1
|
Budnick A, Franklin MJ, Utley D, Edwards B, Charles M, Hornstein ED, Sederoff H. Long- and short-read sequencing methods discover distinct circular RNA pools in Lotus japonicus. THE PLANT GENOME 2024; 17:e20429. [PMID: 38243772 DOI: 10.1002/tpg2.20429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNAs, generated through a back-splicing process that links a downstream 5' site to an upstream 3' end. The only distinction in the sequence between circRNA and their linear cognate RNA is the back splice junction. Their low abundance and sequence similarity with their linear origin RNA have made the discovery and identification of circRNA challenging. We have identified almost 6000 novel circRNAs from Lotus japonicus leaf tissue using different enrichment, amplification, and sequencing methods as well as alternative bioinformatics pipelines. The different methodologies identified different pools of circRNA with little overlap. We validated circRNA identified by the different methods using reverse transcription polymerase chain reaction and characterized sequence variations using nanopore sequencing. We compared validated circRNA identified in L. japonicus to other plant species and showed conservation of high-confidence circRNA-expressing genes. This is the first identification of L. japonicus circRNA and provides a resource for further characterization of their function in gene regulation. CircRNAs identified in this study originated from genes involved in all biological functions of eukaryotic cells. The comparison of methodologies and technologies to sequence, identify, analyze, and validate circRNA from plant tissues will enable further research to characterize the function and biogenesis of circRNA in L. japonicus.
Collapse
Affiliation(s)
- Asa Budnick
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Megan J Franklin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Delecia Utley
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Brianne Edwards
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Melodi Charles
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Eli D Hornstein
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
2
|
Abstract
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.
Collapse
Affiliation(s)
- Jennifer Ortelt
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany
| | - Gerhard Link
- Department of Biology and Biotechnology, University of Bochum, Bochum, Germany.
| |
Collapse
|
3
|
Dorrell RG, Nisbet RER, Barbrook AC, Rowden SJL, Howe CJ. Integrated Genomic and Transcriptomic Analysis of the Peridinin Dinoflagellate Amphidinium carterae Plastid. Protist 2019; 170:358-373. [PMID: 31415953 DOI: 10.1016/j.protis.2019.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
The plastid genomes of peridinin-containing dinoflagellates are highly unusual, possessing very few genes, which are located on small chromosomal elements termed "minicircles". These minicircles may contain genes, or no recognisable coding information. Transcripts produced from minicircles may undergo unusual processing events, such as the addition of a 3' poly(U) tail. To date, little is known about the genetic or transcriptional diversity of non-coding sequences in peridinin dinoflagellate plastids. These sequences include empty minicircles, and regions of non-coding DNA in coding minicircles. Here, we present an integrated plastid genome and transcriptome for the model peridinin dinoflagellate Amphidinium carterae, identifying a previously undescribed minicircle. We also profile transcripts covering non-coding regions of the psbA and petB/atpA minicircles. We present evidence that antisense transcripts are produced within the A. carterae plastid, but show that these transcripts undergo different end cleavage events from sense transcripts, and do not receive 3' poly(U) tails. The difference in processing events between sense and antisense transcripts may enable the removal of non-coding transcripts from peridinin dinoflagellate plastid transcript pools.
Collapse
Affiliation(s)
| | - R Ellen R Nisbet
- Department of Biochemistry, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
4
|
Lacombe A, Maclean AE, Ovciarikova J, Tottey J, Mühleip A, Fernandes P, Sheiner L. Identification of the
Toxoplasma gondii
mitochondrial ribosome, and characterisation of a protein essential for mitochondrial translation. Mol Microbiol 2019; 112:1235-1252. [PMID: 31339607 PMCID: PMC6851545 DOI: 10.1111/mmi.14357] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/20/2023]
Abstract
Apicomplexan parasites cause diseases such as malaria and toxoplasmosis. The apicomplexan mitochondrion shows striking differences from common model organisms, including fundamental processes such as mitochondrial translation. Despite evidence that mitochondrial translation is essential for parasite survival, it is largely understudied. Progress has been restricted by the absence of functional assays to detect apicomplexan mitochondrial translation, a lack of knowledge of proteins involved in the process and the inability to identify and detect mitoribosomes. We report the localization of 12 new mitochondrial proteins, including 6 putative mitoribosomal proteins. We demonstrate the integration of three mitoribosomal proteins in macromolecular complexes, and provide evidence suggesting these are apicomplexan mitoribosomal subunits, detected here for the first time. Finally, a new analytical pipeline detected defects in mitochondrial translation upon depletion of the small subunit protein 35 (TgmS35), while other mitochondrial functions remain unaffected. Our work lays a foundation for the study of apicomplexan mitochondrial translation.
Collapse
Affiliation(s)
- Alice Lacombe
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Andrew E. Maclean
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Jana Ovciarikova
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Julie Tottey
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
- UMR 1282 ISP INRA‐Université François Rabelais de Tours Nouzilly France
| | - Alexander Mühleip
- Department of Biochemistry and Biophysics Stockholm University Stockholm Sweden
| | - Paula Fernandes
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| | - Lilach Sheiner
- Wellcome Centre for Integrative Parasitology University of Glasgow 120 University Place GlasgowG12 8TAUK
| |
Collapse
|
5
|
Sanitá Lima M, Smith DR. Pervasive Transcription of Mitochondrial, Plastid, and Nucleomorph Genomes across Diverse Plastid-Bearing Species. Genome Biol Evol 2018; 9:2650-2657. [PMID: 29048528 PMCID: PMC5737562 DOI: 10.1093/gbe/evx207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Organelle genomes exhibit remarkable diversity in content, structure, and size, and in their modes of gene expression, which are governed by both organelle- and nuclear-encoded machinery. Next generation sequencing (NGS) has generated unprecedented amounts of genomic and transcriptomic data, which can be used to investigate organelle genome transcription. However, most of the available eukaryotic RNA-sequencing (RNA-seq) data are used to study nuclear transcription only, even though large numbers of organelle-derived reads can typically be mined from these experiments. Here, we use publicly available RNA-seq data to assess organelle genome transcription in 59 diverse plastid-bearing species. Our RNA mapping analyses unraveled pervasive (full or near-full) transcription of mitochondrial, plastid, and nucleomorph genomes. In all cases, 85% or more of the organelle genome was recovered from the RNA data, including noncoding (intergenic and intronic) regions. These results reinforce the idea that organelles transcribe all or nearly all of their genomic material and are dependent on post-transcriptional processing of polycistronic transcripts. We explore the possibility that transcribed intergenic regions are producing functional noncoding RNAs, and that organelle genome noncoding content might provide raw material for generating regulatory RNAs.
