1
|
Lartillot N. Identifying the Best Approximating Model in Bayesian Phylogenetics: Bayes Factors, Cross-Validation or wAIC? Syst Biol 2023; 72:616-638. [PMID: 36810802 PMCID: PMC10276628 DOI: 10.1093/sysbio/syad004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/20/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
There is still no consensus as to how to select models in Bayesian phylogenetics, and more generally in applied Bayesian statistics. Bayes factors are often presented as the method of choice, yet other approaches have been proposed, such as cross-validation or information criteria. Each of these paradigms raises specific computational challenges, but they also differ in their statistical meaning, being motivated by different objectives: either testing hypotheses or finding the best-approximating model. These alternative goals entail different compromises, and as a result, Bayes factors, cross-validation, and information criteria may be valid for addressing different questions. Here, the question of Bayesian model selection is revisited, with a focus on the problem of finding the best-approximating model. Several model selection approaches were re-implemented, numerically assessed and compared: Bayes factors, cross-validation (CV), in its different forms (k-fold or leave-one-out), and the widely applicable information criterion (wAIC), which is asymptotically equivalent to leave-one-out cross-validation (LOO-CV). Using a combination of analytical results and empirical and simulation analyses, it is shown that Bayes factors are unduly conservative. In contrast, CV represents a more adequate formalism for selecting the model returning the best approximation of the data-generating process and the most accurate estimates of the parameters of interest. Among alternative CV schemes, LOO-CV and its asymptotic equivalent represented by the wAIC, stand out as the best choices, conceptually and computationally, given that both can be simultaneously computed based on standard Markov chain Monte Carlo runs under the posterior distribution. [Bayes factor; cross-validation; marginal likelihood; model comparison; wAIC.].
Collapse
Affiliation(s)
- Nicolas Lartillot
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Villeurbanne, France
| |
Collapse
|
2
|
Sun X, Cheng J. Conflicts in Mitochondrial Phylogenomics of Branchiopoda, with the First Complete Mitogenome of Laevicaudata (Crustacea: Branchiopoda). Curr Issues Mol Biol 2023; 45:820-837. [PMID: 36825999 PMCID: PMC9955068 DOI: 10.3390/cimb45020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Conflicting phylogenetic signals are pervasive across genomes. The potential impact of such systematic biases may be reduced by phylogenetic approaches accommodating for heterogeneity or by the exclusive use of homoplastic sites in the datasets. Here, we present the complete mitogenome of Lynceus grossipedia as the first representative of the suborder Laevicaudata. We employed a phylogenomic approach on the mitogenomic datasets representing all major branchiopod groups to identify the presence of conflicts and concordance across the phylogeny. We found pervasive phylogenetic conflicts at the base of Diplostraca. The homogeneity of the substitution pattern tests and posterior predictive tests revealed a high degree of compositional heterogeneity among branchiopod mitogenomes at both the nucleotide and amino acid levels, which biased the phylogenetic inference. Our results suggest that Laevicaudata as the basal clade of Phyllopoda was most likely an artifact caused by compositional heterogeneity and conflicting phylogenetic signal. We demonstrated that the exclusive use of homoplastic site methods combining the application of site-heterogeneous models produced correct phylogenetic estimates of the higher-level relationships among branchiopods.
Collapse
Affiliation(s)
| | - Jinhui Cheng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 Beijing Eastroad, Nanjing 210008, China
| |
Collapse
|
3
|
Molecular phylogenies map to biogeography better than morphological ones. Commun Biol 2022; 5:521. [PMID: 35641555 PMCID: PMC9156683 DOI: 10.1038/s42003-022-03482-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic relationships are inferred principally from two classes of data: morphological and molecular. Currently, most phylogenies of extant taxa are inferred from molecules and when morphological and molecular trees conflict the latter are often preferred. Although supported by simulations, the superiority of molecular trees has rarely been assessed empirically. Here we test phylogenetic accuracy using two independent data sources: biogeographic distributions and fossil first occurrences. For 48 pairs of morphological and molecular trees we show that, on average, molecular trees provide a better fit to biogeographic data than their morphological counterparts and that biogeographic congruence increases over research time. We find no significant differences in stratigraphic congruence between morphological and molecular trees. These results have implications for understanding the distribution of homoplasy in morphological data sets, the utility of morphology as a test of molecular hypotheses and the implications of analysing fossil groups for which molecular data are unavailable. Using biogeographical and phylogenetic data, it is shown that molecular trees fit species geographical data better than trees inferred from morphology, and that these differences are not simply due to better tree resolution.
Collapse
|
4
|
Wong JM, Eirin-Lopez JM. Evolution of methyltransferase like (METTL) proteins in Metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol Biol Evol 2021; 38:5309-5327. [PMID: 34480573 PMCID: PMC8662637 DOI: 10.1093/molbev/msab267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The methyltransferase-like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine-binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.
Collapse
Affiliation(s)
- Juliet M Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
5
|
Cai C, Tihelka E, Pisani D, Donoghue PCJ. Data curation and modeling of compositional heterogeneity in insect phylogenomics: A case study of the phylogeny of Dytiscoidea (Coleoptera: Adephaga). Mol Phylogenet Evol 2020; 147:106782. [PMID: 32147574 DOI: 10.1016/j.ympev.2020.106782] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Diving beetles and their allies are an almost ubiquitous group of freshwater predators. Knowledge of the phylogeny of the adephagan superfamily Dytiscoidea has significantly improved since the advent of molecular phylogenetics. However, despite recent comprehensive phylogenomic studies, some phylogenetic relationships among the constituent families remain elusive. In particular, the position of the family Hygrobiidae remains uncertain. We address these issues by re-analyzing recently published phylogenomic datasets for Dytiscoidea, using approaches to reduce compositional heterogeneity and adopting a site-heterogeneous mixture model. We obtained a consistent, well-resolved, and strongly supported tree. Consistent with previous studies, our analyses support Aspidytidae as the monophyletic sister group of Amphizoidae, and more importantly, Hygrobiidae as the sister of the diverse Dytiscidae, in agreement with morphology-based phylogenies. Our analyses provide a backbone phylogeny of Dytiscoidea, which lays the foundation for better understanding the evolution of morphological characters, life habits, and feeding behaviors of dytiscoid beetles.
Collapse
Affiliation(s)
- Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China; School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Erik Tihelka
- Department of Animal Science, Hartpury College, Hartpury GL19 3BE, UK
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
6
|
Ge M, Liu W, Ma C, Yan Z, Liang H, Xu Z, Mariottini GL, Zhang J, Zhao X, Yang Y, Xiao L. Comparative proteomic analysis of Aurelia coerulea for its locomotion system molecular structure-function inference. J Proteomics 2019; 209:103509. [DOI: 10.1016/j.jprot.2019.103509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 01/14/2023]
|
7
|
Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life. Mol Biol Evol 2019; 36:757-765. [PMID: 30668767 PMCID: PMC6844682 DOI: 10.1093/molbev/msz012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these “orphan” groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker “TSAR” to accommodate this new mega-assemblage in the phylogeny of eukaryotes.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Mahwash Jamy
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Denis V Tikhonenkov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Corresponding author: E-mail:
| |
Collapse
|
8
|
Abstract
A major problem in understanding animal evolution is where early branching phyla, especially sponges and comb jellies (sea gooseberries), sit in the tree of life. A new study seeks to overcome this problem by sampling more species and data cleansing.
