain length, ionic concentration and the presence or absence of divalent cations. To test how robust simple amphiphilic compounds are in terms of their ability to assemble into stable vesicles, we chose to study 10- and 12-carbon monocarboxylic acids and a mixture of the latter with its monoglyceride. These were dispersed in hydrothermal water samples drawn directly from hot springs in Yellowstone National Park at two pH ranges, and the results were compared with sea water under the same conditions. We found that the pure acids could form membranous vesicles in hydrothermal pool water, but that a mixture of dodecanoic acid and glycerol monododecanoate was less temperature-sensitive and assembled into relatively stable membranes at both acidic and alkaline pH ranges. Furthermore, the vesicles were able to encapsulate nucleic acids and pyranine, a fluorescent anionic dye. None of the amphiphiles that were tested formed stable vesicles in sea water because the high ionic concentrations disrupted membrane stability.
Collapse
Affiliation(s)
- Daniel Milshteyn
- Department of Biomolecular Engineering, University of California Santa, Cruz, CA 95064, USA.
| | - Bruce Damer
- Department of Biomolecular Engineering, University of California Santa, Cruz, CA 95064, USA.
| | - Jeff Havig
- Department of Earth Sciences, University of Minnesota Minneapolis, Minneapolis, MN 55455, USA.
| | - David Deamer
- Department of Biomolecular Engineering, University of California Santa, Cruz, CA 95064, USA.
| |
Collapse
|
32
|
Becker S, Schneider C, Okamura H, Crisp A, Amatov T, Dejmek M, Carell T. Wet-dry cycles enable the parallel origin of canonical and non-canonical nucleosides by continuous synthesis. Nat Commun 2018; 9:163. [PMID: 29323115 PMCID: PMC5765019 DOI: 10.1038/s41467-017-02639-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/14/2017] [Indexed: 12/28/2022] Open
Abstract
The molecules of life were created by a continuous physicochemical process on an early Earth. In this hadean environment, chemical transformations were driven by fluctuations of the naturally given physical parameters established for example by wet-dry cycles. These conditions might have allowed for the formation of (self)-replicating RNA as the fundamental biopolymer during chemical evolution. The question of how a complex multistep chemical synthesis of RNA building blocks was possible in such an environment remains unanswered. Here we report that geothermal fields could provide the right setup for establishing wet-dry cycles that allow for the synthesis of RNA nucleosides by continuous synthesis. Our model provides both the canonical and many ubiquitous non-canonical purine nucleosides in parallel by simple changes of physical parameters such as temperature, pH and concentration. The data show that modified nucleosides were potentially formed as competitor molecules. They could in this sense be considered as molecular fossils.
Collapse
Affiliation(s)
- Sidney Becker
- Center for Integrated Protein Science Munich CiPSM at the Department of Chemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Christina Schneider
- Center for Integrated Protein Science Munich CiPSM at the Department of Chemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Hidenori Okamura
- Center for Integrated Protein Science Munich CiPSM at the Department of Chemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Antony Crisp
- Center for Integrated Protein Science Munich CiPSM at the Department of Chemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Tynchtyk Amatov
- Center for Integrated Protein Science Munich CiPSM at the Department of Chemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry ASCR, 16610, Prague 6, Czech Republic
| | - Thomas Carell
- Center for Integrated Protein Science Munich CiPSM at the Department of Chemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany.