Collapse
Affiliation(s)
- Matheus Sanitá Lima
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
6
|
Wang X, Cheng F, Rohlsen D, Bi C, Wang C, Xu Y, Wei S, Ye Q, Yin T, Ye N. Organellar genome assembly methods and comparative analysis of horticultural plants. HORTICULTURE RESEARCH 2018; 5:3. [PMID: 29423233 PMCID: PMC5798811 DOI: 10.1038/s41438-017-0002-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 11/20/2017] [Accepted: 11/26/2017] [Indexed: 05/31/2023]
Abstract
Although organellar genomes (including chloroplast and mitochondrial genomes) are smaller than nuclear genomes in size and gene number, organellar genomes are very important for the investigation of plant evolution and molecular ecology mechanisms. Few studies have focused on the organellar genomes of horticultural plants. Approximately 1193 chloroplast genomes and 199 mitochondrial genomes of land plants are available in the National Center for Biotechnology Information (NCBI), of which only 39 are from horticultural plants. In this paper, we report an innovative and efficient method for high-quality horticultural organellar genome assembly from next-generation sequencing (NGS) data. Sequencing reads were first assembled by Newbler, Amos, and Minimus software with default parameters. The remaining gaps were then filled through BLASTN search and PCR. The complete DNA sequence was corrected based on Illumina sequencing data using BWA (Burrows-Wheeler Alignment tool) software. The advantage of this approach is that there is no need to isolate organellar DNA from total DNA during sample preparation. Using this procedure, the complete mitochondrial and chloroplast genomes of an ornamental plant, Salix suchowensis, and a fruit tree, Ziziphus jujuba, were identified. This study shows that horticultural plants have similar mitochondrial and chloroplast sequence organization to other seed plants. Most horticultural plants demonstrate a slight bias toward A+T rich features in the mitochondrial genome. In addition, a phylogenetic analysis of 39 horticultural plants based on 15 protein-coding genes showed that some mitochondrial genes are horizontally transferred from chloroplast DNA. Our study will provide an important reference for organellar genome assembly in other horticultural plants. Furthermore, phylogenetic analysis of the organellar genomes of horticultural plants could accurately clarify the unanticipated relationships among these plants.
Collapse
Affiliation(s)
- Xuelin Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL 33612 USA
| | - Dekai Rohlsen
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL 33612 USA
| | - Changwei Bi
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu China
| | - Chunyan Wang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Yiqing Xu
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Suyun Wei
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Qiaolin Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Tongming Yin
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu China
| | - Ning Ye
- College of Information Science and Technology, Nanjing Forestry University, Nanjing, Jiangsu China
| |
Collapse
|
7
|
Del Cortona A, Leliaert F, Bogaert KA, Turmel M, Boedeker C, Janouškovec J, Lopez-Bautista JM, Verbruggen H, Vandepoele K, De Clerck O. The Plastid Genome in Cladophorales Green Algae Is Encoded by Hairpin Chromosomes. Curr Biol 2017; 27:3771-3782.e6. [PMID: 29199074 DOI: 10.1016/j.cub.2017.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022]
Abstract
Virtually all plastid (chloroplast) genomes are circular double-stranded DNA molecules, typically between 100 and 200 kb in size and encoding circa 80-250 genes. Exceptions to this universal plastid genome architecture are very few and include the dinoflagellates, where genes are located on DNA minicircles. Here we report on the highly deviant chloroplast genome of Cladophorales green algae, which is entirely fragmented into hairpin chromosomes. Short- and long-read high-throughput sequencing of DNA and RNA demonstrated that the chloroplast genes of Boodlea composita are encoded on 1- to 7-kb DNA contigs with an exceptionally high GC content, each containing a long inverted repeat with one or two protein-coding genes and conserved non-coding regions putatively involved in replication and/or expression. We propose that these contigs correspond to linear single-stranded DNA molecules that fold onto themselves to form hairpin chromosomes. The Boodlea chloroplast genes are highly divergent from their corresponding orthologs, and display an alternative genetic code. The origin of this highly deviant chloroplast genome most likely occurred before the emergence of the Cladophorales, and coincided with an elevated transfer of chloroplast genes to the nucleus. A chloroplast genome that is composed only of linear DNA molecules is unprecedented among eukaryotes, and highlights unexpected variation in plastid genome architecture.
Collapse
Affiliation(s)
- Andrea Del Cortona
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Zwijnaarde, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Frederik Leliaert
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium; Botanic Garden Meise, Nieuwelaan 38, 1860 Meise, Belgium
| | - Kenny A Bogaert
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Monique Turmel
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Pavillon Charles-Eugène-Marchand 1030, Avenue de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Christian Boedeker
- School of Biological Sciences, Victoria University of Wellington, New Kirk Building, Kelburn Parade, P.O. Box 600, Wellington 6012, New Zealand
| | - Jan Janouškovec
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Juan M Lopez-Bautista
- Department of Biological Sciences, The University of Alabama, 300 Hackberry Lane, Tuscaloosa, AL 35484-0345, USA
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Professors Walk, Melbourne, VIC 3010, Australia
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium; VIB Center for Plant Systems Biology, Technologiepark 927, 9052 Zwijnaarde, Belgium; Bioinformatics Institute Ghent, Ghent University, Technologiepark 927, 9052 Zwijnaarde, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
Liu CL, Place AR, Jagus R. Use of Antibiotics for Maintenance of Axenic Cultures of Amphidinium carterae for the Analysis of Translation. Mar Drugs 2017; 15:E242. [PMID: 28763019 PMCID: PMC5577597 DOI: 10.3390/md15080242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/17/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022] Open
Abstract
Most dinoflagellates in culture are bacterized, complicating the quantification of protein synthesis, as well as the analysis of its regulation. In bacterized cultures of Amphidinium carterae Hulbert, up to 80% of protein synthetic activity appears to be predominantly bacterial based on responses to inhibitors of protein synthesis. To circumvent this, axenic cultures of A. carterae were obtained and shown to respond to inhibitors of protein synthesis in a manner characteristic of eukaryotes. However, these responses changed with time in culture correlating with the reappearance of bacteria. Here we show that culture with kanamycin (50 μg/mL), carbenicillin (100 μg/mL), and streptomycin sulfate (50 μg/mL) (KCS), but not 100 units/mL of penicillin and streptomycin (PS), prevents the reappearance of bacteria and allows A. carterae protein synthesis to be quantified without the contribution of an associated bacterial community. We demonstrate that A. carterae can grow in the absence of a bacterial community. Furthermore, maintenance in KCS does not inhibit the growth of A. carterae cultures but slightly extends the growth phase and allows accumulation to somewhat higher saturation densities. We also show that cultures of A. carterae maintained in KCS respond to the eukaryotic protein synthesis inhibitors cycloheximide, emetine, and harringtonine. Establishment of these culture conditions will facilitate our ability to use polysome fractionation and ribosome profiling to study mRNA recruitment. Furthermore, this study shows that a simple and fast appraisal of the presence of a bacterial community in A. carterae cultures can be made by comparing responses to cycloheximide and chloramphenicol rather than depending on lengthier culture-based assessments.