Collapse
|
9
|
Mitigating Anticipated Effects of Systematic Errors Supports Sister-Group Relationship between Xenacoelomorpha and Ambulacraria. Curr Biol 2019; 29:1818-1826.e6. [PMID: 31104936 DOI: 10.1016/j.cub.2019.04.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 01/21/2023]
Abstract
Xenoturbella and the acoelomorph worms (Xenacoelomorpha) are simple marine animals with controversial affinities. They have been placed as the sister group of all other bilaterian animals (Nephrozoa hypothesis), implying their simplicity is an ancient characteristic [1, 2]; alternatively, they have been linked to the complex Ambulacraria (echinoderms and hemichordates) in a clade called the Xenambulacraria [3-5], suggesting their simplicity evolved by reduction from a complex ancestor. The difficulty resolving this problem implies the phylogenetic signal supporting the correct solution is weak and affected by inadequate modeling, creating a misleading non-phylogenetic signal. The idea that the Nephrozoa hypothesis might be an artifact is prompted by the faster molecular evolutionary rate observed within the Acoelomorpha. Unequal rates of evolution are known to result in the systematic artifact of long branch attraction, which would be predicted to result in an attraction between long-branch acoelomorphs and the outgroup, pulling them toward the root [6]. Other biases inadequately accommodated by the models used can also have strong effects, exacerbated in the context of short internal branches and long terminal branches [7]. We have assembled a large and informative dataset to address this problem. Analyses designed to reduce or to emphasize misleading signals show the Nephrozoa hypothesis is supported under conditions expected to exacerbate errors, and the Xenambulacraria hypothesis is preferred in conditions designed to reduce errors. Our reanalyses of two other recently published datasets [1, 2] produce the same result. We conclude that the Xenacoelomorpha are simplified relatives of the Ambulacraria.
Collapse
|
10
|
Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, Teske AP, Ettema TJG, Baker BJ. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat Commun 2019; 10:1822. [PMID: 31015394 PMCID: PMC6478937 DOI: 10.1038/s41467-019-09364-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/06/2019] [Indexed: 01/25/2023] Open
Abstract
Large reservoirs of natural gas in the oceanic subsurface sustain complex communities of anaerobic microbes, including archaeal lineages with potential to mediate oxidation of hydrocarbons such as methane and butane. Here we describe a previously unknown archaeal phylum, Helarchaeota, belonging to the Asgard superphylum and with the potential for hydrocarbon oxidation. We reconstruct Helarchaeota genomes from metagenomic data derived from hydrothermal deep-sea sediments in the hydrocarbon-rich Guaymas Basin. The genomes encode methyl-CoM reductase-like enzymes that are similar to those found in butane-oxidizing archaea, as well as several enzymes potentially involved in alkyl-CoA oxidation and the Wood-Ljungdahl pathway. We suggest that members of the Helarchaeota have the potential to activate and subsequently anaerobically oxidize hydrothermally generated short-chain hydrocarbons.
Collapse
Affiliation(s)
- Kiley W Seitz
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
| | - Nina Dombrowski
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
- NIOZ, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, 1797 SZ, AB, The Netherlands
| | - Laura Eme
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
- Unité d'Ecologie, Systématique et Evolution, CNRS, Université Paris-Sud, Orsay, 91400, France
| | - Anja Spang
- NIOZ, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, 1797 SZ, AB, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
| | - Jonathan Lombard
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
| | | | - Andreas P Teske
- Department of Marine Sciences, University of North Carolina, Chapel Hill, 27599, NC, USA
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, SE-75123, Sweden
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, NL-6708WE, The Netherlands
| | - Brett J Baker
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA.
| |
Collapse
|
11
|
|
12
|
Brown JM, Thomson RC. Evaluating Model Performance in Evolutionary Biology. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062249] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many fields of evolutionary biology now depend on stochastic mathematical models. These models are valuable for their ability to formalize predictions in the face of uncertainty and provide a quantitative framework for testing hypotheses. However, no mathematical model will fully capture biological complexity. Instead, these models attempt to capture the important features of biological systems using relatively simple mathematical principles. These simplifications can allow us to focus on differences that are meaningful, while ignoring those that are not. However, simplification also requires assumptions, and to the extent that these are wrong, so is our ability to predict or compare. Here, we discuss approaches for evaluating the performance of evolutionary models in light of their assumptions by comparing them against reality. We highlight general approaches, how they are applied, and remaining opportunities. Absolute tests of fit, even when not explicitly framed as such, are fundamental to progress in understanding evolution.
Collapse
Affiliation(s)
- Jeremy M. Brown
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Robert C. Thomson
- Department of Biology, University of Hawai'i, Honolulu, Hawai'i 96822, USA
| |
Collapse
|
13
|
Mclean BS, Bell KC, Allen JM, Helgen KM, Cook JA. Impacts of Inference Method and Data set Filtering on Phylogenomic Resolution in a Rapid Radiation of Ground Squirrels (Xerinae: Marmotini). Syst Biol 2018; 68:298-316. [DOI: 10.1093/sysbio/syy064] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bryan S Mclean
- Department of Biology and Museum of Southwestern Biology, 1 University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA
- Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, FL 32611, USA
| | - Kayce C Bell
- Department of Biology and Museum of Southwestern Biology, 1 University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA
- Department of Invertebrate Zoology, Smithsonian Institution National Museum of Natural History, P.O. Box 37012, MRC 163, Washington, DC 20013-7012, USA
| | - Julie M Allen
- Department of Biology, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Kristofer M Helgen
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide SA 5005, Australia
| | - Joseph A Cook
- Department of Biology and Museum of Southwestern Biology, 1 University of New Mexico, MSC03-2020, Albuquerque, NM 87131, USA
| |
Collapse
|
14
|
Zhao Y, Yang JY, Thieker DF, Xu Y, Zong C, Boons GJ, Liu J, Woods RJ, Moremen KW, Amster IJ. A Traveling Wave Ion Mobility Spectrometry (TWIMS) Study of the Robo1-Heparan Sulfate Interaction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1153-1165. [PMID: 29520710 PMCID: PMC6004239 DOI: 10.1007/s13361-018-1903-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/14/2018] [Accepted: 01/14/2018] [Indexed: 06/10/2023]
Abstract
Roundabout 1 (Robo1) interacts with its receptor Slit to regulate axon guidance, axon branching, and dendritic development in the nervous system and to regulate morphogenesis and many cell functions in the nonneuronal tissues. This interaction is known to be critically regulated by heparan sulfate (HS). Previous studies suggest that HS is required to promote the binding of Robo1 to Slit to form the minimal signaling complex, but the molecular details and the structural requirements of HS for this interaction are still unclear. Here, we describe the application of traveling wave ion mobility spectrometry (TWIMS) to study the conformational details of the Robo1-HS interaction. The results suggest that Robo1 exists in two conformations that differ by their compactness and capability to interact with HS. The results also suggest that the highly flexible interdomain hinge region connecting the Ig1 and Ig2 domains of Robo1 plays an important functional role in promoting the Robo1-Slit interaction. Moreover, variations in the sulfation pattern and size of HS were found to affect its binding affinity and selectivity to interact with different conformations of Robo1. Both MS measurements and CIU experiments show that the Robo1-HS interaction requires the presence of a specific size and pattern of modification of HS. Furthermore, the effect of N-glycosylation on the conformation of Robo1 and its binding modes with HS is reported. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yuejie Zhao
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Jeong Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - David F Thieker
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Yongmei Xu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jian Liu
- Eshelman School of Pharmacy, Division of Chemical Biology & Medicinal Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - I Jonathan Amster
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
15
|
Heiss AA, Kolisko M, Ekelund F, Brown MW, Roger AJ, Simpson AGB. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171707. [PMID: 29765641 PMCID: PMC5936906 DOI: 10.1098/rsos.171707] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 05/16/2023]
Abstract
Modern syntheses of eukaryote diversity assign almost all taxa to one of three groups: Amorphea, Diaphoretickes and Excavata (comprising Discoba and Metamonada). The most glaring exception is Malawimonadidae, a group of small heterotrophic flagellates that resemble Excavata by morphology, but branch with Amorphea in most phylogenomic analyses. However, just one malawimonad, Malawimonas jakobiformis, has been studied with both morphological and molecular-phylogenetic approaches, raising the spectre of interpretation errors and phylogenetic artefacts from low taxon sampling. We report a morphological and phylogenomic study of a new deep-branching malawimonad, Gefionella okellyi n. gen. n. sp. Electron microscopy revealed all canonical features of 'typical excavates', including flagellar vanes (as an opposed pair, unlike M. jakobiformis but like many metamonads) and a composite fibre. Initial phylogenomic analyses grouped malawimonads with the Amorphea-related orphan lineage Collodictyon, separate from a Metamonada+Discoba clade. However, support for this topology weakened when more sophisticated evolutionary models were used, and/or fast-evolving sites and long-branching taxa (FS/LB) were excluded. Analyses of '-FS/LB' datasets instead suggested a relationship between malawimonads and metamonads. The 'malawimonad+metamonad signal' in morphological and molecular data argues against a strict Metamonada+Discoba clade (i.e. the predominant concept of Excavata). A Metamonad+Discoba clade should therefore not be assumed when inferring deep-level evolutionary history in eukaryotes.