| |
Collapse
|
33
|
Dibrova DV, Shalaeva DN, Galperin MY, Mulkidjanian AY. Emergence of cytochrome bc complexes in the context of photosynthesis. PHYSIOLOGIA PLANTARUM 2017; 161:150-170. [PMID: 28493482 PMCID: PMC5600118 DOI: 10.1111/ppl.12586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/22/2017] [Accepted: 05/04/2017] [Indexed: 05/18/2023]
Abstract
The cytochrome bc (cyt bc) complexes are involved in Q-cycling; they oxidize membrane quinols by high-potential electron acceptors, such as cytochromes or plastocyanin, and generate transmembrane proton gradient. In several prokaryotic lineages, and also in plant chloroplasts, the catalytic core of the cyt bc complexes is built of a four-helical cytochrome b (cyt b) that contains three hemes, a three-helical subunit IV, and an iron-sulfur Rieske protein (cytochrome b6 f-type complexes). In other prokaryotic lineages, and also in mitochondria, the cyt b subunit is fused with subunit IV, yielding a seven- or eight-helical cyt b with only two hemes (cyt bc1 -type complexes). Here we present an updated phylogenomic analysis of the cyt b subunits of cyt bc complexes. This analysis provides further support to our earlier suggestion that (1) the ancestral version of cyt bc complex contained a small four-helical cyt b with three hemes similar to the plant cytochrome b6 and (2) independent fusion events led to the formation of large cyts b in several lineages. In the search for a primordial function for the ancestral cyt bc complex, we address the intimate connection between the cyt bc complexes and photosynthesis. Indeed, the Q-cycle turnover in the cyt bc complexes demands high-potential electron acceptors. Before the Great Oxygenation Event, the biosphere had been highly reduced, so high-potential electron acceptors could only be generated upon light-driven charge separation. It appears that an ancestral cyt bc complex capable of Q-cycling has emerged in conjunction with the (bacterio)chlorophyll-based photosynthetic systems that continuously generated electron vacancies at the oxidized (bacterio)chlorophyll molecules.
Collapse
Affiliation(s)
- Daria V. Dibrova
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
| | - Daria N. Shalaeva
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of MedicineNational Institutes of HealthBethesdaMD20894USA
| | - Armen Y. Mulkidjanian
- A.N. Belozersky Institute of Physico‐Chemical BiologyLomonosov Moscow State UniversityMoscow119991Russia
- School of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscow119991Russia
- School of PhysicsUniversity of OsnabrueckOsnabrueckD‐49069Germany
| |
Collapse
|
34
|
Deamer D. The Role of Lipid Membranes in Life's Origin. Life (Basel) 2017; 7:life7010005. [PMID: 28106741 PMCID: PMC5370405 DOI: 10.3390/life7010005] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/23/2023] Open
Abstract
At some point in early evolution, life became cellular. Assuming that this step was required for the origin of life, there would necessarily be a pre-existing source of amphihilic compounds capable of assembling into membranous compartments. It is possible to make informed guesses about the properties of such compounds and the conditions most conducive to their self-assembly into boundary structures. The membranes were likely to incorporate mixtures of hydrocarbon derivatives between 10 and 20 carbons in length with carboxylate or hydroxyl head groups. Such compounds can be synthesized by chemical reactions and small amounts were almost certainly present in the prebiotic environment. Membrane assembly occurs most readily in low ionic strength solutions with minimal content of salt and divalent cations, which suggests that cellular life began in fresh water pools associated with volcanic islands rather than submarine hydrothermal vents.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95060, USA.
| |
Collapse
|
35
|
Kereszturi A, Noack L. Review on the Role of Planetary Factors on Habitability. ORIGINS LIFE EVOL B 2016; 46:473-486. [PMID: 27394670 DOI: 10.1007/s11084-016-9514-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/16/2016] [Indexed: 11/26/2022]
Abstract
In this work various factors on the habitability were considered, focusing on conditions irrespective of the central star's radiation, to see the role of specific planetary body related effects. These so called planetary factors were evaluated to identify those trans-domain issues where important information is missing but good chance exit to be filled by new knowledge that might be gained in the next decade(s). Among these strategic knowledge gaps, specific issues are listed, like occurrence of radioactive nucleides in star forming regions, models to estimate the existence of subsurface liquid water from bulk parameters plus evolutionary context of the given system, estimation on the existence of redox gradient depending on the environment type etc. These issues require substantial improvement of modelling and statistical handling of various cases, as "planetary environment types". Based on our current knowledge it is probable that subsurface habitability is at least as frequent, or more frequent than surface habitability. Unfortunately it is more difficult from observations to infer conditions for subsurface habitability, but specific argumentation might help with indirect ways, which might result in new methods to approach habitability in general.