Collapse
Affiliation(s)
- Chieh-Lun Liu
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | - Allen R Place
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| | - Rosemary Jagus
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
9
|
Yurina NP, Sharapova LS, Odintsova MS. Structure of Plastid Genomes of Photosynthetic Eukaryotes. BIOCHEMISTRY (MOSCOW) 2017; 82:678-691. [PMID: 28601077 DOI: 10.1134/s0006297917060049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review presents current views on the plastid genomes of higher plants and summarizes data on the size, structural organization, gene content, and other features of plastid DNAs. Special emphasis is placed on the properties of organization of land plant plastid genomes (nucleoids) that distinguish them from bacterial genomes. The prospects of genetic engineering of chloroplast genomes are discussed.
Collapse
Affiliation(s)
- N P Yurina
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
10
|
Yurina NP, Odintsova MS. Mitochondrial Genome Structure of Photosynthetic Eukaryotes. BIOCHEMISTRY (MOSCOW) 2017; 81:101-13. [PMID: 27260390 DOI: 10.1134/s0006297916020048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Current ideas of plant mitochondrial genome organization are presented. Data on the size and structural organization of mtDNA, gene content, and peculiarities are summarized. Special emphasis is given to characteristic features of the mitochondrial genomes of land plants and photosynthetic algae that distinguish them from the mitochondrial genomes of other eukaryotes. The data published before the end of 2014 are reviewed.
Collapse
Affiliation(s)
- N P Yurina
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | |
Collapse
|
11
|
Silva SR, Diaz YCA, Penha HA, Pinheiro DG, Fernandes CC, Miranda VFO, Michael TP, Varani AM. The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family. PLoS One 2016; 11:e0165176. [PMID: 27764252 PMCID: PMC5072713 DOI: 10.1371/journal.pone.0165176] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/08/2016] [Indexed: 02/06/2023] Open
Abstract
Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the endosymbiotic gene transfer may also shape the U. reniformis genome in a similar fashion. Overall the comparative analysis of the U. reniformis cp genome provides new insight into the ndh genes and cp genome evolution of carnivorous plants from Lentibulariaceae family.
Collapse
Affiliation(s)
- Saura R. Silva
- Instituto de Biociências, UNESP - Univ Estadual Paulista, Câmpus Botucatu, São Paulo, Brazil
| | - Yani C. A. Diaz
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Helen Alves Penha
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Camila C. Fernandes
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Vitor F. O. Miranda
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| | - Todd P. Michael
- Ibis Bioscience, Computational Genomics, Carlsbad, California, United States of America
| | - Alessandro M. Varani
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, UNESP - Univ Estadual Paulista, Câmpus Jaboticabal, São Paulo, Brazil
| |
Collapse
|
12
|
Kim D, Thairu MW, Hansen AK. Novel Insights into Insect-Microbe Interactions-Role of Epigenomics and Small RNAs. FRONTIERS IN PLANT SCIENCE 2016; 7:1164. [PMID: 27540386 PMCID: PMC4972996 DOI: 10.3389/fpls.2016.01164] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/20/2016] [Indexed: 05/23/2023]
Abstract
It has become increasingly clear that microbes form close associations with the vast majority of animal species, especially insects. In fact, an array of diverse microbes is known to form shared metabolic pathways with their insect hosts. A growing area of research in insect-microbe interactions, notably for hemipteran insects and their mutualistic symbionts, is to elucidate the regulation of this inter-domain metabolism. This review examines two new emerging mechanisms of gene regulation and their importance in host-microbe interactions. Specifically, we highlight how the incipient areas of research on regulatory "dark matter" such as epigenomics and small RNAs, can play a pivotal role in the evolution of both insect and microbe gene regulation. We then propose specific models of how these dynamic forms of gene regulation can influence insect-symbiont-plant interactions. Future studies in this area of research will give us a systematic understanding of how these symbiotic microbes and animals reciprocally respond to and regulate their shared metabolic processes.
Collapse
|
13
|
Smith DR, Keeling PJ. Protists and the Wild, Wild West of Gene Expression: New Frontiers, Lawlessness, and Misfits. Annu Rev Microbiol 2016; 70:161-78. [PMID: 27359218 DOI: 10.1146/annurev-micro-102215-095448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The DNA double helix has been called one of life's most elegant structures, largely because of its universality, simplicity, and symmetry. The expression of information encoded within DNA, however, can be far from simple or symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukaryotes). The nuclear and organelle genomes of protists are subject to the most tangled forms of gene expression yet identified. The complicated and extravagant picture of the underlying genetics of eukaryotic microbial life changes how we think about the flow of genetic information and the evolutionary processes shaping it. Here, we discuss the origins, diversity, and growing interest in noncanonical protist gene expression and its relationship to genomic architecture.
Collapse
Affiliation(s)
- David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7;
| | - Patrick J Keeling
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4;
| |
Collapse
|
14
|
McCutcheon JP. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell. Curr Opin Cell Biol 2016; 41:132-6. [PMID: 27267617 DOI: 10.1016/j.ceb.2016.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 01/19/2023]
Abstract
Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work.
Collapse
Affiliation(s)
- John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59801, USA.
| |
Collapse
|
15
|
Tian Y, Smith DR. Recovering complete mitochondrial genome sequences from RNA-Seq: A case study of Polytomella non-photosynthetic green algae. Mol Phylogenet Evol 2016; 98:57-62. [DOI: 10.1016/j.ympev.2016.01.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
16
|
Kuzmenko A, Derbikova K, Salvatori R, Tankov S, Atkinson GC, Tenson T, Ott M, Kamenski P, Hauryliuk V. Aim-less translation: loss of Saccharomyces cerevisiae mitochondrial translation initiation factor mIF3/Aim23 leads to unbalanced protein synthesis. Sci Rep 2016; 6:18749. [PMID: 26728900 PMCID: PMC4700529 DOI: 10.1038/srep18749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022] Open
Abstract
The mitochondrial genome almost exclusively encodes a handful of transmembrane constituents of the oxidative phosphorylation (OXPHOS) system. Coordinated expression of these genes ensures the correct stoichiometry of the system’s components. Translation initiation in mitochondria is assisted by two general initiation factors mIF2 and mIF3, orthologues of which in bacteria are indispensible for protein synthesis and viability. mIF3 was thought to be absent in Saccharomyces cerevisiae until we recently identified mitochondrial protein Aim23 as the missing orthologue. Here we show that, surprisingly, loss of mIF3/Aim23 in S. cerevisiae does not indiscriminately abrogate mitochondrial translation but rather causes an imbalance in protein production: the rate of synthesis of the Atp9 subunit of F1F0 ATP synthase (complex V) is increased, while expression of Cox1, Cox2 and Cox3 subunits of cytochrome c oxidase (complex IV) is repressed. Our results provide one more example of deviation of mitochondrial translation from its bacterial origins.