Collapse
Affiliation(s)
- Aaron A. Heiss
- Department of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Martin Kolisko
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Fleming Ekelund
- Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Matthew W. Brown
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Andrew J. Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Alastair G. B. Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
16
|
Kang S, Tice AK, Spiegel FW, Silberman JD, Pánek T, Cepicka I, Kostka M, Kosakyan A, Alcântara DMC, Roger AJ, Shadwick LL, Smirnov A, Kudryavtsev A, Lahr DJG, Brown MW. Between a Pod and a Hard Test: The Deep Evolution of Amoebae. Mol Biol Evol 2017; 34:2258-2270. [PMID: 28505375 PMCID: PMC5850466 DOI: 10.1093/molbev/msx162] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Amoebozoa is the eukaryotic supergroup sister to Obazoa, the lineage that contains the animals and Fungi, as well as their protistan relatives, and the breviate and apusomonad flagellates. Amoebozoa is extraordinarily diverse, encompassing important model organisms and significant pathogens. Although amoebozoans are integral to global nutrient cycles and present in nearly all environments, they remain vastly understudied. We present a robust phylogeny of Amoebozoa based on broad representative set of taxa in a phylogenomic framework (325 genes). By sampling 61 taxa using culture-based and single-cell transcriptomics, our analyses show two major clades of Amoebozoa, Discosea, and Tevosa. This phylogeny refutes previous studies in major respects. Our results support the hypothesis that the last common ancestor of Amoebozoa was sexual and flagellated, it also may have had the ability to disperse propagules from a sporocarp-type fruiting body. Overall, the main macroevolutionary patterns in Amoebozoa appear to result from the parallel losses of homologous characters of a multiphase life cycle that included flagella, sex, and sporocarps rather than independent acquisition of convergent features.
Collapse
Affiliation(s)
- Seungho Kang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS
| | | | | | - Tomáš Pánek
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Ivan Cepicka
- Department of Zoology, Charles University, Prague, Czech Republic
| | - Martin Kostka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Českě Budějovice, Czech Republic.,Department of Parasitology, University of South Bohemia, Českě Budějovice, Czech Republic
| | - Anush Kosakyan
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | | | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada
| | - Lora L Shadwick
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexander Kudryavtsev
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Daniel J G Lahr
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS.,Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Mississippi State, MS
| |
Collapse
|
17
|
Smith FW, Goldstein B. Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:328-340. [PMID: 27725256 DOI: 10.1016/j.asd.2016.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/11/2016] [Accepted: 10/03/2016] [Indexed: 05/03/2023]
Abstract
The origin and diversification of segmented metazoan body plans has fascinated biologists for over a century. The superphylum Panarthropoda includes three phyla of segmented animals-Euarthropoda, Onychophora, and Tardigrada. This superphylum includes representatives with relatively simple and representatives with relatively complex segmented body plans. At one extreme of this continuum, euarthropods exhibit an incredible diversity of serially homologous segments. Furthermore, distinct tagmosis patterns are exhibited by different classes of euarthropods. At the other extreme, all tardigrades share a simple segmented body plan that consists of a head and four leg-bearing segments. The modular body plans of panarthropods make them a tractable model for understanding diversification of animal body plans more generally. Here we review results of recent morphological and developmental studies of tardigrade segmentation. These results complement investigations of segmentation processes in other panarthropods and paleontological studies to illuminate the earliest steps in the evolution of panarthropod body plans.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Qu XJ, Jin JJ, Chaw SM, Li DZ, Yi TS. Multiple measures could alleviate long-branch attraction in phylogenomic reconstruction of Cupressoideae (Cupressaceae). Sci Rep 2017; 7:41005. [PMID: 28120880 PMCID: PMC5264392 DOI: 10.1038/srep41005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 12/12/2016] [Indexed: 11/18/2022] Open
Abstract
Long-branch attraction (LBA) is a major obstacle in phylogenetic reconstruction. The phylogenetic relationships among Juniperus (J), Cupressus (C) and the Hesperocyparis-Callitropsis-Xanthocyparis (HCX) subclades of Cupressoideae are controversial. Our initial analyses of plastid protein-coding gene matrix revealed both J and C with much longer stem branches than those of HCX, so their sister relationships may be attributed to LBA. We used multiple measures including data filtering and modifying, evolutionary model selection and coalescent phylogenetic reconstruction to alleviate the LBA artifact. Data filtering by strictly removing unreliable aligned regions and removing substitution saturation genes and rapidly evolving sites could significantly reduce branch lengths of subclades J and C and recovered a relationship of J (C, HCX). In addition, using coalescent phylogenetic reconstruction could elucidate the LBA artifact and recovered J (C, HCX). However, some valid methods for other taxa were inefficient in alleviating the LBA artifact in J-C-HCX. Different strategies should be carefully considered and justified to reduce LBA in phylogenetic reconstruction of different groups. Three subclades of J-C-HCX were estimated to have experienced ancient rapid divergence within a short period, which could be another major obstacle in resolving relationships. Furthermore, our plastid phylogenomic analyses fully resolved the intergeneric relationships of Cupressoideae.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
19
|
Fernández R, Edgecombe GD, Giribet G. Exploring Phylogenetic Relationships within Myriapoda and the Effects of Matrix Composition and Occupancy on Phylogenomic Reconstruction. Syst Biol 2016; 65:871-89. [PMID: 27162151 PMCID: PMC4997009 DOI: 10.1093/sysbio/syw041] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 04/28/2016] [Indexed: 11/14/2022] Open
Abstract
Myriapods, including the diverse and familiar centipedes and millipedes, are one of the dominant terrestrial arthropod groups. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes from many species) or on maximizing matrix size (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed 40 Illumina transcriptomes representing 3 of the 4 myriapod classes (Diplopoda, Chilopoda, and Symphyla); 25 transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda. Ten supermatrices were constructed to explore the effect of several potential phylogenetic biases (e.g., rate of evolution, heterotachy) at 3 levels of gene occupancy per taxon (50%, 75%, and 90%). Analyses based on maximum likelihood and Bayesian mixture models retrieved monophyly of each myriapod class, and resulted in 2 alternative phylogenetic positions for Symphyla, as sister group to Diplopoda + Chilopoda, or closer to Diplopoda, the latter hypothesis having been traditionally supported by morphology. Within centipedes, all orders were well supported, but 2 deep nodes remained in conflict in the different analyses despite dense taxon sampling at the family level. Relationships among centipede orders in all analyses conducted with the most complete matrix (90% occupancy) are at odds not only with the sparser but more gene-rich supermatrices (75% and 50% supermatrices) and with the matrices optimizing phylogenetic informativeness or most conserved genes, but also with previous hypotheses based on morphology, development, or other molecular data sets. Our results indicate that a high percentage of ribosomal proteins in the most complete matrices, in conjunction with distance from the root, can act in concert to compromise the estimated relationships within the ingroup. We discuss the implications of these findings in the context of the ever more prevalent quest for completeness in phylogenomic studies.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
20
|
Greven H, Kaya M, Baran T. The presence of α-chitin in Tardigrada with comments on chitin in the Ecdysozoa. ZOOL ANZ 2016. [DOI: 10.1016/j.jcz.2016.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Abstract
Slits are secreted proteins that bind to Roundabout (Robo) receptors. Slit-Robo signaling is best known for mediating axon repulsion in the developing nervous system. However, in recent years the functional repertoire of Slits and Robo has expanded tremendously and Slit-Robo signaling has been linked to roles in neurogenesis, angiogenesis and cancer progression among other processes. Likewise, our mechanistic understanding of Slit-Robo signaling has progressed enormously. Here, we summarize new insights into Slit-Robo evolutionary and system-dependent diversity, receptor-ligand interactions, signaling crosstalk and receptor activation.