Collapse
Affiliation(s)
- A Kereszturi
- Research Centre for Astronomy and Earth Sciences, Csatkai u. 6-8, 9400, Sopron, Hungary.
| | - L Noack
- Royal Observatory of Belgium, Avenue Circulaire 3, 1180, Brussels, Belgium
| |
Collapse
|
36
|
Abstract
Understanding how life arose is a fundamental problem of biology. Much progress has been made by adopting a synthetic and mechanistic perspective on originating life. We present a current view of the biochemistry of the origin of life, focusing on issues surrounding the emergence of an RNA World in which RNA dominated informational and functional roles. There is cause for optimism on this difficult problem: the prebiotic chemical inventory may not have been as nightmarishly complex as previously thought; the catalytic repertoire of ribozymes continues to expand, approaching the goal of self-replicating RNA; encapsulation in protocells provides evolutionary and biophysical advantages. Nevertheless, major issues remain unsolved, such as the origin of a genetic code. Attention to this field is particularly timely given the accelerating discovery and characterization of exoplanets.
Collapse
|
37
|
Damer B. A Field Trip to the Archaean in Search of Darwin's Warm Little Pond. Life (Basel) 2016; 6:life6020021. [PMID: 27231942 PMCID: PMC4931458 DOI: 10.3390/life6020021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 11/16/2022] Open
Abstract
Charles Darwin’s original intuition that life began in a “warm little pond” has for the last three decades been eclipsed by a focus on marine hydrothermal vents as a venue for abiogenesis. However, thermodynamic barriers to polymerization of key molecular building blocks and the difficulty of forming stable membranous compartments in seawater suggest that Darwin’s original insight should be reconsidered. I will introduce the terrestrial origin of life hypothesis, which combines field observations and laboratory results to provide a novel and testable model in which life begins as protocells assembling in inland fresh water hydrothermal fields. Hydrothermal fields are associated with volcanic landmasses resembling Hawaii and Iceland today and could plausibly have existed on similar land masses rising out of Earth’s first oceans. I will report on a field trip to the living and ancient stromatolite fossil localities of Western Australia, which provided key insights into how life may have emerged in Archaean, fluctuating fresh water hydrothermal pools, geological evidence for which has recently been discovered. Laboratory experimentation and fieldwork are providing mounting evidence that such sites have properties that are conducive to polymerization reactions and generation of membrane-bounded protocells. I will build on the previously developed coupled phases scenario, unifying the chemical and geological frameworks and proposing that a hydrogel of stable, communally supported protocells will emerge as a candidate Woese progenote, the distant common ancestor of microbial communities so abundant in the earliest fossil record.
Collapse
Affiliation(s)
- Bruce Damer
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.
- DigitalSpace Research, Boulder Creek, CA 95006, USA.
| |
Collapse
|
38
|
Tena-Solsona M, Nanda J, Díaz-Oltra S, Chotera A, Ashkenasy G, Escuder B. Emergent Catalytic Behavior of Self-Assembled Low Molecular Weight Peptide-Based Aggregates and Hydrogels. Chemistry 2016; 22:6687-94. [PMID: 27004623 DOI: 10.1002/chem.201600344] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/19/2023]
Abstract
We report a series of short peptides possessing the sequence (FE)n or (EF)n and bearing l-proline at their N-terminus that self-assemble into high aspect ratio aggregates and hydrogels. We show that these aggregates are able to catalyze the aldol reaction, whereas non-aggregated analogues are catalytically inactive. We have undertaken an analysis of the results, considering the accessibility of catalytic sites, pKa value shifts, and the presence of hydrophobic pockets. We conclude that the presence of hydrophobic regions is indeed relevant for substrate solubilization, but that the active site accessibility is the key factor for the observed differences in reaction rates. The results presented here provide an example of the emergence of a new chemical property caused by self-assembly, and support the relevant role played by self-assembled peptides in prebiotic scenarios. In this sense, the reported systems can be seen as primitive aldolase I mimics, and have been successfully tested for the synthesis of simple carbohydrate precursors.