Collapse
Affiliation(s)
- Anton Kuzmenko
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Ksenia Derbikova
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Roger Salvatori
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Stoyan Tankov
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Gemma C Atkinson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| | - Tanel Tenson
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia
| | - Martin Ott
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Piotr Kamenski
- Molecular Biology Department, Faculty of Biology, M.V. Lomonosov Moscow State University, 1/12 Leninskie Gory, 119991 Moscow, Russia
| | - Vasili Hauryliuk
- University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia.,Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden
| |
Collapse
|
17
|
Havird JC, Whitehill NS, Snow CD, Sloan DB. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution. Evolution 2015; 69:3069-81. [PMID: 26514987 DOI: 10.1111/evo.12808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 12/11/2022]
Abstract
Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial-targeted proteins (N-mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N-mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear- and mitochondrial-encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N-mt gene evolution in species with fast-evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N-mt substitutions at positions that directly contact mutated residues in mitochondrial-encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N-mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| | - Nicholas S Whitehill
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, 80523
| | - Christopher D Snow
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado, 80523
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523.
| |
Collapse
|
18
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
19
|
Transcription and processing of mitochondrial RNA in the human pathogen Acanthamoeba castellanii. Mitochondrion 2015; 23:25-31. [DOI: 10.1016/j.mito.2015.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 11/21/2022]
|
20
|
Abstract
The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank—an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission.
Collapse
|
21
|
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 2015; 112:10231-8. [PMID: 26286985 DOI: 10.1073/pnas.1500012112] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.
Collapse
|
22
|
Mitochondrial and plastid genome architecture: Reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A 2015; 112:10177-84. [PMID: 25814499 DOI: 10.1073/pnas.1422049112] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial and plastid genomes show a wide array of architectures, varying immensely in size, structure, and content. Some organelle DNAs have even developed elaborate eccentricities, such as scrambled coding regions, nonstandard genetic codes, and convoluted modes of posttranscriptional modification and editing. Here, we compare and contrast the breadth of genomic complexity between mitochondrial and plastid chromosomes. Both organelle genomes have independently evolved many of the same features and taken on similar genomic embellishments, often within the same species or lineage. This trend is most likely because the nuclear-encoded proteins mediating these processes eventually leak from one organelle into the other, leading to a high likelihood of processes appearing in both compartments in parallel. However, the complexity and intensity of genomic embellishments are consistently more pronounced for mitochondria than for plastids, even when they are found in both compartments. We explore the evolutionary forces responsible for these patterns and argue that organelle DNA repair processes, mutation rates, and population genetic landscapes are all important factors leading to the observed convergence and divergence in organelle genome architecture.
Collapse
|
23
|
Del Vasto M, Figueroa-Martinez F, Featherston J, González MA, Reyes-Prieto A, Durand PM, Smith DR. Massive and widespread organelle genomic expansion in the green algal genus Dunaliella. Genome Biol Evol 2015; 7:656-63. [PMID: 25663488 PMCID: PMC5322560 DOI: 10.1093/gbe/evv027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mitochondrial genomes of chlamydomonadalean green algae are renowned for their highly reduced and conserved gene repertoires, which are almost fixed at 12 genes across the entire lineage. The sizes of these genomes, however, are much more variable, with some species having small, compact mitochondrial DNAs (mtDNAs) and others having expanded ones. Earlier work demonstrated that the halophilic genus Dunaliella contains extremely inflated organelle genomes, but to date the mtDNA of only one isolate has been explored. Here, by surveying mtDNA architecture across the Chlamydomonadales, we show that various Dunaliella species have undergone massive levels of mitochondrial genomic expansion, harboring the most inflated, intron-dense mtDNAs available from chlorophyte green algae. The same also appears to be true for their plastid genomes, which are potentially among the largest of all plastid-containing eukaryotes. Genetic divergence data are used to investigate the underlying causes of such extreme organelle genomic architectures, and ultimately reveal order-of-magnitude differences in mitochondrial versus plastid mutation rates within Dunaliella.
Collapse
Affiliation(s)
- Michael Del Vasto
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Francisco Figueroa-Martinez
- Department of Biology, Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Jonathan Featherston
- Department of Molecular Medicine and Sydney Brenner Institute for Molecular Biosciences, University of the Witwatersrand, Johannesburg, South Africa Agricultural Research Council, Biotechnology Platform, Pretoria, South Africa
| | - Mariela A González
- Departamento de Botánica, Facultad de Ciencias Naturales y Oceanógraficas. Universidad de Concepción, Casilla, Concepción, Chile
| | - Adrian Reyes-Prieto
- Department of Biology, Canadian Institute for Advanced Research, Integrated Microbial Biodiversity Program, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Pierre M Durand
- Department of Molecular Medicine and Sydney Brenner Institute for Molecular Biosciences, University of the Witwatersrand, Johannesburg, South Africa Department of Biodiversity and Conservation Biology, Faculty of Natural Sciences, University of the Western Cape, Belville, Cape Town, South Africa
| | - David Roy Smith
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
Pochon X, Putnam HM, Gates RD. Multi-gene analysis of Symbiodinium dinoflagellates: a perspective on rarity, symbiosis, and evolution. PeerJ 2014; 2:e394. [PMID: 24883254 PMCID: PMC4034598 DOI: 10.7717/peerj.394] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/03/2014] [Indexed: 11/20/2022] Open
Abstract
Symbiodinium, a large group of dinoflagellates, live in symbiosis with marine protists, invertebrate metazoans, and free-living in the environment. Symbiodinium are functionally variable and play critical energetic roles in symbiosis. Our knowledge of Symbiodinium has been historically constrained by the limited number of molecular markers available to study evolution in the genus. Here we compare six functional genes, representing three cellular compartments, in the nine known Symbiodinium lineages. Despite striking similarities among the single gene phylogenies from distinct organelles, none were evolutionarily identical. A fully concatenated reconstruction, however, yielded a well-resolved topology identical to the current benchmark nr28S gene. Evolutionary rates differed among cellular compartments and clades, a pattern largely driven by higher rates of evolution in the chloroplast genes of Symbiodinium clades D2 and I. The rapid rates of evolution observed amongst these relatively uncommon Symbiodinium lineages in the functionally critical chloroplast may translate into potential innovation for the symbiosis. The multi-gene analysis highlights the potential power of assessing genome-wide evolutionary patterns using recent advances in sequencing technology and emphasizes the importance of integrating ecological data with more comprehensive sampling of free-living and symbiotic Symbiodinium in assessing the evolutionary adaptation of this enigmatic dinoflagellate.