Collapse
Affiliation(s)
- Heike Blockus
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France Ecole des Neurosciences de Paris, Paris F-75005, France
| | - Alain Chédotal
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, 17 Rue Moreau, Paris 75012, France
| |
Collapse
|
22
|
Aleoshin VV, Mylnikov AP, Mirzaeva GS, Mikhailov KV, Karpov SA. Heterokont Predator Develorapax marinus gen. et sp. nov. - A Model of the Ochrophyte Ancestor. Front Microbiol 2016; 7:1194. [PMID: 27536283 PMCID: PMC4971089 DOI: 10.3389/fmicb.2016.01194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
Heterotrophic lineages of Heterokonta (or stramenopiles), in contrast to a single monophyletic group of autotrophs, Ochrophyta, form several clades that independently branch off the heterokont stem lineage. The nearest neighbors of Ochrophyta in the phylogenetic tree appear to be almost exclusively bacterivorous, whereas the hypothesis of plastid acquisition by the ancestors of the ochrophyte lineage suggests an ability to engulf eukaryotic alga. In line with this hypothesis, the heterotrophic predator at the base of the ochrophyte lineage may be regarded as a model for the ochrophyte ancestor. Here, we present a new genus and species of marine free-living heterotrophic heterokont Develorapax marinus, which falls into an isolated heterokont cluster, along with the marine flagellate Developayella elegans, and is able to engulf eukaryotic cells. Together with environmental sequences D. marinus and D. elegans form a class-level clade Developea nom. nov. represented by species adapted to different environmental conditions and with a wide geographical distribution. The position of Developea among Heterokonta in large-scale phylogenetic tree is discussed. We propose that members of the Developea clade represent a model for transition from bacterivory to a predatory feeding mode by selection for larger prey. Presumably, such transition in the grazing strategy is possible in the presence of bacterial biofilms or aggregates expected in eutrophic environment, and has likely occurred in the ochrophyte ancestor.
Collapse
Affiliation(s)
- Vladimir V Aleoshin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia; Institute of Animal Physiology, Biochemistry and NutritionKaluga, Russia
| | - Alexander P Mylnikov
- Institute for the Biology of Inland Waters, Russian Academy of Sciences Borok, Russia
| | - Gulnara S Mirzaeva
- Institute of Gene Pool of Plants and Animals, Uzbek Academy of SciencesTashkent, Uzbekistan; National University of UzbekistanTashkent, Uzbekistan
| | - Kirill V Mikhailov
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscow, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia
| | - Sergey A Karpov
- Zoological Institute, Russian Academy of SciencesSt. Petersburg, Russia; St. Petersburg State UniversitySt. Petersburg, Russia
| |
Collapse
|
23
|
Abstract
Animals make up only a small fraction of the eukaryotic tree of life, yet, from our vantage point as members of the animal kingdom, the evolution of the bewildering diversity of animal forms is endlessly fascinating. In the century following the publication of Darwin's Origin of Species, hypotheses regarding the evolution of the major branches of the animal kingdom - their relationships to each other and the evolution of their body plans - was based on a consideration of the morphological and developmental characteristics of the different animal groups. This morphology-based approach had many successes but important aspects of the evolutionary tree remained disputed. In the past three decades, molecular data, most obviously primary sequences of DNA and proteins, have provided an estimate of animal phylogeny largely independent of the morphological evolution we would ultimately like to understand. The molecular tree that has evolved over the past three decades has drastically altered our view of animal phylogeny and many aspects of the tree are no longer contentious. The focus of molecular studies on relationships between animal groups means, however, that the discipline has become somewhat divorced from the underlying biology and from the morphological characteristics whose evolution we aim to understand. Here, we consider what we currently know of animal phylogeny; what aspects we are still uncertain about and what our improved understanding of animal phylogeny can tell us about the evolution of the great diversity of animal life.
Collapse
Affiliation(s)
- Maximilian J Telford
- Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, UK.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Hervé Philippe
- Centre de Théorisation et de Modélisation de la Biodiversité, Station d'Ecologie Expérimentale du CNRS, USR CNRS 2936 Moulis, 09200, France; Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
24
|
Gouy R, Baurain D, Philippe H. Rooting the tree of life: the phylogenetic jury is still out. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140329. [PMID: 26323760 DOI: 10.1098/rstb.2014.0329] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This article aims to shed light on difficulties in rooting the tree of life (ToL) and to explore the (sociological) reasons underlying the limited interest in accurately addressing this fundamental issue. First, we briefly review the difficulties plaguing phylogenetic inference and the ways to improve the modelling of the substitution process, which is highly heterogeneous, both across sites and over time. We further observe that enriched taxon samplings, better gene samplings and clever data removal strategies have led to numerous revisions of the ToL, and that these improved shallow phylogenies nearly always relocate simple organisms higher in the ToL provided that long-branch attraction artefacts are kept at bay. Then, we note that, despite the flood of genomic data available since 2000, there has been a surprisingly low interest in inferring the root of the ToL. Furthermore, the rare studies dealing with this question were almost always based on methods dating from the 1990s that have been shown to be inaccurate for much more shallow issues! This leads us to argue that the current consensus about a bacterial root for the ToL can be traced back to the prejudice of Aristotle's Great Chain of Beings, in which simple organisms are ancestors of more complex life forms. Finally, we demonstrate that even the best models cannot yet handle the complexity of the evolutionary process encountered both at shallow depth, when the outgroup is too distant, and at the level of the inter-domain relationships. Altogether, we conclude that the commonly accepted bacterial root is still unproven and that the root of the ToL should be revisited using phylogenomic supermatrices to ensure that new evidence for eukaryogenesis, such as the recently described Lokiarcheota, is interpreted in a sound phylogenetic framework.
Collapse
Affiliation(s)
- Richard Gouy
- Eukaryotic Phylogenomics, Department of Life Sciences and PhytoSYSTEMS, University of Liège, Liège 4000, Belgium Centre for Biodiversity Theory and Modelling, USR CNRS 2936, Station d'Ecologie Expérimentale du CNRS, Moulis 09200, France
| | - Denis Baurain
- Eukaryotic Phylogenomics, Department of Life Sciences and PhytoSYSTEMS, University of Liège, Liège 4000, Belgium
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, USR CNRS 2936, Station d'Ecologie Expérimentale du CNRS, Moulis 09200, France Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
| |
Collapse
|
25
|
Sun L, Fang L, Zhang Z, Chang X, Penny D, Zhong B. Chloroplast Phylogenomic Inference of Green Algae Relationships. Sci Rep 2016; 6:20528. [PMID: 26846729 PMCID: PMC4742797 DOI: 10.1038/srep20528] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022] Open
Abstract
The green algal phylum Chlorophyta has six diverse classes, but the phylogenetic relationship of the classes within Chlorophyta remains uncertain. In order to better understand the ancient Chlorophyta evolution, we have applied a site pattern sorting method to study compositional heterogeneity and the model fit in the green algal chloroplast genomic data. We show that the fastest-evolving sites are significantly correlated with among-site compositional heterogeneity, and these sites have a much poorer fit to the evolutionary model. Our phylogenomic analyses suggest that the class Chlorophyceae is a monophyletic group, and the classes Ulvophyceae, Trebouxiophyceae and Prasinophyceae are non-monophyletic groups. Our proposed phylogenetic tree of Chlorophyta will offer new insights to investigate ancient green algae evolution, and our analytical framework will provide a useful approach for evaluating and mitigating the potential errors of phylogenomic inferences.