Collapse
Affiliation(s)
- Marta Tena-Solsona
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071, Castelló, Spain
| | - Jayanta Nanda
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Santiago Díaz-Oltra
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071, Castelló, Spain
| | - Agata Chotera
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Beatriu Escuder
- Departament de Química Inorgànica i Orgànica, Universitat Jaume I, 12071, Castelló, Spain.
| |
Collapse
|
39
|
Deamer DW, Georgiou CD. Hydrothermal Conditions and the Origin of Cellular Life. ASTROBIOLOGY 2015; 15:1091-1095. [PMID: 26684507 DOI: 10.1089/ast.2015.1338] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The conditions and properties of hydrothermal vents and hydrothermal fields are compared in terms of their ability to support processes related to the origin of life. The two sites can be considered as alternative hypotheses, and from this comparison we propose a series of experimental tests to distinguish between them, focusing on those that involve concentration of solutes, self-assembly of membranous compartments, and synthesis of polymers. Key Word: Hydrothermal systems.
Collapse
Affiliation(s)
- David W Deamer
- 1 Department of Biomolecular Engineering, Baskin School of Engineering, University of California , Santa Cruz, California, USA
| | | |
Collapse
|
40
|
Zhang J, Xu G, Song A, Wang L, Lin M, Dong Z, Yang Z. Faceted fatty acid vesicles formed from single-tailed perfluorinated surfactants. SOFT MATTER 2015; 11:7143-7150. [PMID: 26252803 DOI: 10.1039/c5sm01494h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aggregation behavior and rheological properties of two mixtures of perfluorononanoic acid (PFNA)/NaOH and perfluorodecanoic acid (PFDA)/NaOH were investigated in aqueous solutions. Interestingly, pH-sensitive polyhedral fatty acid vesicles were spontaneously formed in both systems, which were determined by freeze-fracture transmission electron microscopy (FF-TEM) measurements. Especially, a phase transition from faceted vesicles to the L3 phase with the increase of pH was observed in the PFNA/NaOH system while it was not observed in the PFDA/NaOH system. Differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS) measurements confirmed that the bilayers of the faceted vesicles were in the crystalline station indicating that the crystallization of fluorocarbon chains was the main driving force for their formation. Besides, the two systems of faceted perfluorofatty acid vesicles exhibit interesting rheological properties, for instance, they showed high viscoelasticity and shear-thinning behaviour, and the elastic modulus (G') and viscous modulus (G'') of PFDA/NaOH vesicles were much higher than those of PFNA/NaOH vesicles. Conversely, the solution of the L3 phase with fluid bilayers did not present viscoelastic properties. Therefore, the viscoelastic properties of vesicles resulted from the crystalline fluorinated alkyl chains with high rigidity at room temperature and the dense packing of vesicles. As far as we know, such faceted fatty acid vesicles formed from single-tailed perfluorinated surfactants have been rarely reported. Our work successfully constructs polyhedral fatty acid vesicles and proposes their formation mechanism, which should be a great advance in the fundamental research of fatty acid vesicles.