Collapse
Affiliation(s)
- Xavier Pochon
- Environmental Technologies, Cawthron Institute , Nelson , New Zealand
| | - Hollie M Putnam
- University of Hawaii, Hawaii Institute of Marine Biology , Kaneohe, HI , USA
| | - Ruth D Gates
- University of Hawaii, Hawaii Institute of Marine Biology , Kaneohe, HI , USA
| |
Collapse
|
25
|
Koumandou VL, Wickstead B, Ginger ML, van der Giezen M, Dacks JB, Field MC. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit Rev Biochem Mol Biol 2014; 48:373-96. [PMID: 23895660 PMCID: PMC3791482 DOI: 10.3109/10409238.2013.821444] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.
Collapse
Affiliation(s)
- V Lila Koumandou
- Biomedical Research Foundation, Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Chloroplasts, the sites of photosynthesis and sources of reducing power, are at the core of the success story that sets apart autotrophic plants from most other living organisms. Along with their fellow organelles (e.g., amylo-, chromo-, etio-, and leucoplasts), they form a group of intracellular biosynthetic machines collectively known as plastids. These plant cell constituents have their own genome (plastome), their own (70S) ribosomes, and complete enzymatic equipment covering the full range from DNA replication via transcription and RNA processive modification to translation. Plastid RNA synthesis (gene transcription) involves the collaborative activity of two distinct types of RNA polymerases that differ in their phylogenetic origin as well as their architecture and mode of function. The existence of multiple plastid RNA polymerases is reflected by distinctive sets of regulatory DNA elements and protein factors. This complexity of the plastid transcription apparatus thus provides ample room for regulatory effects at many levels within and beyond transcription. Research in this field offers insight into the various ways in which plastid genes, both singly and groupwise, can be regulated according to the needs of the entire cell. Furthermore, it opens up strategies that allow to alter these processes in order to optimize the expression of desired gene products.
Collapse
Affiliation(s)
- Jennifer Ortelt
- Plant Cell Physiology and Molecular Biology, University of Bochum, Bochum, Germany
| | | |
Collapse
|
27
|
Berry JO, Yerramsetty P, Zielinski AM, Mure CM. Photosynthetic gene expression in higher plants. PHOTOSYNTHESIS RESEARCH 2013; 117:91-120. [PMID: 23839301 DOI: 10.1007/s11120-013-9880-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/26/2013] [Indexed: 05/08/2023]
Abstract
Within the chloroplasts of higher plants and algae, photosynthesis converts light into biological energy, fueling the assimilation of atmospheric carbon dioxide into biologically useful molecules. Two major steps, photosynthetic electron transport and the Calvin-Benson cycle, require many gene products encoded from chloroplast as well as nuclear genomes. The expression of genes in both cellular compartments is highly dynamic and influenced by a diverse range of factors. Light is the primary environmental determinant of photosynthetic gene expression. Working through photoreceptors such as phytochrome, light regulates photosynthetic genes at transcriptional and posttranscriptional levels. Other processes that affect photosynthetic gene expression include photosynthetic activity, development, and biotic and abiotic stress. Anterograde (from nucleus to chloroplast) and retrograde (from chloroplast to nucleus) signaling insures the highly coordinated expression of the many photosynthetic genes between these different compartments. Anterograde signaling incorporates nuclear-encoded transcriptional and posttranscriptional regulators, such as sigma factors and RNA-binding proteins, respectively. Retrograde signaling utilizes photosynthetic processes such as photosynthetic electron transport and redox signaling to influence the expression of photosynthetic genes in the nucleus. The basic C3 photosynthetic pathway serves as the default form used by most of the plant species on earth. High temperature and water stress associated with arid environments have led to the development of specialized C4 and CAM photosynthesis, which evolved as modifications of the basic default expression program. The goal of this article is to explain and summarize the many gene expression and regulatory processes that work together to support photosynthetic function in plants.
Collapse
Affiliation(s)
- James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA,
| | | | | | | |
Collapse
|
28
|
Hammani K, Bonnard G, Bouchoucha A, Gobert A, Pinker F, Salinas T, Giegé P. Helical repeats modular proteins are major players for organelle gene expression. Biochimie 2013; 100:141-50. [PMID: 24021622 DOI: 10.1016/j.biochi.2013.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/30/2013] [Indexed: 11/18/2022]
Abstract
Mitochondria and chloroplasts are often described as semi-autonomous organelles because they have retained a genome. They thus require fully functional gene expression machineries. Many of the required processes going all the way from transcription to translation have specificities in organelles and arose during eukaryote history. Most factors involved in these RNA maturation steps have remained elusive for a long time. The recent identification of a number of novel protein families including pentatricopeptide repeat proteins, half-a-tetratricopeptide proteins, octotricopeptide repeat proteins and mitochondrial transcription termination factors has helped to settle long-standing questions regarding organelle gene expression. In particular, their functions have been related to replication, transcription, RNA processing, RNA editing, splicing, the control of RNA turnover and translation throughout eukaryotes. These families of proteins, although evolutionary independent, seem to share a common overall architecture. For all of them, proteins contain tandem arrays of repeated motifs. Each module is composed of two to three α-helices and their succession forms a super-helix. Here, we review the features characterising these protein families, in particular, their distribution, the identified functions and mode of action and propose that they might share similar substrate recognition mechanisms.
Collapse
|
29
|
Wobbe L, Nixon PJ. The mTERF protein MOC1 terminates mitochondrial DNA transcription in the unicellular green alga Chlamydomonas reinhardtii. Nucleic Acids Res 2013; 41:6553-67. [PMID: 23649833 PMCID: PMC3711419 DOI: 10.1093/nar/gkt313] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The molecular function of mTERFs (mitochondrial transcription termination factors) has so far only been described for metazoan members of the protein family and in animals they control mitochondrial replication, transcription and translation. Cells of photosynthetic eukaryotes harbour chloroplasts and mitochondria, which are in an intense cross-talk that is vital for photosynthesis. Chlamydomonas reinhardtii is a unicellular green alga widely used as a model organism for photosynthesis research and green biotechnology. Among the six nuclear C. reinhardtii mTERF genes is mTERF-like gene of Chlamydomonas (MOC1), whose inactivation alters mitorespiration and interestingly also light-acclimation processes in the chloroplast that favour the enhanced production of biohydrogen. We show here from in vitro studies that MOC1 binds specifically to a sequence within the mitochondrial rRNA-coding module S3, and that a knockout of MOC1 in the mutant stm6 increases read-through transcription at this site, indicating that MOC1 acts as a transcription terminator in vivo. Whereas the level of certain antisense RNA species is higher in stm6, the amount of unprocessed mitochondrial sense transcripts is strongly reduced, demonstrating that a loss of MOC1 causes perturbed mitochondrial DNA (mtDNA) expression. Overall, we provide evidence for the existence of mitochondrial antisense RNAs in C. reinhardtii and show that mTERF-mediated transcription termination is an evolutionary-conserved mechanism occurring in phototrophic protists and metazoans.