Collapse
Affiliation(s)
- Linhua Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Fang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhenhua Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xin Chang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Bojian Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
26
|
Burki F, Kaplan M, Tikhonenkov DV, Zlatogursky V, Minh BQ, Radaykina LV, Smirnov A, Mylnikov AP, Keeling PJ. Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc Biol Sci 2016; 283:rspb.2015.2802. [PMID: 26817772 DOI: 10.1098/rspb.2015.2802] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022] Open
Abstract
Assembling the global eukaryotic tree of life has long been a major effort of Biology. In recent years, pushed by the new availability of genome-scale data for microbial eukaryotes, it has become possible to revisit many evolutionary enigmas. However, some of the most ancient nodes, which are essential for inferring a stable tree, have remained highly controversial. Among other reasons, the lack of adequate genomic datasets for key taxa has prevented the robust reconstruction of early diversification events. In this context, the centrohelid heliozoans are particularly relevant for reconstructing the tree of eukaryotes because they represent one of the last substantial groups that was missing large and diverse genomic data. Here, we filled this gap by sequencing high-quality transcriptomes for four centrohelid lineages, each corresponding to a different family. Combining these new data with a broad eukaryotic sampling, we produced a gene-rich taxon-rich phylogenomic dataset that enabled us to refine the structure of the tree. Specifically, we show that (i) centrohelids relate to haptophytes, confirming Haptista; (ii) Haptista relates to SAR; (iii) Cryptista share strong affinity with Archaeplastida; and (iv) Haptista + SAR is sister to Cryptista + Archaeplastida. The implications of this topology are discussed in the broader context of plastid evolution.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maia Kaplan
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denis V Tikhonenkov
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Vasily Zlatogursky
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - Bui Quang Minh
- Center for Integrative Bioinformatics, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Liudmila V Radaykina
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, St Petersburg State University, St Petersburg, Russia
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Lartillot N. Probabilistic models of eukaryotic evolution: time for integration. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140338. [PMID: 26323768 PMCID: PMC4571576 DOI: 10.1098/rstb.2014.0338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 11/12/2022] Open
Abstract
In spite of substantial work and recent progress, a global and fully resolved picture of the macroevolutionary history of eukaryotes is still under construction. This concerns not only the phylogenetic relations among major groups, but also the general characteristics of the underlying macroevolutionary processes, including the patterns of gene family evolution associated with endosymbioses, as well as their impact on the sequence evolutionary process. All these questions raise formidable methodological challenges, calling for a more powerful statistical paradigm. In this direction, model-based probabilistic approaches have played an increasingly important role. In particular, improved models of sequence evolution accounting for heterogeneities across sites and across lineages have led to significant, although insufficient, improvement in phylogenetic accuracy. More recently, one main trend has been to move away from simple parametric models and stepwise approaches, towards integrative models explicitly considering the intricate interplay between multiple levels of macroevolutionary processes. Such integrative models are in their infancy, and their application to the phylogeny of eukaryotes still requires substantial improvement of the underlying models, as well as additional computational developments.
Collapse
Affiliation(s)
- Nicolas Lartillot
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard Lyon 1, F-69622 Villeurbanne Cedex, France
| |
Collapse
|
28
|
Alexandrou MA, Cardinale BJ, Hall JD, Delwiche CF, Fritschie K, Narwani A, Venail PA, Bentlage B, Pankey MS, Oakley TH. Evolutionary relatedness does not predict competition and co-occurrence in natural or experimental communities of green algae. Proc Biol Sci 2015; 282:20141745. [PMID: 25473009 DOI: 10.1098/rspb.2014.1745] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The competition-relatedness hypothesis (CRH) predicts that the strength of competition is the strongest among closely related species and decreases as species become less related. This hypothesis is based on the assumption that common ancestry causes close relatives to share biological traits that lead to greater ecological similarity. Although intuitively appealing, the extent to which phylogeny can predict competition and co-occurrence among species has only recently been rigorously tested, with mixed results. When studies have failed to support the CRH, critics have pointed out at least three limitations: (i) the use of data poor phylogenies that provide inaccurate estimates of species relatedness, (ii) the use of inappropriate statistical models that fail to detect relationships between relatedness and species interactions amidst nonlinearities and heteroskedastic variances, and (iii) overly simplified laboratory conditions that fail to allow eco-evolutionary relationships to emerge. Here, we address these limitations and find they do not explain why evolutionary relatedness fails to predict the strength of species interactions or probabilities of coexistence among freshwater green algae. First, we construct a new data-rich, transcriptome-based phylogeny of common freshwater green algae that are commonly cultured and used for laboratory experiments. Using this new phylogeny, we re-analyse ecological data from three previously published laboratory experiments. After accounting for the possibility of nonlinearities and heterogeneity of variances across levels of relatedness, we find no relationship between phylogenetic distance and ecological traits. In addition, we show that communities of North American green algae are randomly composed with respect to their evolutionary relationships in 99% of 1077 lakes spanning the continental United States. Together, these analyses result in one of the most comprehensive case studies of how evolutionary history influences species interactions and community assembly in both natural and experimental systems. Our results challenge the generality of the CRH and suggest it may be time to re-evaluate the validity and assumptions of this hypothesis.
Collapse
Affiliation(s)
- Markos A Alexandrou
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Bradley J Cardinale
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA
| | - John D Hall
- Department of Plant Science and Landscape Architecture, University of Maryland, 2102 Plant Sciences Building, College Park, MD 20742, USA
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, MD 20742, USA
| | - Keith Fritschie
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Anita Narwani
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA Eawag, Swiss Federal Institute of Aquatic Science and Technology, ECO BU G11 Uberlandstrasse, 1338600 Dubendorf, Switzerland
| | - Patrick A Venail
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA Section of Earth and Environmental Sciences, Institute F.-A. Forel, University of Geneva, Geneva, Switzerland
| | - Bastian Bentlage
- Department of Cell Biology and Molecular Genetics, University of Maryland, 2107 Bioscience Research Building, College Park, MD 20742, USA
| | - M Sabrina Pankey
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Todd H Oakley
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
29
|
Doyle VP, Young RE, Naylor GJP, Brown JM. Can We Identify Genes with Increased Phylogenetic Reliability? Syst Biol 2015; 64:824-37. [DOI: 10.1093/sysbio/syv041] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/09/2015] [Indexed: 12/19/2022] Open
|
30
|
Eytan RI, Evans BR, Dornburg A, Lemmon AR, Lemmon EM, Wainwright PC, Near TJ. Are 100 enough? Inferring acanthomorph teleost phylogeny using Anchored Hybrid Enrichment. BMC Evol Biol 2015; 15:113. [PMID: 26071950 PMCID: PMC4465735 DOI: 10.1186/s12862-015-0415-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The past decade has witnessed remarkable progress towards resolution of the Tree of Life. However, despite the increased use of genomic scale datasets, some phylogenetic relationships remain difficult to resolve. Here we employ anchored phylogenomics to capture 107 nuclear loci in 29 species of acanthomorph teleost fishes, with 25 of these species sampled from the recently delimited clade Ovalentaria. Previous studies employing multilocus nuclear exon datasets have not been able to resolve the nodes at the base of the Ovalentaria tree with confidence. Here we test whether a phylogenomic approach will provide better support for these nodes, and if not, why this may be. RESULTS After using a novel method to account for paralogous loci, we estimated phylogenies with maximum likelihood and species tree methods using DNA sequence alignments of over 80,000 base pairs. Several key relationships within Ovalentaria are well resolved, including 1) the sister taxon relationship between Cichlidae and Pholidichthys, 2) a clade containing blennies, grammas, clingfishes, and jawfishes, and 3) monophyly of Atherinomorpha (topminnows, flyingfishes, and silversides). However, many nodes in the phylogeny associated with the early diversification of Ovalentaria are poorly resolved in several analyses. Through the use of rarefaction curves we show that limited phylogenetic resolution among the earliest nodes in the Ovalentaria phylogeny does not appear to be due to a deficiency of data, as average global node support ceases to increase when only 1/3rd of the sampled loci are used in analyses. Instead this lack of resolution may be driven by model misspecification as a Bayesian mixed model analysis of the amino acid dataset provided good support for parts of the base of the Ovalentaria tree. CONCLUSIONS Although it does not appear that the limited phylogenetic resolution among the earliest nodes in the Ovalentaria phylogeny is due to a deficiency of data, it may be that both stochastic and systematic error resulting from model misspecification play a role in the poor resolution at the base of the Ovalentaria tree as a Bayesian approach was able to resolve some of the deeper nodes, where the other methods failed.