Collapse
Affiliation(s)
- Juan Zhang
- Institute of Enhanced Oil Recovery, China University of Petroleum, Beijing 102249, China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kawamura K, Da Silva L, Ogawa M, Konagaya N, Maurel MC. Verification of chemical evolution of RNA under hydrothermal environments on the primitive Earth. BIO WEB OF CONFERENCES 2015. [DOI: 10.1051/bioconf/20150400011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Kompanichenko VN, Poturay VA, Shlufman KV. Hydrothermal Systems of Kamchatka are Models of the Prebiotic Environment. ORIGINS LIFE EVOL B 2015; 45:93-103. [PMID: 25796393 DOI: 10.1007/s11084-015-9429-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/09/2014] [Indexed: 12/01/2022]
Abstract
The composition of organic matter and fluctuations of thermodynamic parameters were investigated in the hydrothermal systems of the Kamchatka peninsula in the context of the origin of life. Organics were analyzed by gas-chromatography/mass spectrometry, and 111 organic compounds belonging to 14 homologous series (aromatic hydrocarbons, alkanes and isoalkanes, halogenated aromatic hydrocarbons, carboxylic acids, esters, etc.) were found in hot springs inhabited by Archaeal and Bacterial thermophiles. The organics detected in the sterile condensate of water-steam mixture taken from deep boreholes (temperature 108-175 °C) consisted of 69 compounds of 11 homologous series, with aromatic hydrocarbons and alkanes being prevalent. The organic material included important prebiotic components such as nitrogen-containing compounds and lipid precursors. A separate organic phase (oil) was discovered in the Uzon Caldera. A biogenic origin is supported by the presence of sterane and hopane biomarkers and the δ(13)C value of the bulk oil; its age determined by (14)C measurements was 1030 ± 40 years. Multilevel fluctuations of thermodynamic parameters proposed to be required for the origin of life were determined in the Mutnovsky and Pauzhetsky hydrothermal systems. The low-frequency component of the hydrothermal fluid pressure varied by up to 2 bars over periods of hours to days, while mid-frequency variations had regular micro-oscillations with periods of about 20 min; the high-frequency component displayed sharp changes of pressure and microfluctuations with periods less than 5 min. The correlation coefficient between pressure and temperature ranges from 0.89 to 0.99 (average 0.96). The natural regimes of pressure and temperature fluctuations in Kamchatka hydrothermal systems can guide future experiments on prebiotic chemistry under oscillating conditions.
Collapse
Affiliation(s)
- V N Kompanichenko
- Institute for Complex Analysis, 4, Sholom Aleyhem St., Birobidzhan, 679016, Russia,
| | | | | |
Collapse
|
43
|
Strazewski P. Omne Vivum Ex Vivo … Omne? How to Feed an Inanimate Evolvable Chemical System so as to Let it Self-evolve into Increased Complexity and Life-like Behaviour. Isr J Chem 2015. [DOI: 10.1002/ijch.201400175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
Damer B, Deamer D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: a scenario to guide experimental approaches to the origin of cellular life. Life (Basel) 2015; 5:872-87. [PMID: 25780958 PMCID: PMC4390883 DOI: 10.3390/life5010872] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 11/16/2022] Open
Abstract
Hydrothermal fields on the prebiotic Earth are candidate environments for biogenesis. We propose a model in which molecular systems driven by cycles of hydration and dehydration in such sites undergo chemical evolution in dehydrated films on mineral surfaces followed by encapsulation and combinatorial selection in a hydrated bulk phase. The dehydrated phase can consist of concentrated eutectic mixtures or multilamellar liquid crystalline matrices. Both conditions organize and concentrate potential monomers and thereby promote polymerization reactions that are driven by reduced water activity in the dehydrated phase. In the case of multilamellar lipid matrices, polymers that have been synthesized are captured in lipid vesicles upon rehydration to produce a variety of molecular systems. Each vesicle represents a protocell, an “experiment” in a natural version of combinatorial chemistry. Two kinds of selective processes can then occur. The first is a physical process in which relatively stable molecular systems will be preferentially selected. The second is a chemical process in which rare combinations of encapsulated polymers form systems capable of capturing energy and nutrients to undergo growth by catalyzed polymerization. Given continued cycling over extended time spans, such combinatorial processes will give rise to molecular systems having the fundamental properties of life.
Collapse
Affiliation(s)
- Bruce Damer
- Department of Biomolecular Engineering.