Collapse
Affiliation(s)
- Lutz Wobbe
- Department of Biology, Algae Biotechnology and Bioenergy-Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany.
| | | |
Collapse
|
30
|
Jackson CJ, Waller RF. A widespread and unusual RNA trans-splicing type in dinoflagellate mitochondria. PLoS One 2013; 8:e56777. [PMID: 23437234 PMCID: PMC3577742 DOI: 10.1371/journal.pone.0056777] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/15/2013] [Indexed: 11/30/2022] Open
Abstract
Cytochrome oxidase subunit 3 (Cox3) is a mitochondrion-encoded core membrane protein of complex IV of the mitochondrial respiratory chain, and consists of seven trans-membrane helices. Here we show that in diverse later-branching dinoflagellates, cox3 is consistently split into two exons in the mitochondrial genome between helices six and seven. Gene exons are transcribed as two discrete oligoadenylated precursor RNAs, and these are subsequently trans-spliced to form a complete coding mRNA. This trans-splicing is highly unusual in that some of the oligoadenylated tail is incorporated at the splice site, such that a short string of adenosines links the two coding exons. This feature is consistently represented in diverse dinoflagellates, however the number of adenosines added varies according to the size of the coding gap between the two exons. Thus we observed between zero (Amphidinium carterae) and 10 (Symbiodinium sp.) adenosines added in different taxa, but the final coding sequence length is identical with the reading frame maintained. Northern analyses show that precursor cox3 transcripts are approximately equally abundant as mature cox3 mRNAs, suggesting a slow or regulated maturation process. These data indicate that the splicing mechanism in dinoflagellate mitochondria is tolerant of variations in the length of the precursor coding sequence, and implicates the use of a splicing template, or guide molecule, during splicing that controls mature mRNA length.
Collapse
Affiliation(s)
| | - Ross F. Waller
- School of Botany, The University of Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
31
|
Abstract
Dinoflagellates are known for their development of highly aberrant organelle genetic systems. Both their plastid and mitochondrial genomes are extremely reduced in gene number and rearranged into numerous unconventional genomic elements. Transcription processes are also elaborately modified including extensive RNA editing and trans-splicing. Some dinoflagellates have replaced their original plastid through serial endosymbiotic events. Karlodinium veneficum is such an example that now contains a haptophyte plastid. This tertiary plastid provides a case of a more conventional genetic system introduced into a cellular environment with a known penchant for genetic oddities. Here, we show that K. veneficum plastid transcripts undergo extensive substitutional editing. The substitution types are more diverse than those seen in most other plastids but are similar to those of dinoflagellate organelles. There is no evidence for RNA editing of plastid-encoded transcripts from extant haptophytes, suggesting that K. veneficum plastid editing developed after the uptake of the tertiary endosymbiont.
Collapse
|
32
|
Basic mechanism of transcription by RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:20-8. [PMID: 22982365 DOI: 10.1016/j.bbagrm.2012.08.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/23/2012] [Accepted: 08/29/2012] [Indexed: 11/21/2022]
Abstract
RNA polymerase II-like enzymes carry out transcription of genomes in Eukaryota, Archaea, and some viruses. They also exhibit fundamental similarity to RNA polymerases from bacteria, chloroplasts, and mitochondria. In this review we take an inventory of recent studies illuminating different steps of basic transcription mechanism, likely common for most multi-subunit RNA polymerases. Through the amalgamation of structural and computational chemistry data we attempt to highlight the most feasible reaction pathway for the two-metal nucleotidyl transfer mechanism, and to evaluate the way catalysis can be linked to translocation in the mechano-chemical cycle catalyzed by RNA polymerase II. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
|
33
|
Wang Y, Ding J, Daniell H, Hu H, Li X. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins. PLANT MOLECULAR BIOLOGY 2012; 80:177-87. [PMID: 22733202 DOI: 10.1007/s11103-012-9938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | | | | | | | | |
Collapse
|
34
|
Pelin A, Pombert JF, Salvioli A, Bonen L, Bonfante P, Corradi N. The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns. THE NEW PHYTOLOGIST 2012; 194:836-845. [PMID: 22320438 DOI: 10.1111/j.1469-8137.2012.04072.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• Arbuscular mycorrhizal fungi (AMF) are ubiquitous organisms that benefit ecosystems through the establishment of an association with the roots of most plants: the mycorrhizal symbiosis. Despite their ecological importance, however, these fungi have been poorly studied at the genome level. • In this study, total DNA from the AMF Gigaspora margarita was subjected to a combination of 454 and Illumina sequencing, and the resulting reads were used to assemble its mitochondrial genome de novo. This genome was annotated and compared with those of other relatives to better comprehend the evolution of the AMF lineage. • The mitochondrial genome of G. margarita is unique in many ways, exhibiting a large size (97 kbp) and elevated GC content (45%). This genome also harbors molecular events that were previously unknown to occur in fungal mitochondrial genomes, including trans-splicing of group I introns from two different genes coding for the first subunit of the cytochrome oxidase and for the small subunit of the rRNA. • This study reports the second published genome from an AMF organelle, resulting in relevant DNA sequence information from this poorly studied fungal group, and providing new insights into the frequency, origin and evolution of trans-spliced group I introns found across the mitochondrial genomes of distantly related organisms.