Collapse
Affiliation(s)
- Ron I Eytan
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, 06520, CT, USA.
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, 77553, TX, USA.
| | - Benjamin R Evans
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, 06520, CT, USA.
| | - Alex Dornburg
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, 06520, CT, USA.
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, 32306, FL, USA.
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, Biomedical Research Facility, Tallahassee, 32306, FL, USA.
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California, One Shields Avenue, Davis, 95616, CA, USA.
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, 06520, CT, USA.
| |
Collapse
|
31
|
Goremykin VV, Nikiforova SV, Cavalieri D, Pindo M, Lockhart P. The Root of Flowering Plants and Total Evidence. Syst Biol 2015; 64:879-91. [DOI: 10.1093/sysbio/syv028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 05/05/2015] [Indexed: 11/14/2022] Open
|
32
|
Giribet G. Morphology should not be forgotten in the era of genomics–a phylogenetic perspective. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.01.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
A Paleogene origin for crown passerines and the diversification of the Oscines in the New World. Mol Phylogenet Evol 2015; 88:1-15. [PMID: 25837731 DOI: 10.1016/j.ympev.2015.03.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/25/2015] [Accepted: 03/18/2015] [Indexed: 11/24/2022]
Abstract
In this study, we present a detailed family-level phylogenetic hypothesis for the largest avian order (Aves: Passeriformes) and an unmatched multi-calibrated, relaxed clock inference for the diversification of crown passerines. Extended taxon sampling allowed the recovery of many challenging clades and elucidated their position in the tree. Acanthisittia appear to have diverged from all other passerines at the early Paleogene, which is considerably later than previously suggested. Thus, Passeriformes may be younger and represent an even more intense adaptive radiation compared to the remaining avian orders. Based on our divergence time estimates, a novel hypothesis for the diversification of modern Suboscines is proposed. According to this hypothesis, the first split between New and Old World lineages would be related to the severing of the Africa-South America biotic connection during the mid-late Eocene, implying an African origin for modern Eurylaimides. The monophyletic status of groups not recovered by any subsequent study since their circumscription, viz. Sylvioidea including Paridae, Remizidae, Hyliotidae, and Stenostiridae; and Muscicapoidea including the waxwing assemblage (Bombycilloidea) were notable topological findings. We also propose possible ecological interactions that may have shaped the distinct Oscine distribution patterns in the New World. The insectivorous endemic Oscines of the Americas, Vireonidae (Corvoidea), Mimidae, and Troglodytidae (Muscicapoidea), probably interfered with autochthonous Suboscines through direct competition. Thus, the Early Miocene arrival of these lineages before any other Oscines may have occupied the few available niches left by Tyrannides, constraining the diversification of insectivorous Oscines that arrived in the Americas later. The predominantly frugivorous-nectarivorous members of Passeroidea, which account for most of the diversity of New World-endemic Oscines, may not have been subjected to competition with Tyrannides. In fact, the vast availability of frugivory niches combined with weak competition with the autochthonous passerine fauna may have been crucial for passeroids to thrive in the New World.
Collapse
|
34
|
Culleton BA, Lall P, Kinsella GK, Doyle S, McCaffrey J, Fitzpatrick DA, Burnell AM. A role for the Parkinson's disease protein DJ-1 as a chaperone and antioxidant in the anhydrobiotic nematode Panagrolaimus superbus. Cell Stress Chaperones 2015; 20:121-37. [PMID: 25318690 PMCID: PMC4255249 DOI: 10.1007/s12192-014-0531-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/16/2014] [Accepted: 07/28/2014] [Indexed: 01/23/2023] Open
Abstract
Mutations in the human DJ-1/PARK7 gene are associated with familial Parkinson's disease. DJ-1 belongs to a large, functionally diverse family with homologues in all biological kingdoms. Several activities have been demonstrated for DJ-1: an antioxidant protein, a redox-regulated molecular chaperone and a modulator of multiple cellular signalling pathways. The majority of functional studies have focussed on human DJ-1 (hDJ-1), but studies on DJ-1 homologues in Drosophila melanogaster, Caenorhabditis elegans, Dugesia japonica and Escherichia coli also provide evidence of a role for DJ-1 as an antioxidant. Here, we show that dehydration is a potent inducer of a dj-1 gene in the anhydrobiotic nematode Panagrolaimus superbus. Our secondary structure and homology modelling analyses shows that recombinant DJ-1 protein from P. superbus (PsuDJ-1.1) is a well-folded protein, which is similar in structure to the hDJ-1. PsuDJ-1.1 is a heat stable protein; with T1/2 unfolding transition values of 76 and 70 °C obtained from both circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) measurements respectively. We found that PsuDJ-1.1 is an efficient antioxidant that also functions as a 'holdase' molecular chaperone that can maintain its chaperone function in a reducing environment. In addition to its chaperone activity, PsuDJ-1.1 may also be an important non-enzymatic antioxidant, capable of providing protection to P. superbus from oxidative damage when the nematodes are in a desiccated, anhydrobiotic state.
Collapse
Affiliation(s)
- Bridget A. Culleton
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
- />Megazyme International Ireland, Bray Business Park, Bray, Co Wicklow Ireland
| | - Patrick Lall
- />Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - Gemma K. Kinsella
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - Sean Doyle
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - John McCaffrey
- />Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - David A. Fitzpatrick
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| | - Ann M. Burnell
- />Department of Biology, National University of Ireland Maynooth, Maynooth, Co Kildare Ireland
| |
Collapse
|
35
|
Cavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore-Donno AM, Lewis R. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol 2014; 81:71-85. [DOI: 10.1016/j.ympev.2014.08.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/02/2014] [Accepted: 08/11/2014] [Indexed: 01/12/2023]
|
36
|
Schrödl M, Stöger I. A review on deep molluscan phylogeny: old markers, integrative approaches, persistent problems. J NAT HIST 2014. [DOI: 10.1080/00222933.2014.963184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Cavalier-Smith T. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Eur J Protistol 2014; 50:472-95. [DOI: 10.1016/j.ejop.2014.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
|
38
|
Andrade SCS, Montenegro H, Strand M, Schwartz ML, Kajihara H, Norenburg JL, Turbeville JM, Sundberg P, Giribet G. A Transcriptomic Approach to Ribbon Worm Systematics (Nemertea): Resolving the Pilidiophora Problem. Mol Biol Evol 2014; 31:3206-15. [DOI: 10.1093/molbev/msu253] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
39
|
Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T. A transcriptome approach to ecdysozoan phylogeny. Mol Phylogenet Evol 2014; 80:79-87. [PMID: 25124096 DOI: 10.1016/j.ympev.2014.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/15/2014] [Accepted: 08/01/2014] [Indexed: 11/20/2022]
Abstract
The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns.