- DigitalSpace Research, Boulder Creek, CA 95006, USA.
| | | |
Collapse
|
45
|
Kun Á, Szilágyi A, Könnyű B, Boza G, Zachar I, Szathmáry E. The dynamics of the RNA world: insights and challenges. Ann N Y Acad Sci 2015; 1341:75-95. [PMID: 25735569 DOI: 10.1111/nyas.12700] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The RNA world hypothesis of the origin of life, in which RNA emerged as both enzyme and information carrier, is receiving solid experimental support. The prebiotic synthesis of biomolecules, the catalytic aid offered by mineral surfaces, and the vast enzymatic repertoire of ribozymes are only pieces of the origin of life puzzle; the full picture can only emerge if the pieces fit together by either following from one another or coexisting with each other. Here, we review the theory of the origin, maintenance, and enhancement of the RNA world as an evolving population of dynamical systems. The dynamical view of the origin of life allows us to pinpoint the missing and the not fitting pieces: (1) How can the first self-replicating ribozyme emerge in the absence of template-directed information replication? (2) How can nucleotide replicators avoid competitive exclusion despite utilizing the very same resources (nucleobases)? (3) How can the information catastrophe be avoided? (4) How can enough genes integrate into a cohesive system in order to transition to a cellular stage? (5) How can the way information is stored and metabolic complexity coevolve to pave to road leading out of the RNA world to the present protein-DNA world?
Collapse
Affiliation(s)
- Ádám Kun
- Parmenides Center for the Conceptual Foundations of Science, Munich/Pullach, Germany; MTA-ELTE-MTMT Ecology Research Group, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
46
|
Mungi CV, Rajamani S. Characterization of RNA-Like Oligomers from Lipid-Assisted Nonenzymatic Synthesis: Implications for Origin of Informational Molecules on Early Earth. Life (Basel) 2015; 5:65-84. [PMID: 25569237 PMCID: PMC4390841 DOI: 10.3390/life5010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
Abstract
Prebiotic polymerization had to be a nonenzymatic, chemically driven process. These processes would have been particularly favored in scenarios which push reaction regimes far from equilibrium. Dehydration-rehydration (DH-RH) cycles are one such regime thought to have been prevalent on prebiotic Earth in niches like volcanic geothermal pools. The present study defines the optimum DH-RH reaction conditions for lipid-assisted polymerization of nucleotides. The resultant products were characterized to understand their chemical makeup. Primarily, our study demonstrates that the resultant RNA-like oligomers have abasic sites, which means these oligomers lack information-carrying capability because of losing most of their bases during the reaction process. This results from low pH and high temperature conditions, which, importantly, also allows the formation of sugar-phosphate oligomers when ribose 5'-monophosphates are used as the starting monomers instead. Formation of such oligomers would have permitted sampling of a large variety of bases on a preformed polymer backbone, resulting in “prebiotic phosphodiester polymers” prior to the emergence of modern RNA-like molecules. This suggests that primitive genetic polymers could have utilized bases that conferred greater N-glycosyl bond stability, a feature crucial for information propagation in low pH and high temperature regimes of early Earth.
Collapse
Affiliation(s)
- Chaitanya V Mungi
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India.
| | - Sudha Rajamani
- Indian Institute of Science Education and Research (IISER), Pune, Maharashtra 411008, India.
| |
Collapse
|
47
|
Da Silva L, Maurel MC, Deamer D. Salt-promoted synthesis of RNA-like molecules in simulated hydrothermal conditions. J Mol Evol 2014; 80:86-97. [PMID: 25487518 DOI: 10.1007/s00239-014-9661-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
A fundamental problem in origins of life research is how the first polymers with the properties of nucleic acids were synthesized and incorporated into living systems on the prebiotic Earth. Here, we show that RNA-like polymers can be synthesized non-enzymatically from 5'-phosphate mononucleosides in salty environments. The polymers were identified and analyzed by gel electrophoresis, nanopore analysis, UV spectra, and action of RNases. The synthesis of phosphodiester bonds is driven by the chemical potential made available in the fluctuating hydrated and anhydrous conditions of hydrothermal fields associated with volcanic land masses.