Collapse
Affiliation(s)
- Adrian Pelin
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| | - Jean-François Pombert
- Department of Botany, University of British Columbia; Vancouver, V6T 1Z4, BC, Canada
| | - Alessandra Salvioli
- Dipartimento di Biologia Vegetale, Università di Torino, Torino, I-10125, Italy
| | - Linda Bonen
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| | - Paola Bonfante
- Dipartimento di Biologia Vegetale, Università di Torino, Torino, I-10125, Italy
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, K1N 6N5, ON, Canada
| |
Collapse
|
35
|
Tarr SJ, Nisbet RER, Howe CJ. Transcript level responses of Plasmodium falciparum to antimycin A. Protist 2012; 163:755-66. [PMID: 22503086 PMCID: PMC3657180 DOI: 10.1016/j.protis.2012.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/23/2011] [Accepted: 01/28/2012] [Indexed: 01/06/2023]
Abstract
The mitochondrial electron transport chain is essential to Plasmodium and is the target of the antimalarial drug atovaquone. The mitochondrial genomes of Plasmodium sp. are the most reduced known, and the majority of mitochondrial proteins are encoded in the nucleus and imported into the mitochondrion post-translationally. Many organisms have signalling pathways between the mitochondria and the nucleus to regulate the expression of nuclear-encoded mitochondrially-targeted proteins, for example in response to mitochondrial dysfunction. We have studied the transcript profiles of synchronous Plasmodium falciparum treated with an LD50 concentration of the complex III inhibitor antimycin A, to investigate whether such pathways exist in the parasite. There was a broad perturbation of gene expression. The differentially expressed genes were enriched for transcripts encoding proteins involved in invasion, stress response, nucleotide biosynthesis and respiration. Some effects were attributable to a delay in the gene expression phase of drug-treated parasites. However, our data indicated regulation of mitochondrial stress response genes and genes involved in pyrimidine biosynthesis, implying the existence of a signalling pathway from the mitochondrion to the nucleus.
Collapse
Affiliation(s)
- Sarah J Tarr
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, Cambridgeshire, CB2 1QW, United Kingdom
| | | | | |
Collapse
|
36
|
Ogawa S, Suzuki Y, Yoshizawa R, Kanno K, Makino A. Effect of individual suppression of RBCS multigene family on Rubisco contents in rice leaves. PLANT, CELL & ENVIRONMENT 2012; 35:546-553. [PMID: 21951138 DOI: 10.1111/j.1365-3040.2011.02434.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In higher plants, a small subunit of Rubisco is encoded for by an RBCS multigene family in the nuclear genome. However, it is unknown how each multigene member contributes to the accumulation of Rubisco holoenzyme. Here, four RBCS genes that are highly expressed in leaf blaedes of rice (Oryza sativa L.) were individually suppressed by RNAi, and the effects on leaf Rubisco content were examined at seedling, vegetative and reproductive stages. Rubisco contents in each transgenic line declined irrespective of growth stage, and the ratios of Rubisco-N to total N were 66-96% of wild-type levels. The mRNA levels of the suppressed RBCS genes declined significantly, whereas those of the unsuppressed ones did not change drastically. These results indicate that four RBCS genes all contribute to accumulation of Rubisco holoenzyme irrespective of growth stage and that suppression of one RBCS gene is not fully compensated by other RBCS genes. Additionally, the mRNA levels of the large subunit of Rubisco showed a change similar to that of total RBCS mRNA level irrespective of genotype and growth stage. These results suggest that gene expression of RBCS and RBCL is regulated in a coordinated manner at the transcript level in rice.
Collapse
Affiliation(s)
- Shun Ogawa
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai, Japan
| | | | | | | | | |
Collapse
|
37
|
Tanaka K, Hanaoka M. The early days of plastid retrograde signaling with respect to replication and transcription. FRONTIERS IN PLANT SCIENCE 2012; 3:301. [PMID: 23316208 PMCID: PMC3539659 DOI: 10.3389/fpls.2012.00301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 12/14/2012] [Indexed: 05/08/2023]
Abstract
The plastid signal was originally defined as a pathway that informs the nucleus of the chloroplast status and results in the modulation of expression of nuclear-encoded plastid protein genes. However, the transfer of chloroplast genes into the nuclear genome is a prerequisite in this scheme, although it should not have been established during the very early phase of chloroplast evolution. We recently demonstrated in a primitive red alga that the plastid-derived Mg-protoporphyrin IX activates nuclear DNA replication (NDR) through the stabilization of a G1 cyclin, which coordinates the timing of organelle and NDR. This mechanism apparently does not involve any transcriptional regulation in the nucleus, and could have been established prior to gene transfer events. However, a retrograde signal mediating light-responsive gene expression may have been established alongside gene transfer, because essential light sensing and regulatory systems were originally incorporated into plant cells by the photosynthetic endosymbiont. In this short article, we discuss the origins, early days and evolution of the plastid retrograde signal(s).
Collapse
Affiliation(s)
- Kan Tanaka
- Chemical Resources Laboratory, Tokyo Institute of TechnologyYokohama, Japan
- *Correspondence: Kan Tanaka, Chemical Resources Laboratory, Tokyo Institute of Technology, 29-R1-4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan. e-mail:
| | | |
Collapse
|
38
|
Burch-Smith TM, Brunkard JO, Choi YG, Zambryski PC. Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata. Proc Natl Acad Sci U S A 2011; 108:E1451-60. [PMID: 22106293 PMCID: PMC3251100 DOI: 10.1073/pnas.1117226108] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We use Arabidopsis thaliana embryogenesis as a model system for studying intercellular transport via plasmodesmata (PD). A forward genetic screen for altered PD transport identified increased size exclusion limit (ise) 1 and ise2 mutants with increased intercellular transport of fluorescent 10-kDa tracers. Both ise1 and ise2 exhibit increased formation of twinned and branched PD. ISE1 encodes a mitochondrial DEAD-box RNA helicase, whereas ISE2 encodes a DEVH-type RNA helicase. Here, we show that ISE2 foci are localized to the chloroplast stroma. Surprisingly, plastid development is defective in both ise1 and ise2 mutant embryos. In an effort to understand how RNA helicases that localize to different organelles have similar impacts on plastid and PD development/function, we performed whole-genome expression analyses. The most significantly affected class of transcripts in both mutants encode products that target to and enable plastid function. These results reinforce the importance of plastid-mitochondria-nucleus cross-talk, add PD as a critical player in the plant cell communication network, and thereby illuminate a previously undescribed signaling pathway dubbed organelle-nucleus-plasmodesmata signaling. Several genes with roles in cell wall synthesis and modification are also differentially expressed in both mutants, providing new targets for investigating PD development and function.
Collapse
Affiliation(s)
| | | | - Yoon Gi Choi
- Functional Genomics Laboratory, University of California, Berkeley, CA 94720
| | | |
Collapse
|
39
|
Żmieńko A, Guzowska-Nowowiejska M, Urbaniak R, Pląder W, Formanowicz P, Figlerowicz M. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants. PLANT METHODS 2011; 7:29. [PMID: 21952044 PMCID: PMC3195753 DOI: 10.1186/1746-4811-7-29] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/28/2011] [Indexed: 05/23/2023]
Abstract
Plastids are small organelles equipped with their own genomes (plastomes). Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray) consisting of 1629 oligonucleotide probes. The oligonucleotides were designed based on the cucumber chloroplast genomic sequence and targeted both strands of the plastome in a non-contiguous arrangement. Up to 4 specific probes were designed for each gene/exon, and the intergenic regions were covered regularly, with 70-nt intervals. We also developed a protocol for direct chemical labeling and hybridization of as little as 2 micrograms of chloroplast RNA. We used this protocol for profiling the expression of the cucumber chloroplast plastome on the PlasTi-microarray. Owing to the high sequence similarity of plant plastomes, the newly constructed microarray can be used to study plants other than cucumber. Comparative hybridization of chloroplast transcriptomes from cucumber, Arabidopsis, tomato and spinach showed that the PlasTi-microarray is highly versatile.