Collapse
Affiliation(s)
- Janus Borner
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | - Peter Rehm
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | - Ralph O Schill
- Zoology, Biological Institute, University of Stuttgart, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, University of Frankfurt, Institute for Cell Biology and Neuroscience, Germany
| | - Thorsten Burmester
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany.
| |
Collapse
|
40
|
Sharma PP, Kaluziak ST, Pérez-Porro AR, González VL, Hormiga G, Wheeler WC, Giribet G. Phylogenomic Interrogation of Arachnida Reveals Systemic Conflicts in Phylogenetic Signal. Mol Biol Evol 2014; 31:2963-84. [DOI: 10.1093/molbev/msu235] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
41
|
Scoble JM, Cavalier-Smith T. Scale evolution, sequence phylogeny, and taxonomy of thaumatomonad Cercozoa: 11 new species and new genera Scutellomonas, Cowlomonas, Thaumatospina and Ovaloplaca. Eur J Protistol 2014; 50:270-313. [DOI: 10.1016/j.ejop.2013.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
42
|
Fernández R, Laumer CE, Vahtera V, Libro S, Kaluziak S, Sharma PP, Pérez-Porro AR, Edgecombe GD, Giribet G. Evaluating topological conflict in centipede phylogeny using transcriptomic data sets. Mol Biol Evol 2014; 31:1500-13. [PMID: 24674821 DOI: 10.1093/molbev/msu108] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Relationships between the five extant orders of centipedes have been considered solved based on morphology. Phylogenies based on samples of up to a few dozen genes have largely been congruent with the morphological tree apart from an alternative placement of one order, the relictual Craterostigmomorpha, consisting of two species in Tasmania and New Zealand. To address this incongruence, novel transcriptomic data were generated to sample all five orders of centipedes and also used as a test case for studying gene-tree incongruence. Maximum likelihood and Bayesian mixture model analyses of a data set composed of 1,934 orthologs with 45% missing data, as well as the 389 orthologs in the least saturated, stationary quartile, retrieve strong support for a sister-group relationship between Craterostigmomorpha and all other pleurostigmophoran centipedes, of which the latter group is newly named Amalpighiata. The Amalpighiata hypothesis, which shows little gene-tree incongruence and is robust to the influence of among-taxon compositional heterogeneity, implies convergent evolution in several morphological and behavioral characters traditionally used in centipede phylogenetics, such as maternal brood care, but accords with patterns of first appearances in the fossil record.
Collapse
Affiliation(s)
- Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Christopher E Laumer
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Varpu Vahtera
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MAZoological Museum, Department of Biology, University of Turku, Turku, Finland
| | - Silvia Libro
- Marine Science Center, Northeastern University, Nahant, MA
| | | | - Prashant P Sharma
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY
| | - Alicia R Pérez-Porro
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MACentre d'Estudis Avançats de Blanes (CEAB-CSIC), Catalonia, Spain
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
| | - Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| |
Collapse
|
43
|
Mayer G, Martin C, Rüdiger J, Kauschke S, Stevenson PA, Poprawa I, Hohberg K, Schill RO, Pflüger HJ, Schlegel M. Selective neuronal staining in tardigrades and onychophorans provides insights into the evolution of segmental ganglia in panarthropods. BMC Evol Biol 2013; 13:230. [PMID: 24152256 PMCID: PMC4015553 DOI: 10.1186/1471-2148-13-230] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/16/2013] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although molecular analyses have contributed to a better resolution of the animal tree of life, the phylogenetic position of tardigrades (water bears) is still controversial, as they have been united alternatively with nematodes, arthropods, onychophorans (velvet worms), or onychophorans plus arthropods. Depending on the hypothesis favoured, segmental ganglia in tardigrades and arthropods might either have evolved independently, or they might well be homologous, suggesting that they were either lost in onychophorans or are a synapomorphy of tardigrades and arthropods. To evaluate these alternatives, we analysed the organisation of the nervous system in three tardigrade species using antisera directed against tyrosinated and acetylated tubulin, the amine transmitter serotonin, and the invertebrate neuropeptides FMRFamide, allatostatin and perisulfakinin. In addition, we performed retrograde staining of nerves in the onychophoran Euperipatoides rowelli in order to compare the serial locations of motor neurons within the nervous system relative to the appendages they serve in arthropods, tardigrades and onychophorans. RESULTS Contrary to a previous report from a Macrobiotus species, our immunocytochemical and electron microscopic data revealed contralateral fibres and bundles of neurites in each trunk ganglion of three tardigrade species, including Macrobiotus cf. harmsworthi, Paramacrobiotus richtersi and Hypsibius dujardini. Moreover, we identified additional, extra-ganglionic commissures in the interpedal regions bridging the paired longitudinal connectives. Within the ganglia we found serially repeated sets of serotonin- and RFamid-like immunoreactive neurons. Furthermore, our data show that the trunk ganglia of tardigrades, which include the somata of motor neurons, are shifted anteriorly with respect to each corresponding leg pair, whereas no such shift is evident in the arrangement of motor neurons in the onychophoran nerve cords. CONCLUSIONS Taken together, these data reveal three major correspondences between the segmental ganglia of tardigrades and arthropods, including (i) contralateral projections and commissures in each ganglion, (ii) segmentally repeated sets of immunoreactive neurons, and (iii) an anteriorly shifted (parasegmental) position of ganglia. These correspondences support the homology of segmental ganglia in tardigrades and arthropods, suggesting that these structures were either lost in Onychophora or, alternatively, evolved in the tardigrade/arthropod lineage.
Collapse
Affiliation(s)
- Georg Mayer
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| | - Christine Martin
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| | - Jan Rüdiger
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| | - Susann Kauschke
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| | - Paul A Stevenson
- Physiology of Animals and Behavior, Institute of Biology, University of Leipzig, Talstraße 33,D-04103 Leipzig, Germany
| | - Izabela Poprawa
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Karin Hohberg
- Senckenberg Museum of Natural History Görlitz, Am Museum 1, D-02826 Görlitz, Germany
| | - Ralph O Schill
- Biological Institute, Zoology, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Hans-Joachim Pflüger
- Neurobiology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 28-30, D-14195 Berlin, Germany
| | - Martin Schlegel
- Molecular Evolution & Animal Systematics, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany
| |
Collapse
|
44
|
Zhong B, Xi Z, Goremykin VV, Fong R, Mclenachan PA, Novis PM, Davis CC, Penny D. Streptophyte Algae and the Origin of Land Plants Revisited Using Heterogeneous Models with Three New Algal Chloroplast Genomes. Mol Biol Evol 2013; 31:177-83. [DOI: 10.1093/molbev/mst200] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
45
|
Abzhanov A. von Baer's law for the ages: lost and found principles of developmental evolution. Trends Genet 2013; 29:712-22. [PMID: 24120296 DOI: 10.1016/j.tig.2013.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/26/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
Abstract
In 1828, Karl Ernst von Baer formulated a series of empirically defined rules, which became widely known as the 'Law of Development' or 'von Baer's law of embryology'. This was one the most significant attempts to define the principles that connected morphological complexity and embryonic development. Understanding this relation is central to both evolutionary biology and developmental genetics. Von Baer's ideas have been both a source of inspiration to generations of biologists and a target of continuous criticism over many years. With advances in multiple fields, including paleontology, cladistics, phylogenetics, genomics, and cell and developmental biology, it is now possible to examine carefully the significance of von Baer's law and its predictions. In this review, I argue that, 185 years after von Baer's law was first formulated, its main concepts after proper refurbishing remain surprisingly relevant in revealing the fundamentals of the evolution-development connection, and suggest that their explanation should become the focus of renewed research.
Collapse
Affiliation(s)
- Arhat Abzhanov
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
46
|
Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AGB, Roger AJ. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci 2013; 280:20131755. [PMID: 23986111 DOI: 10.1098/rspb.2013.1755] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most eukaryotic lineages belong to one of a few major groups. However, several protistan lineages have not yet been robustly placed in any of these groups. Both the breviates and apusomonads are two such lineages that appear to be related to the Amoebozoa and Opisthokonta (i.e. the 'unikonts' or Amorphea); however, their precise phylogenetic positions remain unclear. Here, we describe a novel microaerophilic breviate, Pygsuia biforma gen. nov. sp. nov., isolated from a hypoxic estuarine sediment. Ultrastructurally, this species resembles the breviate genera Breviata and Subulatomonas but has two cell morphologies, adherent and swimming. Phylogenetic analyses of the small sub-unit rRNA gene show that Pygsuia is the sister to the other breviates. We constructed a 159-protein supermatrix, including orthologues identified in RNA-seq data from Pygsuia. Phylogenomic analyses of this dataset show that breviates, apusomonads and Opisthokonta form a strongly supported major eukaryotic grouping we name the Obazoa. Although some phylogenetic methods disagree, the balance of evidence suggests that the breviate lineage forms the deepest branch within Obazoa. We also found transcripts encoding a nearly complete integrin adhesome from Pygsuia, indicating that this protein complex involved in metazoan multicellularity may have evolved earlier in eukaryote evolution than previously thought.