Collapse
|
48
|
Gupta AP, Taylor WJ, McGown LB, Kempf JG. NMR studies of the chiral selectivity of self-assembled guanosinemonophosphate. J Phys Chem B 2014; 118:14243-56. [PMID: 25401946 DOI: 10.1021/jp5075016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Among nucleobases in RNA and DNA, only guanine exhibits reversible self-assembly through Hoogsteen hydrogen bonding. Resulting "G-tetrads" are building blocks of higher-order structures of guanosine compounds, including GMP. These can further associate to form chiral, columnar assemblies, stabilized by a centrally located cation such as K(+). Here, we detail chiral selectivity of GMP under conditions for assembly, as previously used to separate enantiomeric solutes by capillary electrophoresis (CE). Using (1)H NMR, we track multisite chemical-shift responses vs the concentration of various chiral solutes with GMP. Shift changes in both GMP and the solutes are consistent with a structural model in which grooves of transiently assembled GMP are templates for chiral selection. This can also explain a previously noted superiority of selection for solutes with extended ring systems projecting from the chiral center. Here, site-by-site NMR shift changes (and their enantiomeric differential) are strongest at the ring extremities in d- vs l-tryptophan and R- vs S-BNPA. This is consistent with the fact that, for one enantiomer of each pair, steric hindrance prevents closest approach into assembled GMP. For smaller solutes (d/l-Trp and d/l-Phe), NMR reveals only slight (Tyr) or no (Phe) chiral discrimination, consistent with their failure to resolve in CE through GMP media. We present molecular models to visualize and evaluate a proposed mode of selection.
Collapse
Affiliation(s)
- Akshar P Gupta
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | | | |
Collapse
|
49
|
The self-crosslinked ufasome of conjugated linoleic acid: Investigation of morphology, bilayer membrane and stability. Colloids Surf B Biointerfaces 2014; 123:8-14. [DOI: 10.1016/j.colsurfb.2014.08.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 01/01/2023]
|
50
|
Cassidy LM, Burcar BT, Stevens W, Moriarty EM, McGown LB. Guanine-centric self-assembly of nucleotides in water: an important consideration in prebiotic chemistry. ASTROBIOLOGY 2014; 14:876-886. [PMID: 25285982 PMCID: PMC4201266 DOI: 10.1089/ast.2014.1155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
Investigations of plausible prebiotic chemistry on early Earth must consider not only chemical reactions to form more complex products such as proto-biopolymers but also reversible, molecular self-assembly that would influence the availability, organization, and sequestration of reactant molecules. The self-assembly of guanosine compounds into higher-order structures and lyotropic liquid crystalline "gel" phases through formation of hydrogen-bonded guanine tetrads (G-tetrads) is one such consideration that is particularly relevant to an RNA-world scenario. G-tetrad-based gelation has been well studied for individual guanosine compounds and was recently observed in mixtures of guanosine with 5'-guanosine monophosphate (GMP) as well. The present work investigates the self-assembly of GMP in the presence of the other RNA nucleotides. Effects of the total concentration and relative proportion of the nucleotides in the mixtures, the form (disodium salt vs. free acid) of the nucleotides, temperature, pH, and salt concentration were determined by visual observations and circular dichroism (CD) spectroscopy. The results show that formation of cholesteric G-tetrad phases is influenced by interactions with other nucleotides, likely through association (e.g., intercalation) of the nucleotides with the G-tetrad structures. These interactions affect the structure and stability of the G-tetrad gel phase, as well as the formation of alternate self-assembled GMP structures such as a continuous, hydrogen-bonded GMP helix or dimers and aggregates of GMP. These interactions and multiple equilibria are influenced by the presence of cations, especially in the presence of K(+). This work could have important implications for the emergence of an RNA or proto-RNA world, which would require mixtures of nucleotides at sufficiently high, local concentrations for abiotic polymerization to occur.
Collapse
Affiliation(s)
- Lauren M Cassidy
- New York Center for Astrobiology and Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | | | | | | | | |
Collapse
|