Collapse
Affiliation(s)
- Agnieszka Żmieńko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Magdalena Guzowska-Nowowiejska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, Warsaw, Poland
- Current Address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, P.O. Box 2543, 4002 Basel, Switzerland
| | - Radosław Urbaniak
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences-SGGW, Nowoursynowska 166, Warsaw, Poland
| | - Piotr Formanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| |
Collapse
|
40
|
The Naegleria genome: a free-living microbial eukaryote lends unique insights into core eukaryotic cell biology. Res Microbiol 2011; 162:607-18. [PMID: 21392573 DOI: 10.1016/j.resmic.2011.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 01/29/2011] [Indexed: 11/24/2022]
Abstract
Naegleria gruberi, a free-living protist, has long been treasured as a model for basal body and flagellar assembly due to its ability to differentiate from crawling amoebae into swimming flagellates. The full genome sequence of Naegleria gruberi has recently been used to estimate gene families ancestral to all eukaryotes and to identify novel aspects of Naegleria biology, including likely facultative anaerobic metabolism, extensive signaling cascades, and evidence for sexuality. Distinctive features of the Naegleria genome and nuclear biology provide unique perspectives for comparative cell biology, including cell division, RNA processing and nucleolar assembly. We highlight here exciting new and novel aspects of Naegleria biology identified through genomic analysis.
Collapse
|
41
|
Jacobs J, Kück U. Function of chloroplast RNA-binding proteins. Cell Mol Life Sci 2011; 68:735-48. [PMID: 20848156 PMCID: PMC11115000 DOI: 10.1007/s00018-010-0523-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 12/18/2022]
Abstract
Chloroplasts are eukaryotic organelles which represent evolutionary chimera with proteins that have been derived from either a prokaryotic endosymbiont or a eukaryotic host. Chloroplast gene expression starts with transcription of RNA and is followed by multiple post-transcriptional processes which are mediated mainly by an as yet unknown number of RNA-binding proteins. Here, we review the literature to date on the structure and function of these chloroplast RNA-binding proteins. For example, the functional protein domains involved in RNA binding, such as the RNA-recognition motifs, the chloroplast RNA-splicing and ribosome maturation domains, and the pentatricopeptide-repeat motifs, are summarized. We also describe biochemical and forward genetic approaches that led to the identification of proteins modifying RNA stability or carrying out RNA splicing or editing. Such data will greatly contribute to a better understanding of the biogenesis of a unique organelle found in all photosynthetic organisms.
Collapse
Affiliation(s)
- Jessica Jacobs
- Department for General and Molecular Biology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
| | | |
Collapse
|
42
|
GREINER STEPHAN, RAUWOLF UWE, MEURER JÖRG, HERRMANN REINHOLDG. The role of plastids in plant speciation. Mol Ecol 2011; 20:671-91. [DOI: 10.1111/j.1365-294x.2010.04984.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Cristodero M, Seebeck T, Schneider A. Mitochondrial translation is essential in bloodstream forms of Trypanosoma brucei. Mol Microbiol 2010; 78:757-69. [PMID: 20969649 DOI: 10.1111/j.1365-2958.2010.07368.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The parasitic protozoa Trypanosoma brucei has a complex life cycle. Oxidative phosphorylation is highly active in the procyclic form but absent from bloodstream cells. The mitochondrial genome encodes several gene products that are required for oxidative phosphorylation, but it completely lacks tRNA genes. For mitochondrial translation to occur, the import of cytosolic tRNAs is therefore essential for procyclic T. brucei. Whether the same is true for the bloodstream form has not been studied so far. Here we show that the steady-state levels of mitochondrial tRNAs are essentially the same in both life stages. Editing of the imported tRNA(Trp) also occurs in both forms as well as in mitochondria of Trypanosoma evansi, which lacks a genome and a translation system. These results show that mitochondrial tRNA import is a constitutive process that must be mediated by proteins that are expressed in both forms of the life cycle and that are not encoded in the mitochondrial genome. Moreover, bloodstream cells lacking either mitochondria-specific translation elongation factor Tu or mitochondrial tryptophanyl-tRNA synthetase are not viable indicating that mitochondrial translation is also essential in this stage. Both of these proteins show trypanosomatid-specific features and may therefore be excellent novel drug targets.
Collapse
Affiliation(s)
- Marina Cristodero
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
| | | | | |
Collapse
|
44
|
Ginger ML, McFadden GI, Michels PAM. The evolution of organellar metabolism in unicellular eukaryotes. Philos Trans R Soc Lond B Biol Sci 2010; 365:693-8. [PMID: 20124338 DOI: 10.1098/rstb.2009.0260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Metabolic innovation has facilitated the radiation of microbes into almost every niche environment on the Earth, and over geological time scales transformed the planet on which we live. A notable example of innovation is the evolution of oxygenic photosynthesis which was a prelude to the gradual transformation of an anoxic Earth into a world with oxygenated oceans and an oxygen-rich atmosphere capable of supporting complex multicellular organisms. The influence of microbial innovation on the Earth's history and the timing of pivotal events have been addressed in other recent themed editions of Philosophical Transactions of Royal Society B (Cavalier-Smith et al. 2006; Bendall et al. 2008). In this issue, our contributors provide a timely history of metabolic innovation and adaptation within unicellular eukaryotes. In eukaryotes, diverse metabolic portfolios are compartmentalized across multiple membrane-bounded compartments (or organelles). However, as a consequence of pathway retargeting, organelle degeneration or novel endosymbiotic associations, the metabolic repertoires of protists often differ extensively from classic textbook descriptions of intermediary metabolism. These differences are often important in the context of niche adaptation or the structure of microbial communities. Fundamentally interesting in its own right, the biochemical, cell biological and phylogenomic investigation of organellar metabolism also has wider relevance. For instance, in some pathogens, notably those causing some of the most significant tropical diseases, including malaria, unusual organellar metabolism provides important new drug targets. Moreover, the study of organellar metabolism in protists continues to provide critical insight into our understanding of eukaryotic evolution.
Collapse
Affiliation(s)
- Michael L Ginger
- School of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | |
Collapse
|