Collapse
Affiliation(s)
- Matthew W Brown
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | |
Collapse
|
47
|
Fabre PH, Jønsson KA, Douzery EJP. Jumping and gliding rodents: mitogenomic affinities of Pedetidae and Anomaluridae deduced from an RNA-Seq approach. Gene 2013; 531:388-97. [PMID: 23973722 DOI: 10.1016/j.gene.2013.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/10/2013] [Accepted: 07/16/2013] [Indexed: 10/26/2022]
Abstract
An RNA-Seq strategy was used to obtain the complete set of protein-coding mitochondrial genes from two rodent taxa. Thanks to the next generation sequencing (NGS) 454 approach, we determined the complete mitochondrial DNA genome from Graphiurus kelleni (Mammalia: Rodentia: Gliridae) and partial mitogenome from Pedetes capensis (Pedetidae), and compared them with published rodent and outgroup mitogenomes. We finished the mitogenome sequencing by a series of amplicons using conserved PCR primers to fill the gaps corresponding to tRNA, rRNA and control regions. Phylogenetic analyses of the mitogenomes suggest a well-supported rodent phylogeny in agreement with nuclear gene trees. Pedetes groups with Anomalurus into the clade Anomaluromorpha, while Graphiurus branches within the squirrel-related clade. Moreover, Pedetes+Anomalurus branch with Castor into the mouse-related clade. Our study demonstrates the utility of NGS for obtaining new mitochondrial genomes as well as the importance of choosing adequate models of sequence evolution to infer the phylogeny of rodents.
Collapse
Affiliation(s)
- Pierre-Henri Fabre
- Institut des Sciences de l'Evolution (ISEM, UMR 5554 UM2-CNRS-IRD), Université Montpellier II, Place Eugène Bataillon - CC 064 - 34095 Montpellier Cedex 5, France; Center for Macroecology Evolution and Climate at the Natural History Museum of Denmark, University of Copenhagen, Universitetsparken, 15, DK-2100 Copenhagen Ø, Denmark
| | | | | |
Collapse
|
48
|
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 2013; 62:611-5. [PMID: 23564032 DOI: 10.1093/sysbio/syt022] [Citation(s) in RCA: 579] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Modeling across site variation of the substitution process is increasingly recognized as important for obtaining more accurate phylogenetic reconstructions. Both finite and infinite mixture models have been proposed and have been shown to significantly improve on classical single-matrix models. Compared with their finite counterparts, infinite mixtures have a greater expressivity. However, they are computationally more challenging. This has resulted in practical compromises in the design of infinite mixture models. In particular, a fast but simplified version of a Dirichlet process model over equilibrium frequency profiles implemented in PhyloBayes has often been used in recent phylogenomics studies, while more refined model structures, more realistic and empirically more fit, have been practically out of reach. We introduce a message passing interface version of PhyloBayes, implementing the Dirichlet process mixture models as well as more classical empirical matrices and finite mixtures. The parallelization is made efficient thanks to the combination of two algorithmic strategies: a partial Gibbs sampling update of the tree topology and the use of a truncated stick-breaking representation for the Dirichlet process prior. The implementation shows close to linear gains in computational speed for up to 64 cores, thus allowing faster phylogenetic reconstruction under complex mixture models. PhyloBayes MPI is freely available from our website www.phylobayes.org.
Collapse
Affiliation(s)
- Nicolas Lartillot
- Centre Robert Cedergren pour la Bioinformatique, Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville. Montréal, Québec H3C 3J7, Canada.
| | | | | | | |
Collapse
|
49
|
Bigot T, Daubin V, Lassalle F, Perrière G. TPMS: a set of utilities for querying collections of gene trees. BMC Bioinformatics 2013; 14:109. [PMID: 23530580 PMCID: PMC3655882 DOI: 10.1186/1471-2105-14-109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/12/2013] [Indexed: 01/02/2023] Open
Abstract
Background The information in large collections of phylogenetic trees is useful for many comparative genomic studies. Therefore, there is a need for flexible tools that allow exploration of such collections in order to retrieve relevant data as quickly as possible. Results In this paper, we present TPMS (Tree Pattern-Matching Suite), a set of programs for handling and retrieving gene trees according to different criteria. The programs from the suite include utilities for tree collection building, specific tree-pattern search strategies and tree rooting. Use of TPMS is illustrated through three examples: systematic search for incongruencies in a large tree collection, a short study on the Coelomata/Ecdysozoa controversy and an evaluation of the level of support for a recently published Mammal phylogeny. Conclusion TPMS is a powerful suite allowing to quickly retrieve sets of trees matching complex patterns in large collection or to root trees using more rigorous approaches than the classical midpoint method. As it is made of a set of command-line programs, it can be easily integrated in any sequence analysis pipeline for an automated use.
Collapse
Affiliation(s)
- Thomas Bigot
- Laboratoire de Biométrie et Biologie Évolutive, UMR CNRS 5558, Université Claude Bernard - Lyon 1, 43 bd, du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | | | |
Collapse
|
50
|
Mayer G, Kauschke S, Rüdiger J, Stevenson PA. Neural markers reveal a one-segmented head in tardigrades (water bears). PLoS One 2013; 8:e59090. [PMID: 23516602 PMCID: PMC3596308 DOI: 10.1371/journal.pone.0059090] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/11/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While recent neuroanatomical and gene expression studies have clarified the alignment of cephalic segments in arthropods and onychophorans, the identity of head segments in tardigrades remains controversial. In particular, it is unclear whether the tardigrade head and its enclosed brain comprises one, or several segments, or a non-segmental structure. To clarify this, we applied a variety of histochemical and immunocytochemical markers to specimens of the tardigrade Macrobiotus cf. harmsworthi and the onychophoran Euperipatoides rowelli. METHODOLOGY/PRINCIPAL FINDINGS Our immunolabelling against serotonin, FMRFamide and α-tubulin reveals that the tardigrade brain is a dorsal, bilaterally symmetric structure that resembles the brain of onychophorans and arthropods rather than a circumoesophageal ring typical of cycloneuralians (nematodes and allies). A suboesophageal ganglion is clearly lacking. Our data further reveal a hitherto unknown, unpaired stomatogastric ganglion in Macrobiotus cf. harmsworthi, which innervates the ectodermal oesophagus and the endodermal midgut and is associated with the second leg-bearing segment. In contrast, the oesophagus of the onychophoran E. rowelli possesses no immunoreactive neurons, whereas scattered bipolar, serotonin-like immunoreactive cell bodies are found in the midgut wall. Furthermore, our results show that the onychophoran pharynx is innervated by a medullary loop nerve accompanied by monopolar, serotonin-like immunoreactive cell bodies. CONCLUSIONS/SIGNIFICANCE A comparison of the nervous system innervating the foregut and midgut structures in tardigrades and onychophorans to that of arthropods indicates that the stomatogastric ganglion is a potential synapomorphy of Tardigrada and Arthropoda. Its association with the second leg-bearing segment in tardigrades suggests that the second trunk ganglion is a homologue of the arthropod tritocerebrum, whereas the first ganglion corresponds to the deutocerebrum. We therefore conclude that the tardigrade brain consists of a single segmental region corresponding to the arthropod protocerebrum and, accordingly, that the tardigrade head is a non-composite, one-segmented structure.
Collapse
Affiliation(s)
- Georg Mayer
- Animal Evolution and Development, Institute of Biology, University of Leipzig, Leipzig, Germany.
| | | | | | | |
Collapse
|